1
|
Khramova DS, Vityazev FV, Zueva NV, Chistiakova EA. Impact of pectin or xanthan addition to mashed potatoes gelled with κ-carrageenan on texture and rheology, oral processing behavior, bolus properties and in mouth starch digestibility. Int J Biol Macromol 2025; 308:142349. [PMID: 40120903 DOI: 10.1016/j.ijbiomac.2025.142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Oral processing behavior affects starch bioavailability, but the impact of the oral phase on starch digestibility in potato dishes enriched with polysaccharides has not been clearly established. Therefore, pectin (1 %) or xanthan (1 %) were added to mushed potatoes (MP), which was gelled with κ-carrageenan (0.6 %), to produce the samples named MP-CarP MP-CarX, and MP-Car, respectively. Rheological, textural, sensory and electromyographic tests were conducted on the samples, along with bolus analysis. Both pectin and xanthan softened MP by 23 and 30 %, respectively, and reduced gel strength. The MP-CarP and MP-CarX were orally processed for shorter chewing times; however, their boluses exhibited a 20 % increase in cohesiveness. Chewing the MP-CarP highly enhanced salivation, resulting in a 45 % increase in bolus fragmentation, while the MP-CarX had the highest cohesiveness and lowest fragmentation. The variations in oral processing of MP with pectin or xanthan resulted in differing levels of starch hydrolysis and glucose release in the mouth. Chewing the MP-CarX resulted in lower levels of these processes, highlighting the importance of considering the oral phase of digestion when studying the hypoglycemic effects of polysaccharides. This is essential for developing new and effective approaches to improving glycemic control by incorporating fibers into commonly consumed starchy foods.
Collapse
Affiliation(s)
- Daria S Khramova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia.
| | - Fedor V Vityazev
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Natalya V Zueva
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Elizaveta A Chistiakova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| |
Collapse
|
2
|
Salman C K M, Beura M, Singh A, Dahuja A, Kamble VB, Shukla RP, Thandapilly SJ, Krishnan V. Biomimic models for in vitro glycemic index: Scope of sensor integration and artificial intelligence. Food Chem X 2025; 25:102132. [PMID: 39867218 PMCID: PMC11764032 DOI: 10.1016/j.fochx.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
The accurate quantification of glycemic index (GI) remains crucial for diabetes management, yet current methodologies are constrained by resource intensiveness and methodological limitations. In vitro digestion models face challenges in replicating the dynamic conditions of the human gastrointestinal tract, such as enzyme variability and multi-time point analysis, leading to suboptimal predictive accuracy. This review proposes an integrated technological framework combining non-enzymatic electrochemical sensing with artificial intelligence to revolutionize GI assessment. Non-enzymatic sensors offer superior stability and repeatability in complex matrices, enabling real-time glucose quantification across multiple timepoints without enzyme degradation constraints. Machine learning algorithms, both supervised and unsupervised, enhance predictive accuracy by elucidating complex relationships within digestion data. This technological convergence represents a paradigm shift in food science analytics, promising improved throughput and precision in GI assessment. Future developments should focus on system scalability and broader applications across nutritional science, advancing diabetic management and personalized nutrition strategies.
Collapse
Affiliation(s)
- Mohammed Salman C K
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Muskan Beura
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Vinayak B. Kamble
- School of Physics, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, 695551, India
| | - Rajendra P. Shukla
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC 27695, USA
| | - Sijo Joseph Thandapilly
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 6C5, Canada
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| |
Collapse
|
3
|
Duijsens D, Verkempinck SHE, Grauwet T. Impact of the stepwise implementation of INFOGEST semi-dynamic conditions on in vitro starch and protein digestion: A case study on lentil cotyledon cells. Food Res Int 2024; 197:115214. [PMID: 39593300 DOI: 10.1016/j.foodres.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The impact of food design parameters on digestion is mostly studied using static in vitro digestion models. In this work, the complexity of the static model was gradually increased, by implementing several dynamic gastric reactor conditions, i.e., gradual (i) acidification, (ii) pepsin addition, and (iii) emptying, as well as (iv) saliva in the oral phase. As a relevant case study, starch and protein digestion was studied in lentil cotyledon cells under these conditions. Implementation of these dynamic parameters affected gastric proteolysis, linked to the pH-dependence of pepsin, and amylolysis, linked to the pH-dependence of salivary amylase activity. Though gastrointestinal hydrolysis kinetics were affected by the applied simulation conditions, similar levels of starch and protein digestion were generally reached at the end of the simulated digestion. Salivary amylase was not completely inactivated at the low gastric pH conditions, resulting in significantly higher levels of small intestinal starch digestion upon saliva inclusion. Gastric emptying significantly affected macronutrient hydrolysis kinetics. In that regard, an approach separately considering gastric samples taken upon different gastric emptying times should be preferred over the pooling of gastric samples before simulating small intestinal digestion.
Collapse
Affiliation(s)
- D Duijsens
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - S H E Verkempinck
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - T Grauwet
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
4
|
Duijsens D, Staes E, Segers M, Michels D, Pälchen K, Hendrickx ME, Verkempinck SHE, Grauwet T. Single versus multiple metabolite quantification of in vitro starch digestion: A comparison for the case of pulse cotyledon cells. Food Chem 2024; 454:139762. [PMID: 38805919 DOI: 10.1016/j.foodchem.2024.139762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Different quantification methods for in vitro amylolysis were compared for individual chickpea and lentil cotyledon cells (ICC) as a relevant case study. For the first time, much-applied spectrophotometric methods relying on the quantification of certain functional groups (i.e., DNS, GOPOD) were compared to chromatographic quantification of starch metabolites (HPLC-ELSD). The estimated rate constant and linked initial rates of amylolysis were highly correlated for DNS, GOPOD, and HPLC-ELSD. However, absolute amylolysis levels depended on the applied method and sample-specific metabolite formation patterns. Multiresponse modelling was employed to further investigate HPLC-ELSD metabolite formation patterns. This delivered insight into the relative importance of different amylolysis reactions during in vitro digestion of pulse ICC, proving that maltotriose and maltose formation determined the overall amylolysis rate in this case. Multiresponse reaction rate constants of maltotriose and maltose formation were highly correlated to single response amylolysis rate constants (and initial rates) obtained for all three quantification methods.
Collapse
Affiliation(s)
- D Duijsens
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - E Staes
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - M Segers
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - D Michels
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - K Pälchen
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - M E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - S H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - T Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Guevara-Zambrano JM, Chowdhury P, Wouters AGB, Verkempinck SHE. Solubility, (micro)structure, and in vitro digestion of pea protein dispersions as affected by high pressure homogenization and environmental conditions. Food Res Int 2024; 188:114434. [PMID: 38823828 DOI: 10.1016/j.foodres.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In this work, dispersions were prepared with commercial pea protein isolate (PPI) and subjected to different (i) high pressure homogenization (HPH) intensities (0 - 200 MPa) (room temperature, pH 7) or (ii) environmental conditions (60 °C, pH 7 or pH 12) to generate dispersions with distinct protein molecular and microstructural characteristics, impacting protein solubility. Besides, protein digestion was analyzed following the static INFOGEST in vitro digestion protocol. Generally, increasing pressure of the homogenization treatment was linked with decreasing particle sizes and enhanced protein digestion. More specifically, the dispersion that did not undergo HPH (0 MPa) as well as the dispersion treated at 60 °C, pH 7, had highly similar microstructures, consisting of large irregular particles (10 - 500 µm) with shell-like structures, and exhibited low solubility (around 15 % and 28 %, respectively), which resulted in limited proteolysis (35 % and 42 %, respectively). In contrast, the dispersion subjected to HPH at 100 MPa and the dispersion treated at 60 °C, pH 12 also had similar microstructures with small and homogeneous particles (<1 µm), and exhibited relatively good solubility (54 % and 31 %, respectively), which led to enhanced protein digestion levels (87 % and 74 %, respectively). This study highlights the potential of food processing on macronutrient (micro)structure and further gastrointestinal stability and functionality.
