1
|
Kaur R, Goyal N, Panesar G, Panesar PS. Unraveling the nutritional potential of millet by-products through extraction of high value compounds for the development of novel food products. Food Chem 2025; 472:142983. [PMID: 39848047 DOI: 10.1016/j.foodchem.2025.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Millets are drought-resistant crops that generate significant amount of by-products (bran, husk, stalk etc.) during harvesting and processing. These by-products are storehouse of nutrients and high value compounds including polyphenols, dietary fiber, proteins etc. However, these by-products remain underutilized and generally discarded, burned or used as feedstock causing adverse impact on the environment and human health in addition to loss of valuable nutrients. Therefore, the valorization of millet by-products offers sustainable approach to enhance food product innovation while reducing agricultural waste. Green extraction techniques can be employed to recover antioxidants, phenolics, and bioactive peptides from these by-products. The incorporation of these ingredients into food products can significantly improve the nutritional profile, functional characteristics, like antioxidant, prebiotic, anti-diabetic, and anticarcinogenic properties. The review highlights the feasibility of upcycling millet by-products into high-value components, which can address the growing demand for health-oriented food products contributing towards food security, sustainability and circular economy.
Collapse
Affiliation(s)
- Ravinderjit Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Neha Goyal
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Gaurav Panesar
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| |
Collapse
|
2
|
Zhang Y, Jiao J, Li M, Wei Z, He X, Herrera-Balandrano DD, Xiang J. Effects of milling degree on proximate composition, functional components and antioxidant capacity of foxtail millet. Food Chem X 2025; 27:102438. [PMID: 40241701 PMCID: PMC12001128 DOI: 10.1016/j.fochx.2025.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The effects of milling degree on proximate compositions, phytic acid (PA), γ-aminobutyric acid (GABA), phenolics and antioxidant capacity of foxtail millet, as well as color characteristics, were investigated. As milling degree increased, the percentage of total starch content increased continuously, while the total protein, crude fat, total carotenoid and PA contents of foxtail millets increased firstly and then decreased. For the whole milling process, the total ash and GABA contents, total phenolic content (TPC) and total flavonoid content (TFC) of foxtail millet decreased with varying degree. The identified 32 individual phenolic compounds were significantly reduced, among which 7 phenolic compositions were undetectable. The antioxidant capacity of foxtail millets also demonstrated a discernible decline. Correlation analysis showed significant positive correlations between b* value and TCC, L* value and starch, TPC and antioxidant capacity. It should be advocated to decrease milling degree for retaining more nutrients and functional components of foxtail millet.
Collapse
Affiliation(s)
- Youyang Zhang
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
| | - Jiapeng Jiao
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
| | - Meng Li
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
| | - Zhenchuan Wei
- Jinsu Agricultural Technology Co., Ltd. of Yichuan County, Luoyang, Henan 471300, China
| | - Xiangxiang He
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
- Henan University of Science & Technology, Henan International Joint Laboratory of Food Green Processing and Safety Control, Luoyang, Henan, 471023, China
| | | | - Jinle Xiang
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
- Henan University of Science & Technology, Henan International Joint Laboratory of Food Green Processing and Safety Control, Luoyang, Henan, 471023, China
| |
Collapse
|
3
|
Zhang J, Liu J, Han Z, He X, Herrera-Balandrano DD, Xiang J. Comprehensive evaluation on phenolic derivatives and antioxidant activities of diverse yellow maize varieties. Food Chem 2025; 464:141602. [PMID: 39395335 DOI: 10.1016/j.foodchem.2024.141602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The main phenolic derivatives and antioxidant capacity of ninety-three yellow maize varieties were investigated, together with their color parameters. Sixteen phenolics were identified in the free extract by UPLC-ESI-MS/MS, N', N″-diferuloyl putrescine and N', N″-dicoumaryl spermidine were the major phenolic derivatives. Fourteen phenolic compounds were found in the bound extract, with trans-p-coumaric acid, trans- and cis-ferulic acid being the predominant phenolic acids. The orange-yellow maize varieties presented the highest total phenolic content (TPC) and total flavonoid content (TFC), along with significantly higher antioxidant potential. Correlation analysis showed that b* value (corresponding to yellow degree) was positively correlated with the total carotenoid content (TCC), phenolic content, and antioxidant capacity (p < 0.05). Through Hierarchical Clustering Analysis (HCA), the 93 