Collapse
Affiliation(s)
- J M Guevara-Zambrano
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - P Chowdhury
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - A G B Wouters
- Laboratory of Food chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, PB 2457, 3001 Leuven, Belgium.
| | - S H E Verkempinck
- Laboratory of Food Technology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
6
|
Jo M, Shi YC. Unveiling the significance of gastric digestion in gastrointestinal fate of octenylsuccinylated starch-stabilized emulsions. Carbohydr Polym 2024; 333:121953. [PMID: 38494204 DOI: 10.1016/j.carbpol.2024.121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
The importance of gastric digestion in starch-based emulsion is often overshadowed compared to intestinal digestion, despite acknowledging the activity of salivary α-amylase in the stomach. This study aimed to address this gap by investigating the digestion of starch-based emulsions through orogastrointestinal digestion experiments. Our observations revealed the crucial role of salivary α-amylase, which hydrolyzed ∼8 %, ∼56 %, and ∼ 28 % of starch in emulsions stabilized by octenylsuccinylated maize starch (OMS-E), gelatinized OMS (GOMS-E), and retrograded OMS (ROMS-E), respectively, during the gastric phase. Consequently, ∼23 % of the oil in GOMS-E underwent lipolysis during this phase, whereas ∼13 and ∼ 6 % of the oil was lipolyzed in OMS-E and ROMS-E, respectively. These phenomena significantly influenced their small intestinal digestion and the bioaccessibility of encapsulated curcumin. Notably, GOMS-E exhibited ∼28 % lower curcumin bioaccessibility than that of curcumin encapsulated in OMS-E or ROMS-E. This difference was attributed to premature gastric digestion and subsequent encapsulant release in the case of GOMS-E. This understanding can be utilized to manipulate the delivery and digestion of starch-based emulsions. Importantly, our findings highlight the necessity of considering gastric amylolysis and lipolysis when investigating the gastrointestinal fate of starch-based emulsions.
Collapse
Affiliation(s)
- Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea.
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Rathi A, Potale S, Vaze R, Muley AB, Jadhav S. In vitro simulated study of macronutrient digestion in complex food using digestive enzyme supplement. Heliyon 2024; 10:e30250. [PMID: 38707299 PMCID: PMC11066670 DOI: 10.1016/j.heliyon.2024.e30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Digestive enzymes secreted by the body are vital for digestion and nutrient absorption. Enzyme supplements are commonly used to support them in achieving optimal digestion. Herein, the efficacy of digestive enzyme supplement (DigeSEB Super) in digestion of complex food was assessed using INFOGEST simulated static and modified semi-dynamic in vitro digestion models. Digestive enzyme supplement was found to assist the endogenous digestive enzymes to disintegrate the food matrix. Hence, it reduced the viscosity of the gastric digesta by 2.75 fold (p = 0.04) compared to the control digestion (only endogenous digestive enzymes) during the first hour of digestion. Similarly, enzyme supplement showed statistically higher release of reducing sugars in the gastric digestion (p ≤ 0.05) indicating improved digestion of carbohydrates. Further, digestion of proteins and fats was also improved in the presence of enzyme supplement. The kinetic aspects of the semi-dynamic model (transient nature of gastric secretions and gradual acidification) was found to alter the macronutrient digestion compared to the static digestion. Thus, semi-dynamic model should be preferred for the in vitro studies. Overall, current study demonstrated the potential of a digestive enzyme supplement to improve digestion by aiding digestive action of the endogenous enzymes.
Collapse
Affiliation(s)
- Abhijit Rathi
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Sneha Potale
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Rutuja Vaze
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Abhijeet B. Muley
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Swati Jadhav
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| |
Collapse
|
8
|
Torp Nielsen M, Roman L, Corredig M. In vitro gastric digestion of polysaccharides in mixed dispersions: Evaluating the contribution of human salivary α-amylase on starch molecular breakdown. Curr Res Food Sci 2024; 8:100759. [PMID: 38764978 PMCID: PMC11101712 DOI: 10.1016/j.crfs.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
The aim of this work was to investigate the impact of the addition of salivary α-amylase on starch hydrolysis in protein-containing dispersions during an in vitro digestion process. In vitro digestion provides useful insights on the fate of nutrients during gastro-intestinal transit in complex food matrices, an important aspect to consider when developing highly nutritious foods. Many foods contain polysaccharides, and as their disruption in the gastric stage is limited, salivary α-amylase is often neglected in in vitro studies. A reference study on the effect of salivary α-amylase using one of the most advanced and complex in vitro digestion models (INFOGEST) is, however, not available. Hence, this work reports the gastrointestinal breakdown of three mixed dispersions containing whey protein isolate with different polysaccharides: potato starch, pectin from citrus peel and maize starch. The latter was also studied after heating. No polysaccharide or salivary α-amylase-dependent effect on protein digestion was found, based on the free NH2 and SDS-PAGE. However, in the heat-treated samples, the addition of salivary α-amylase showed a significantly higher starch hydrolysis compared to the sample without α-amylase, due to the gelatinization of the starch granules, which improved the accessibility of the starch molecules to the enzyme. This work demonstrated that the presence of different types of polysaccharides does not affect protein digestion, but also it emphasizes the importance of considering the influence of processing on food structure and its digestibility, even in the simplest model systems.
Collapse
Affiliation(s)
- M. Torp Nielsen
- Aarhus University, Department of Food Science, CiFOOD Center for Innovative Foods, Agro Food Park 48, 8200, Aarhus N, Denmark
| | | | - M. Corredig
- Aarhus University, Department of Food Science, CiFOOD Center for Innovative Foods, Agro Food Park 48, 8200, Aarhus N, Denmark
| |
Collapse
|
9
|
Duijsens D, Verkempinck SHE, Somers E, Hendrickx MEG, Grauwet T. From static to semi-dynamic in vitro digestion conditions relevant for the older population: starch and protein digestion of cooked lentils. Food Funct 2024; 15:591-607. [PMID: 38098462 DOI: 10.1039/d3fo04241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In the context of adequately feeding the rising older population, lentils have an important potential as sources of (plant-based) protein as well as slowly digestible bio-encapsulated starch and fibre. This study evaluated in vitro digestion of protein and starch in lentils under conditions representing the gastrointestinal tract of older adults. Both static and semi-dynamic simulations were applied to analyze the effect of specific gastrointestinal conditions (healthy versus older adult) on macronutrient digestion patterns. Gastric proteolysis was strongly dependent on applied gastric pH (gradient), leading to a lower extent of protein hydrolysis for simulations relevant for older adults. Fewer and smaller (lower degree of polymerization, DP) bioaccessible peptides were formed during gastric proteolysis under older adult compared to healthy adult conditions. These differences, developed during the in vitro gastric phase, were compensated during small intestinal digestion, yielding similar final proteolysis levels regardless of the applied simulation conditions. In contrast, in the presence of saliva, amylolysis was generally accelerated under older adult conditions. Moreover, the current work highlighted the importance of considering saliva (or salivary amylase) incorporation in simulations where the applied gastric pH (gradient) allows salivary amylase activity. Under both healthy and older adult conditions, in vitro starch hydrolysis bio-encapsulated in cotyledon cells of cooked lentils was attenuated, compared to a white bread reference.
Collapse
Affiliation(s)
- Dorine Duijsens
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Emma Somers
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Marc E G Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Finassi CM, Calixto LA, Segura W, Bocato MZ, Barbosa Júnior F, Fonseca FLA, Lamy E, Castelo PM. Effect of sweetened beverages intake on salivary aspartame, insulin and alpha-amylase levels: A single-blind study. Food Res Int 2023; 173:113406. [PMID: 37803739 DOI: 10.1016/j.foodres.2023.113406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
The objective was to assess aspartame excretion in saliva and the salivary insulin, total protein (TP), and alpha-amylase (AMI) levels in response to the ingestion of sweetened beverages (sodium cyclamate, aspartame, acesulfame, and sucrose). Fifteen healthy participants were included in a single-blinded trial with the intake of Diet soft drink, Regular soft drink, Water + sweeteners, Low sucrose content (3.5 g), and Water (blank) in 5 different days. In each day, saliva was collected at T0 (fasting), T1 (15 min after test-drink intake), T2 (30 min), T3 (60 min), and T4 (120 min) for the measurement of salivary aspartame (HPLC), TP, AMI (ELISA assays) and insulin levels (chemiluminescence). Chi-square, Friedman, ANOVA and Spearman correlation tests were applied. The late-perceived sweet/sour residual flavor was reported at a frequency of 80%, 60% and 20% after ingestion of artificially sweetened drinks, beverages with sucrose, and plain water, respectively (p < 0.05). Aspartame was detected in saliva after artificially sweetened drinks intake, with highest area under the peak for the Diet soft drink (p = 0.014). No change was observed for TP and AMI levels during the 120 min. Insulin levels increased 1 h after soft-drinks ingestion (regular and diet), while the levels did not change for Low sucrose content and Water + sweeteners test-drinks. Salivary aspartame correlated with insulin levels only after Diet soft drink intake (rho ≥ 0.7; p < 0.05). As aspartame can be detected in saliva and swallowed again until completely excreted, these results contribute to the knowledge of the biological fate of artificial sweeteners and the study of health outcomes.
Collapse
Affiliation(s)
| | - Leandro A Calixto
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Brazil
| | - Wilson Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Brazil
| | - Mariana Zuccherato Bocato
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Fernando Barbosa Júnior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | | | - Elsa Lamy
- MED Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Portugal
| | | |
Collapse
|
11
|
Hwang BY, Seo JW, Muftuoglu C, Mert U, Guldaval F, Asadi M, Karakus HS, Goksel T, Veral A, Caner A, Moon MH. Salivary Lipids of Patients with Non-Small Cell Lung Cancer Show Perturbation with Respect to Plasma. Int J Mol Sci 2023; 24:14264. [PMID: 37762567 PMCID: PMC10531690 DOI: 10.3390/ijms241814264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A comprehensive lipid profile was analyzed in patients with non-small cell lung cancer (NSCLC) using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. This study investigated 297 and 202 lipids in saliva and plasma samples, respectively, comparing NSCLC patients to healthy controls. Lipids with significant changes (>2-fold, p < 0.05) were further analyzed in each sample type. Both saliva and plasma exhibited similar lipid alteration patterns in NSCLC, but saliva showed more pronounced changes. Total triglycerides (TGs) increased (>2-3-fold) in plasma and saliva samples. Three specific TGs (50:2, 52:5, and 54:6) were significantly increased in NSCLC for both sample types. A common ceramide species (d18:1/24:0) and phosphatidylinositol 38:4 decreased in both plasma and saliva by approximately two-fold. Phosphatidylserine 36:1 was selectively detected in saliva and showed a subsequent decrease, making it a potential biomarker for predicting lung cancer. We identified 27 salivary and 10 plasma lipids as candidate markers for NSCLC through statistical evaluations. Moreover, this study highlights the potential of saliva in understanding changes in lipid metabolism associated with NSCLC.
Collapse
Affiliation(s)
- Bo Young Hwang
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| | - Jae Won Seo
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| | - Can Muftuoglu
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
| | - Ufuk Mert
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Ataturk Health Care Vocational School, Ege University, Izmir 35040, Turkey
| | - Filiz Guldaval
- Chest Disease Department, Izmir Dr. Suat Seren Chest Disease and Surgery Training and Research Hospital, Izmir 35170, Turkey;
| | - Milad Asadi
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
| | | | - Tuncay Goksel
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Izmir 35040, Turkey;
| | - Ali Veral
- Department of Pathology, Faculty of Medicine, Ege University, Izmir 35040, Turkey;
| | - Ayse Caner
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| |
Collapse
|
12
|
Zulfiqar S, Blando F, Orfila C, Marshall LJ, Boesch C. Chromogenic Assay Is More Efficient in Identifying α-Amylase Inhibitory Properties of Anthocyanin-Rich Samples When Compared to the 3,5-Dinitrosalicylic Acid (DNS) Assay. Molecules 2023; 28:6399. [PMID: 37687228 PMCID: PMC10490044 DOI: 10.3390/molecules28176399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The inhibition of carbohydrate digestion by plant bioactive compounds is a potential dietary strategy to counteract type 2 diabetes. Indeed, inhibition of α-amylase, a key enzyme that carries out the bulk of starch digestion, has been demonstrated for a range of bioactive compounds including anthocyanins; however, sample pigmentation often interferes with measurements, affecting colorimetric assay outcomes. Therefore, the present study compared the performance of a direct chromogenic assay, using 2-chloro-4 nitrophenyl α-D-maltotrioside (CNPG3) as a substrate, with the commonly used 3,5-dinitrosalicylic acid (DNS) assay. The direct chromogenic assay demonstrated a 5-10-fold higher sensitivity to determine α-amylase inhibition in various samples, including acarbose as a reference, pure anthocyanins, and anthocyanin-rich samples. The IC50 values of acarbose presented as 37.6 μg/mL and 3.72 μg/mL for the DNS assay and the direct chromogenic assay, respectively, whereas purified anthocyanins from blackcurrant showed IC50 values of 227.4 µg/mL and 35.0 µg/mL. The direct chromogenic assay is easy to perform, fast, reproducible, and suitable for high-throughput screening of pigmented α-amylase inhibitors.
Collapse
Affiliation(s)
- Sadia Zulfiqar
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (S.Z.); (C.O.); (L.J.M.)
| | - Federica Blando
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Caroline Orfila
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (S.Z.); (C.O.); (L.J.M.)
| | - Lisa J. Marshall
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (S.Z.); (C.O.); (L.J.M.)
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (S.Z.); (C.O.); (L.J.M.)
| |
Collapse
|
13
|
Nadia J, Singh H, Bornhorst GM. Evaluation of the performance of the human gastric simulator using durum wheat-based foods of contrasting food structure. Food Funct 2023. [PMID: 37427445 DOI: 10.1039/d3fo00740e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The selection of gastric digestion parameters in food digestion studies using in vitro models is critical to properly represent structural changes in the stomach. This study aimed to evaluate the performance of digestion in the human gastric simulator (HGS) using generalized in vitro gastric digestion parameters (secretion rate of 4.1 mL min-1, gastric emptying rate of 5.68 g min-1) that were derived from a previous in vivo study using six starch-rich foods. Two of the six foods used in the in vivo study (cooked durum wheat porridge/semolina and pasta) were digested in the HGS for up to 240 min, then the properties of the emptied and remaining digesta were measured. The properties of the in vitro remaining digesta were compared to those measured in vivo (growing pig stomach). The trends in the gastric breakdown rate and mechanisms, dry matter emptying kinetics, and starch hydrolysis of pasta and semolina were similar to those of in vivo. Gastric breakdown and dilution kinetics in vitro and in vivo were well-related but did not have a 1 : 1 correlation, whereas gastric acidification kinetics in the HGS deviated from that observed in vivo. The results suggest that generalized digestion parameters could be used to predict the effect of food structure on in vivo gastric breakdown and emptying, but care should be taken in interpretation of results, as the gastric acidification process was different from what was observed in vivo. This information will help refine in vitro digestion model parameters to provide more physiologically-relevant data in future studies.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| |
Collapse
|
14
|
Duijsens D, Alfie Castillo AI, Verkempinck SHE, Pälchen K, Hendrickx ME, Grauwet T. In vitro macronutrient digestibility and mineral bioaccessibility of lentil-based pasta: The influence of cellular intactness. Food Chem 2023; 423:136303. [PMID: 37182489 DOI: 10.1016/j.foodchem.2023.136303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Recently, pulse ingredients with (partial) cellular intactness are put forward as promising innovative food ingredients with slowed macronutrient digestibility. This study compared cooking quality and nutrient (starch, protein, and mineral) digestibility/bioaccessibility of lentil-based pasta prepared from 100% raw-milled flour, and by substituting 30% of the formulation by isolated cotyledon cell powder or whole precooked powder. Formulation had little effect on cooking properties. Both amylolysis and proteolysis were significantly slowed by incorporating cellular ingredients: towards the end of simulated digestion, amylolysis was lowered by 16-25%, while differences in proteolysis became small. Cellular ingredient incorporation slightly decreased Zn and Mg but did not affect Ca and Fe bioaccessibility, overall yielding a low mineral bioaccessibility comparable to cooked whole pulses. To conclude, lentil-based pasta substituted with cellular ingredients showed improved nutritional properties (i.e., high in digestible protein and slowed amylolysis), with perspectives for the development of different innovative foods with targeted nutritional properties.
Collapse
Affiliation(s)
- D Duijsens
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - A I Alfie Castillo
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - S H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - K Pälchen
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - M E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - T Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
15
|
Li C, Hu Y, Li S, Yi X, Shao S, Yu W, Li E. Biological factors controlling starch digestibility in human digestive system. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ribes S, Genot M, Vénien A, Santé-Lhoutellier V, Peyron MA. Oral and gastrointestinal nutrient bioaccessibility of gluten-free bread is slightly affected by deficient mastication in the elderly. Food Res Int 2023; 165:112523. [PMID: 36869523 DOI: 10.1016/j.foodres.2023.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The main goal of this work was to investigate the impact of impaired mastication on nutrient bioaccessibility of gluten-free bread in the elderly. In vitro boluses were produced with the AM2 masticator by using two types of programming: normal mastication (NM) and deficient mastication (DM). Static in vitro gastrointestinal digestion was performed with the digestive physiology conditions of the elderly. Subsequently, the granulometric properties of the in vitro boluses produced, their starch and protein digestibility, and lipid peroxidation after in vitro oral and gastrointestinal digestion were evaluated. DM boluses presented higher proportions of large particles, resulting in insufficiently fragmented boluses. A delay in oral starch digestion was observed in DM boluses, probably due to the presence of larger particles that limited the bolus-saliva exchanges. Furthermore, DM boluses exhibited a lower degree of protein hydrolysis at the end of gastric digestion, whereas no differences were observed for protein hydrolysis, sugar release, and lipid peroxidation at the end of digestion (intestinal phase). The results of this study show that impaired mastication somewhat delays the nutrient bioaccessibility of the gluten-free bread tested. Such understanding of the effect of oral decline on the nutrient bioaccessibility of foods is crucial when designing food commodities with enhanced functionalities for the elderly.
Collapse
Affiliation(s)
- Susana Ribes
- Departamento Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; INRAE, QuaPA UR 370, F-63122 Saint Genès Champanelle, France.
| | - Mélany Genot
- INRAE, QuaPA UR 370, F-63122 Saint Genès Champanelle, France
| | - Annie Vénien
- INRAE, QuaPA UR 370, F-63122 Saint Genès Champanelle, France
| | | | - Marie-Agnès Peyron
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Ribes S, Genot M, Aubry L, Talens P, Vénien A, Santé-Lhoutellier V, Peyron MA. Oral impairments decrease the nutrient bioaccessibility of bread in the elderly. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Di Cairano M, Tchuenbou-Magaia FL, Condelli N, Cela N, Ojo CC, Radecka I, Dunmore S, Galgano F. Glycaemic Index of Gluten-Free Biscuits with Resistant Starch and Sucrose Replacers: An In Vivo and In Vitro Comparative Study. Foods 2022; 11:3253. [PMID: 37431001 PMCID: PMC9601495 DOI: 10.3390/foods11203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
The glycaemic index (GI) is used to demonstrate the tendency of foods to increase blood glucose and is thus an important characteristic of newly formulated foods to tackle the rising prevalence of diabetics and associated diseases. The GI of gluten-free biscuits formulated with alternate flours, resistant starch and sucrose replacers was determined using in vivo methods with human subjects. The relationship between in vivo GI values and the predicted glycaemic index (pGI) from the in vitro digestibility-based protocols, generally used by researchers, was established. The in vivo data showed a gradual reduction in GI with increased levels of sucrose substitution by maltitol and inulin with biscuits where sucrose was fully replaced, showing the lowest GI of 33. The correlation between the GI and pGI was food formulation-dependent, even though GI values were lower than the reported pGI. Applying a correction factor to pGI tend to close the gap between the GI and pGI for some formulations but also causes an underestimation of GI for other samples. The results thus suggest that it may not be appropriate to use pGI data to classify food products according to their GI.
Collapse
Affiliation(s)
- Maria Di Cairano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Fideline Laure Tchuenbou-Magaia
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Nicola Condelli
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Nazarena Cela
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Constance Chizoma Ojo
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Simon Dunmore
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Fernanda Galgano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
19
|
Fan H, Liang D, Fu F, Xu M, Li Z, Suo B, Ai Z. Processing suitability of different varieties of sweet potatoes cooked with different methods. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Huiping Fan
- College of Food Science and Technology Henan Agricultural University 450002 Zhengzhou Henan China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs 450002 Zhengzhou Henan China
| | - Dan Liang
- College of Food Science and Technology Henan Agricultural University 450002 Zhengzhou Henan China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs 450002 Zhengzhou Henan China
| | - Feng Fu
- Henan Center for Supervision & Inspection of Grain, Oil and Feed Product Quality 450099 Zhengzhou Henan China
| | - Mengyan Xu
- College of Food Science and Technology Henan Agricultural University 450002 Zhengzhou Henan China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs 450002 Zhengzhou Henan China
| | - Zhen Li
- College of Food Science and Technology Henan Agricultural University 450002 Zhengzhou Henan China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs 450002 Zhengzhou Henan China
| | - Biao Suo
- College of Food Science and Technology Henan Agricultural University 450002 Zhengzhou Henan China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs 450002 Zhengzhou Henan China
| | - Zhilu Ai
- College of Food Science and Technology Henan Agricultural University 450002 Zhengzhou Henan China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs 450002 Zhengzhou Henan China
| |
Collapse
|
20
|
Nadia J, Bronlund JE, Singh H, Singh RP, Bornhorst GM. Contribution of the proximal and distal gastric phases to the breakdown of cooked starch-rich solid foods during static in vitro gastric digestion. Food Res Int 2022; 157:111270. [DOI: 10.1016/j.foodres.2022.111270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
|
21
|
Influence of food macrostructure on the kinetics of acidification in the pig stomach after the consumption of rice- and wheat-based foods: implications for starch hydrolysis and starch emptying rate. Food Chem 2022; 394:133410. [DOI: 10.1016/j.foodchem.2022.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|
22
|
Extruded Enzyme-Added Corn Improves the Growth Performance, Intestinal Function, and Microbiome of Weaning Piglets. Animals (Basel) 2022; 12:ani12081002. [PMID: 35454248 PMCID: PMC9027177 DOI: 10.3390/ani12081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the effects of extruded corn with added amylase under different moisture conditions on the growth performance, intestinal function, and microbiome of weaning piglets. Fourty-eight 24-day-old weaning piglets (Duroc × Landrace × Yorkshire, weaned at 22 ± 1 d) with an initial body weight of 6.76 ± 0.15 kg were randomly assigned to one of four dietary treatments with six replicates per treatment and two pigs per replicate: (1) NL (adding 7.5% water before corn extrusion, negative treatment with low moisture); (2) NH (adding 15.0% water before corn extrusion, negative treatment with high moisture); (3) PL (adding 7.5% water and 4 kg/t α-amylase before corn extrusion, positive treatment with low moisture); and (4) PH (adding 15% water and 4 kg/t α-amylase before corn extrusion, positive treatment with high moisture). Results showed that amylase supplementation (4 vs. 0 kg/t) increased the contents of small molecular oligosaccharides of extruded corn (p < 0.05). Amylase supplementation significantly improved the average daily feed intake, apparent total tract digestibility (ATTD) of dry matter, crude protein, gross energy, crude fat, ash, phosphorus, and calcium, and also increased the activities of jejunal trypsin, α-amylase, lipase, sucrase, maltase, γ-glutamyl transferase and alkaline phosphatase activities, improved the duodenal, jejunal and ileal morphology, and increased the relative mRNA expressions of the ZO-1, OCLN, SGLT1, and GLUT2 genes in the jejunum (p < 0.05), whereas it decreased the contents of isobutyric acid in cecal digesta, as well as acetic acid and isobutyric acid in colonic digesta (p < 0.05). Moreover, the linear discriminant analysis effect size (LEfSe) showed that piglets fed extruded corn with added enzymes contained less intestinal pathogenic bacteria, such as Holdemanella and Desulfovibrio, compared with piglets fed just extruded corn. In summary, the results of the present study indicated that the supplementation of α-amylase during the conditioning and extruding process of corn increased the small molecular oligosaccharide content of corn starch. Moreover, piglets receiving extruded enzyme-added corn had better growth performance, which was associated with the improved intestinal digestive and absorptive function, as well as the intestinal microbiome.
Collapse
|
23
|
Freitas D, Souchon I, Le Feunteun S. The contribution of gastric digestion of starch to the glycaemic index of breads with different composition or structure. Food Funct 2022; 13:1718-1724. [PMID: 35112687 DOI: 10.1039/d1fo03901f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Breads of higher density exhibit lower glycaemic index (GI) both in vivo and in vitro, a phenomenon generally attributed to a slower intestinal starch digestion. The aim of this work was to gain a better understanding of the relationship between bread density, oral and gastric digestion, and GI. Three breads were studied: industrial-style and traditional-style French baguettes (similar composition, different densities), and whole-wheat baguette. In vitro GI predictions confirmed that, for an identical composition, higher bread density was associated with a lower GI. Subsequent oro-gastric digestions, using the dynamic system DIDGI®, showed extensive starch digestion at the gastric stage by salivary α-amylase, in line with recently published data. They further showed that higher bread density led to a lower hydrolysis rate. The concurrence of these results with those of in vivo studies, suggests a mediating role for gastric digestion in the relationship between bread density and GI, possibly via the repercussions on the starch proportion that remains to be hydrolysed in the small intestine. This study therefore adds to the scientific knowledge of the importance of salivary α-amylase to starch digestion, and draws special attention to the possible role of the gastric phase in determining the GI.
Collapse
Affiliation(s)
- Daniela Freitas
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France.
| | - Isabelle Souchon
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France.
| | - Steven Le Feunteun
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France.
| |
Collapse
|
24
|
Glycemic response, satiety, gastric secretions and emptying after bread consumption with water, tea or lemon juice: a randomized crossover intervention using MRI. Eur J Nutr 2022; 61:1621-1636. [PMID: 35013789 DOI: 10.1007/s00394-021-02762-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Numerous studies, including our previous work with lemon juice, have reported that low-pH meals reduce the glycemic response to starchy foods. However, the underlying mechanism is not yet understood. Tea, for its polyphenol content, has also been investigated. The main objective of this research was to concurrently study gastric emptying, appetite perceptions and glycemic responses to bread consumed with water, tea, or lemon juice. METHODS In this randomized, crossover intervention, ten participants consumed equal portions of bread (100 g) with 250 mL of water, water-diluted lemon juice, or black tea at breakfast. Gastric volumes, blood glucose concentrations and appetite perceptions were alternately assessed over 180 min using magnetic resonance imaging, the finger-prick method and visual analogue scales, respectively. RESULTS Compared to water, lemon juice led to a 1.5 fold increase of the volume of gastric contents, 30 min after the meal (454.0 ± 18.6 vs. 298.4 ± 19.5 mL, [Formula: see text] ± SEM P < 0.00001). Gastric emptying was also 1.5 times faster (P < 0.01). Conversely, lemon juice elicited a lower glycemic response than water (blood glucose concentrations at t = 55 min were 35% lower, P = 0.039). Tea had no effect. Changes in appetite perceptions and gastric volumes correlated well, but with no significant differences between the meals. CONCLUSIONS Lemon juice lowered the glycemic response and increased both gastric secretions and emptying rate. The results are compatible with the hypothesis that the reduction of the glycemic response is mainly due to the interruption of starch hydrolysis via the acid-inhibition of salivary α-amylase. TRIAL REGISTRATION NUMBER NCT03265392, August 29, 2017.
Collapse
|
25
|
Tagle-Freire D, Mennah-Govela Y, Bornhorst GM. Starch and protein hydrolysis in cooked quinoa ( Chenopodium quinoa Willd.) during static and dynamic in vitro oral and gastric digestion. Food Funct 2022; 13:920-932. [PMID: 35005748 DOI: 10.1039/d1fo02685b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinoa is a pseudocereal that has a favorable nutrient profile and may be a beneficial addition to the diet. To evaluate potential health-promoting properties of foods, it is important to understand the rate of macronutrient hydrolysis, which is commonly quantified through in vitro digestion studies. Additionally, limited information is available comparing starch and protein hydrolysis of solid foods using static and dynamic digestion models. The objective of this study was to examine starch and protein hydrolysis in cooked quinoa using a combination of a static (saliva only) or dynamic (saliva + mincing) oral digestion model with a static (gastric fluids only) or dynamic (Human Gastric Simulator) gastric digestion model. Disruption of the pericarp of the cooked quinoa seeds during dynamic oral digestion released additional surface area, which led to faster gastric emptying during dynamic gastric digestion. Starch and protein hydrolysis were impacted by type of gastric model due to differences in pH and variations in structural breakdown. Starch hydrolysis was 29.04 ± 1.83% after 180 min dynamic gastric digestion compared to 2.85 ± 1.88% during static gastric digestion (averaged across both oral digestion models). The degree of protein hydrolysis was 4.85 ± 0.01% after 180 min in the static gastric model compared to 3.94 ± 0.18% in the dynamic gastric model (averaged across both oral digestion models). This information provides evidence on the role of food structure and breakdown (through use of static vs. dynamic oral and gastric digestion models) on quinoa starch and protein hydrolysis.
Collapse
Affiliation(s)
- Danny Tagle-Freire
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Yamile Mennah-Govela
- Dept. of Biological and Agricultural Engineering, 1308 Bainer Hall, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | - Gail M Bornhorst
- Dept. of Biological and Agricultural Engineering, 1308 Bainer Hall, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA. .,Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
26
|
Formulation of gluten-free biscuits with reduced glycaemic index: Focus on in vitro glucose release, physical and sensory properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Lin S, Jin X, Gao J, Kim EHJ, Morgenstern MP, Dong Z, Ying J, Shao D, Zhao Q, Song X, Zhou W. Bread breakdown pathways during mastication: impact of wheat bran fortification. Food Funct 2021; 12:12265-12277. [PMID: 34779805 DOI: 10.1039/d1fo02057a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the impact of wheat bran fortification on the mastication process of bread. White wheat bread (WB) and bran-fortified wheat bread (BB) were consumed by eighteen panellists. The bolus was collected at four different mastication stages and characterized by properties of hydration, particle size, and texture. The results showed that there was no difference between the two bread samples in terms of swallowable bolus moisture. BB with a harder and denser texture produced more small particles and had a slightly shorter chewing time than WB during mastication. Moreover, bolus heterogeneity (D75/D25) indicated a distinct difference among mastication stages and revealed different disintegration pathways between the two samples: BB bolus exhibited a monotonous particle size reduction during mastication with reducing D50 and D75/D25; whereas, WB displayed a combination pattern of disintegration and agglomeration featuring relatively steady D50 and fluctuating D75/D25. It was concluded that bran fortification changed the bread breakdown pathways in terms of bread disintegration and bolus formation during the mastication process. This information offers new guidelines for fortifying innovative materials to manufacture foods specifically targeted for health.
Collapse
Affiliation(s)
- Suyun Lin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore. .,Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.,National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Jiangsu 215123, China
| | - Xiaoxuan Jin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore. .,National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Jiangsu 215123, China
| | - Jing Gao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore. .,National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Jiangsu 215123, China
| | - Esther H-J Kim
- The New Zealand Institute for Plant and Food Research Ltd, Christchurch 8140, New Zealand
| | - Marco P Morgenstern
- The New Zealand Institute for Plant and Food Research Ltd, Christchurch 8140, New Zealand
| | - Zhizhong Dong
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Jian Ying
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Danqing Shao
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China.
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China.
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore. .,National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Jiangsu 215123, China
| |
Collapse
|
28
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
29
|
Zheng M, Ye A, Zheng B, Zhang Y. Impacts of Whey Protein on Digestion of Lotus Seed Starch Subjected to a Dynamic In Vitro Gastric Digestion. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Pälchen K, Michels D, Duijsens D, Gwala S, Pallares Pallares A, Hendrickx M, Van Loey A, Grauwet T. In vitro protein and starch digestion kinetics of individual chickpea cells: from static to more complex in vitro digestion approaches. Food Funct 2021; 12:7787-7804. [PMID: 34231615 DOI: 10.1039/d1fo01123e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attention has been given to more (semi-)dynamic in vitro digestion approaches ascertaining the consequences of dynamic in vivo aspects on in vitro digestion kinetics. As these often come with time and economical constraints, evaluating the consequence of stepwise increasing the complexity of static in vitro approaches using easy-to-handle digestion set-ups has been the center of our interest. Starting from the INFOGEST static in vitro protocol, we studied the influence of static gastric pH versus gradual gastric pH change (pH 6.3 to pH 2.5 in 2 h) on macronutrient digestion in individual cotyledon cells derived from chickpeas. Little effect on small intestinal proteolysis was observed comparing the applied digestion conditions. Contrary, the implementation of a gradual gastric pH change, with and without the addition of salivary α-amylase, altered starch digestion kinetics rates, and extents by 25%. The evaluation of starch and protein digestion, being co-embedded in cotyledon cells, did not only confirm but account for the interdependent digestion behavior. The insights generated in this study demonstrate the possibility of using a hypothesis-based approach to introduce dynamic factors to in vitro models while sticking to simple and cost-efficient set-ups.
Collapse
Affiliation(s)
- Katharina Pälchen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
The in vitro digestion of differently structured starch gels with different amylose contents. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Impact of Individual Differences in Eating Rate on Oral Processing, Bolus Properties and Post-Meal Glucose Responses. Physiol Behav 2021; 238:113495. [PMID: 34116051 DOI: 10.1016/j.physbeh.2021.113495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE Modifying food texture has been shown to influence oral processing behaviour. We explored the impact of food texture on oral processing, bolus formation and post-prandial glucose responses (PPG) among fast and slow eaters. METHODS Male participants (N=39) were split into fast or slow eaters based on natural differences in eating rate when consuming two carbohydrate-equivalent test-meals differing in texture (white rice and rice cake). PPG and satiety responses were compared for fast and slow eaters over 120-min for each test-meal. Each groups test-meal PPG was compared for bolus and saliva properties at the point of swallow. RESULTS White rice displayed lower instrumental hardness, chewiness and Young's modulus and was perceived less chewy, springy and sticky than rice cake. Slow eaters (n=24, white rice: 13.3 g/min; rice cake: 15.1 g/min) required an average 42% more chews per bite (p < 0.001), had 60% longer oral exposure time (OET), and consumed both test-meals (p < 0.001) at half the eating rate of fast eaters (n=15). Slow eaters had higher PPG following the rice cake meal at 15 (p = 0.046) and 45 min (p = 0.034) than fast eaters. A longer OET was a positive predictor of early PPG at 30-min after the white rice meal (β = 0.178, p = 0.041) and saliva uptake was a significant predictor (β = 0.458, p = 0.045) of PPG for slow eaters when consuming rice cake. Increasing food hardness and stiffness (Young's modulus) had a greater impact on eating rate for slow eaters than fast eaters. CONCLUSIONS Eating rate, oral exposure time and bolus saliva uptake were the predictors of an individual's post-prandial glycaemic response amongst slow eaters. Increasing the number of chews per bite with a longer oral exposure time increased saliva uptake in the bolus at the moment of swallowing and enhanced temporal changes in PPG, leading to greater glycaemic peaks in rice cake meal. Differences in eating rate between slow and fast eaters when consuming rice cake meal influenced temporal changes in PPG but not total PPG, and bolus properties did not differ between eating rate groups.
Collapse
|
33
|
Nadia J, Bronlund J, Singh RP, Singh H, Bornhorst GM. Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: In vivo and in vitro considerations. Compr Rev Food Sci Food Saf 2021; 20:2660-2698. [PMID: 33884751 DOI: 10.1111/1541-4337.12749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The digestion of starch-based foods in the small intestine as well as factors affecting their digestibility have been previously investigated and reviewed in detail. Starch digestibility has been studied both in vivo and in vitro, with increasing interest in the use of in vitro models. Although previous in vivo studies have indicated the effect of mastication and gastric digestion on the digestibility of solid starch-based foods, the physical breakdown of starch-based foods prior to small intestinal digestion is often less considered. Moreover, gastric digestion has received little attention in the attempt to understand the digestion of solid starch-based foods in the digestive tract. In this review, the physical breakdown of starch-based foods in the mouth and stomach, the quantification of these breakdown processes, and their links to physiological outcomes, such as gastric emptying and glycemic response, are discussed. In addition, the physical breakdown aspects related to gastric digestion that need to be considered when developing in vitro-in vivo correlation in starch digestion studies are discussed. The discussion demonstrates that physical breakdown prior to small intestinal digestion, especially during gastric digestion, should not be neglected in understanding the digestion of solid starch-based foods.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rajinder Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
34
|
Martinez MM. Starch nutritional quality: beyond intraluminal digestion in response to current trends. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Gallego-Lobillo P, Ferreira-Lazarte A, Hernández-Hernández O, Villamiel M. In vitro digestion of polysaccharides: InfoGest protocol and use of small intestinal extract from rat. Food Res Int 2021; 140:110054. [PMID: 33648279 DOI: 10.1016/j.foodres.2020.110054] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Starch, dextran, pectin and modified citrus pectin were subjected to intestinal digestion following InfoGest protocol and a rat small intestine extract (RSIE) treatment. Gastric stage did not show any modification in the structure of the carbohydrates, except for modified pectin. Regarding intestinal phases, starch was hydrolyzed by different ways, resulting in a complementary behavior between InfoGest and RSIE. Contrarily, digestion of dextran was only observed using RSIE. Similar situation occurred in the case of pectins with RSIE, obtaining a partial hydrolysis, especially in the modified citrus pectin. However, citrus pectin was the less prone to hydrolysis by enzymes. The results demonstrated that InfoGest method underestimates the significance of the carbohydrates hydrolysis at the small intestine, thus indicating that RSIE is a very reliable and useful method for a more realistic study of polysaccharides digestion.
Collapse
Affiliation(s)
- Pablo Gallego-Lobillo
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alvaro Ferreira-Lazarte
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Oswaldo Hernández-Hernández
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mar Villamiel
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
36
|
Gao J, Tan EYN, Low SHL, Wang Y, Ying J, Dong Z, Zhou W. From bolus to digesta: How structural disintegration affects starch hydrolysis during oral-gastro-intestinal digestion of bread. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Gleize B, Hiolle M, Meunier N, Pereira B, Richard R, Savary‐Auzeloux I, Buffière C, Peyron M, Halimi C, Caris‐Veyrat C, Nau F, Reboul E. Food Structure Modulates the Bioavailability of Triglycerides and Vitamin D, and Partly That of Lutein: A Randomized Trial with a Crossover Design in Adults. Mol Nutr Food Res 2020; 64:e2000228. [DOI: 10.1002/mnfr.202000228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/10/2020] [Indexed: 01/12/2023]
Affiliation(s)
| | - Manon Hiolle
- STLO, INRAE AGROCAMPUS OUEST Rennes 35042 France
| | - Nathalie Meunier
- CHU Clermont‐Ferrand Centre de Recherche en Nutrition Humaine Auvergne Clermont‐Ferrand 63000 France
| | - Bruno Pereira
- CHU Clermont‐Ferrand DRCI Clermont‐Ferrand 63000 France
| | - Ruddy Richard
- CHU Clermont‐Ferrand Centre de Recherche en Nutrition Humaine Auvergne Clermont‐Ferrand 63000 France
- CHU Clermont‐Ferrand DRCI Clermont‐Ferrand 63000 France
| | - Isabelle Savary‐Auzeloux
- INRAE, Unité de Nutrition Humaine, UMR1019 University Clermont Auvergne Clermont‐Ferrand F‐63000 France
| | - Caroline Buffière
- INRAE, Unité de Nutrition Humaine, UMR1019 University Clermont Auvergne Clermont‐Ferrand F‐63000 France
| | - Marie‐Agnès Peyron
- INRAE, Unité de Nutrition Humaine, UMR1019 University Clermont Auvergne Clermont‐Ferrand F‐63000 France
| | | | | | | | | |
Collapse
|
38
|
Lucas-González R, Ángel Pérez-Álvarez J, Moscaritolo S, Fernández-López J, Sacchetti G, Viuda-Martos M. Evaluation of polyphenol bioaccessibility and kinetic of starch digestion of spaghetti with persimmon (Dyospyros kaki) flours coproducts during in vitro gastrointestinal digestion. Food Chem 2020; 338:128142. [PMID: 33092002 DOI: 10.1016/j.foodchem.2020.128142] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
The aim was to study the in vitro starch digestibility, the free and bound polyphenol profile and their bioaccessibility and antioxidant activity during in vitro gastrointestinal digestion of durum wheat semolina spaghetti added with two types of persimmon flour concentrates ("Rojo Brillante" flour and "Triumph" flour) at two concentrations (3 and 6%). Results obtained showed that persimmon flour improves the polyphenol profile of spaghetti by addition gallic acid and coumaric acid-o-hexoside, and increasing 2-fold and around 3-fold its content in spaghetti with 3% and 6% persimmon flours, respectively. Cooked process and digestion affected more to free polyphenol content than bound. Furthermore, 3% persimmon flour enriched spaghetti reduce kinetic of starch digestion, while 6% enriched spaghetti increased it. In conclusion, persimmon flours (Rojo Brillante and Triumph) at low concentrations could be used to develop spaghetti with more polyphenol content and less starch digestibility than traditional spaghetti.
Collapse
Affiliation(s)
- Raquel Lucas-González
- IPOA Research Group (UMH-1 and REVIV-Generalitat Valenciana), Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group (UMH-1 and REVIV-Generalitat Valenciana), Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain
| | - Salvatore Moscaritolo
- Council for Agricultural Research and Economics - Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Manziana 4, 00189 Roma, Italy
| | - Juana Fernández-López
- IPOA Research Group (UMH-1 and REVIV-Generalitat Valenciana), Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain
| | - Giampiero Sacchetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, TE, Italy
| | - Manuel Viuda-Martos
- IPOA Research Group (UMH-1 and REVIV-Generalitat Valenciana), Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Alicante, Spain.
| |
Collapse
|
39
|
Sethupathy P, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Effect of varietal differences on the oral processing behavior and bolus properties of cooked rice. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
This research explored the impact of in-vivo oral processing on the bolus properties of three rice varieties [white ponni (WP), mappillai samba (MS), and basmati (B)] that were selected based on variations in the amylose content. The amylose and dry matter content of the WP, MS, and B were 4.67, 7.48, and 13.8(%) and 69.57, 60.09, and 70.47(%), respectively. Mastication features (bite-size, chewing time, and chew cycles), bolus properties (particle size distribution, bolus moisture content, rheology, and starch hydrolysis), time-dependent bolus features (rate of incorporation of saliva and saliva content) and, temporal dominance of sensation (TDS) of cooked rice were studied. Results confirmed the significance of oral processing on various bolus characteristics. Moreover, a pronounced correlation between the morphology of rice varieties and mastication features was observed. The structure and textural characteristics of the different rice varieties (MS, WP, B) showed considerable effects on the consumption time (25.7 s, 22.2 s, 17.8 s) and chewing cycles (34, 31, 23). Rate of saliva incorporation was relatively lesser for MS as compared with WP and B. Solid loss followed the trends WP > MS > B. The total starch content of cooked rice boluseswas WP (82.69 ± 0.01%), MS (79.49 ± 0.01%), and B (71.74 ± 0.01%). Further, texture – TDS and flavor – TDS of all varieties were found to be strongly dependent on textural attributes, composition, and oro-sensory perception. This study provides a significant understanding of the oral processing behavior of rice and its bolus, considering the effect of variations in amylose content, texture, and morphology.
Collapse
Affiliation(s)
- Priyanka Sethupathy
- Computational Modeling and Nanoscale Processing Unit , Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India , Thanjavur , 613005, Tamil Nadu , India
| | - S. K. Sivakamasundari
- Computational Modeling and Nanoscale Processing Unit , Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India , Thanjavur , 613005, Tamil Nadu , India
| | - Jeyan. A. Moses
- Computational Modeling and Nanoscale Processing Unit , Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India , Thanjavur , 613005, Tamil Nadu , India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit , Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India , Thanjavur , 613005, Tamil Nadu , India
| |
Collapse
|
40
|
|
41
|
Freitas D, Boué F, Benallaoua M, Airinei G, Benamouzig R, Le Feunteun S. Lemon juice, but not tea, reduces the glycemic response to bread in healthy volunteers: a randomized crossover trial. Eur J Nutr 2020; 60:113-122. [PMID: 32201919 DOI: 10.1007/s00394-020-02228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The inhibition of enzymes that hydrolyze starch during digestion could constitute an opportunity to slow down the release, and ultimately the uptake, of starch-derived glucose. Simple dietary approaches consisting in pairing starch-rich foods with beverages that have the capacity to inhibit such enzymes could be an effective and easily implementable strategy. The objective of this work was to test the impact of black tea and lemon juice on the glycemic response to bread and subsequent energy intake in healthy adults. METHODS A randomized crossover study was conducted with equal portions of bread (100 g) and 250 ml of water, black tea or lemon juice. Capillary blood glucose concentrations were monitored during 180 min using the finger-prick method. Ad libitum energy intake was assessed 3 h later. RESULTS Tea had no effect on the glycemic response. Lemon juice significantly lowered the mean blood glucose concentration peak by 30% (p < 0.01) and delayed it more than 35 min (78 vs. 41 min with water, p < 0.0001). None of the tested beverages had an effect on ad libitum energy intake. CONCLUSION These results are in agreement with previous in vitro studies showing that lowering the pH of a meal can slow down starch digestion through premature inhibition of salivary α-amylase. Furthermore, the effect of lemon juice was similar to what has been repeatedly observed with vinegar and other acidic foods. Including acidic beverages or foods in starchy meals thus appears to be a simple and effective strategy to reduce their glycemic impact.
Collapse
Affiliation(s)
- Daniela Freitas
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 78850, Thiverval-Grignon, France.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - François Boué
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 78850, Thiverval-Grignon, France
| | - Mourad Benallaoua
- CEFRED (centre d'exploration fonctionnelle et de rééducation digestive), Service de gastro-entérologie, Hôpital Avicenne, Bobigny Cedex, France
| | - Gheorghe Airinei
- CEFRED (centre d'exploration fonctionnelle et de rééducation digestive), Service de gastro-entérologie, Hôpital Avicenne, Bobigny Cedex, France
| | - Robert Benamouzig
- CEFRED (centre d'exploration fonctionnelle et de rééducation digestive), Service de gastro-entérologie, Hôpital Avicenne, Bobigny Cedex, France
| | - Steven Le Feunteun
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 78850, Thiverval-Grignon, France. .,INRAE, Agrocampus Ouest, UMR STLO, 35042, Rennes, France.
| |
Collapse
|
42
|
Hiolle M, Lechevalier V, Floury J, Boulier-Monthéan N, Prioul C, Dupont D, Nau F. In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. Food Res Int 2019; 128:108817. [PMID: 31955773 DOI: 10.1016/j.foodres.2019.108817] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022]
Abstract
Digestion is a mechanical and chemical process that is only partly understood, and even less so for complex foods. In particular, the issue of the impact of food structure on the digestion process is still unresolved. In this study, the fate of four micronutrient-enriched foods with identical compositions but different microstructures (Custard, Pudding, Sponge cake, Biscuit) was investigated using the 3-phase in vitro model of human digestion developed by the INFOGEST network. Matrix disintegration and hydrolysis of macronutrients (proteins, lipids and carbohydrates) were monitored during the three phases of digestion using biochemical techniques, size-exclusion chromatography, thin-layer chromatography and gas chromatography. Micronutrient release (vitamin B9 and lutein) was monitored using reverse-phase chromatography. Food structure did not greatly influence macronutrient hydrolysis, except for lipolysis that was four-times higher for Biscuit compared to Custard. However, the bioaccessibility of both micronutrients depended on the food structure and on the micronutrient. Vitamin B9 release was faster for Biscuit and Sponge cake during the gastric phase, whereas lutein release was higher for Custard during the intestinal step. Extensive statistical analysis highlighted the impact of food structure on the digestion process, with different digestion pathways depending on the food matrix. It also made it possible to characterise the gastric step as a predominantly macronutrient solubilisation phase, and the intestinal step as a predominantly hydrolysis phase.
Collapse
Affiliation(s)
- M Hiolle
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| | | | - J Floury
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| | | | - C Prioul
- Liot SAS, 86450 Pleumartin, France.
| | - D Dupont
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| | - F Nau
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| |
Collapse
|
43
|
Freitas D, Le Feunteun S. Inhibitory effect of black tea, lemon juice, and other beverages on salivary and pancreatic amylases: What impact on bread starch digestion? A dynamic in vitro study. Food Chem 2019; 297:124885. [DOI: 10.1016/j.foodchem.2019.05.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/27/2022]
|
44
|
Gao J, Lin S, Jin X, Wang Y, Ying J, Dong Z, Zhou W. In vitro digestion of bread: How is it influenced by the bolus characteristics? J Texture Stud 2019; 50:257-268. [PMID: 30693521 DOI: 10.1111/jtxs.12391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/31/2018] [Accepted: 01/23/2019] [Indexed: 12/01/2022]
Abstract
This study aimed to understand the impact of in vitro oral processing methods on bolus formation and the kinetics of starch hydrolysis of refined white bread during in vitro gastrointestinal digestion. Four in vitro oral processing methods (i.e., cut, cut-and-pestle, blend, and grind) were performed at two levels of disintegration (less and more intensive) and compared with human mastication. Boluses prepared using the in vitro methods had a larger particle size (20-69 mm2 vs. 14 mm2 ), a higher moisture content (64-68% vs. 47%), a softer texture (1.3-2.3 N vs. 6.3 N) and a less adhesive surface (0.3-1.0 vs. 1.6 N•s) as compared to the in vivo masticated ones. Moreover, in vitro prepared blouses were digested more rapidly than in vivo masticated ones during the stimulated intestinal digestion from 150 min onward, with a higher hydrolysis rate (0.011-0.012 mg/mL • min vs. 0.010 mg/mL • min) and a higher equilibrium concentration of reducing sugar (5.5-6.3 mg/mL vs. 4.9 mg/mL). Among all the in vitro methods, the blending and grinding methods produced boluses that most closely resemble the in vivo masticated ones in terms of their physical characteristics. The blending method also produced boluses having the highest amount of reducing sugar released (6.32 mg/mL). The amount of reducing sugar present in the PBS buffer outside the dialysis tube might be controlled by the diffusion efficiency at the beginning of the digestion (≤120 min) and then be largely influenced by the particle size of the bolus in the latter stage of the digestion. PRACTICAL APPLICATION: Studying the in vitro starch amyloysis is valuable for predicting the postprandial glycemic potential of starchy food. This work provides novel insights on the role of in vitro oral processing in the prediction of the glycemic potential of carbohydrate-rich staple food. Blending method is recommended because of its ability to produce boluses with similar physical characteristics as the in vivo masticated boluses. But the excessive structural breakdown occurred during blending also resulted in a higher enzymatic accessibility and a higher rate of starch digestion. Further study is needed to propose a new in vitro method that stimulates multiple actions occurred during mastication (cutting, grinding, and shearing), in order to match both physical properties and digestion profiles. Moreover, the amount of artificial saliva added should be adjusted according to the specific type of food.
Collapse
Affiliation(s)
- Jing Gao
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu, People's Republic of China
| | - Suyun Lin
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu, People's Republic of China
| | - Xiaoxuan Jin
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu, People's Republic of China
| | - Yong Wang
- Nutrition & Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, People's Republic of China
| | - Jian Ying
- Nutrition & Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, People's Republic of China
| | - Zhizhong Dong
- Nutrition & Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, People's Republic of China
| | - Weibiao Zhou
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Freitas D, Le Feunteun S. Acid induced reduction of the glycaemic response to starch-rich foods: the salivary α-amylase inhibition hypothesis. Food Funct 2019; 9:5096-5102. [PMID: 30230497 DOI: 10.1039/c8fo01489b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Numerous studies have reported that the glycaemic response to starch-rich meals can be reduced by 20-50% with acidic drinks or foods. A number of candidate explanations have been put forward, but this phenomenon still remains vaguely understood. This study intends to demonstrate the remarkable effect of acid inhibition of salivary α-amylase during oro-gastric hydrolysis of starch, shedding light on this often overlooked mechanism. Oro-gastric digestions of bread, wheat and gluten-free pastas, combined with either water or lemon juice were performed using a dynamic in vitro system that reproduces gastric acidification kinetics observed in humans. In the presence of water, large proportions of starch (25-85%) and oligosaccharides (15-50%) were released from all foods within the first hour of gastric digestion (pH > 3.5). In the presence of lemon juice (pH < 3.5 at all time), starch release was about twice as low, and amylolysis into oligosaccharides was completely interrupted. Acid-inhibition of salivary α-amylase may explain, at least in part, the reduction of the blood glucose response through acidification of starch-rich foods/meals. This offers new perspectives for the development of strategies to improve the glycaemic response elicited by starch-rich diets.
Collapse
Affiliation(s)
- Daniela Freitas
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| | | |
Collapse
|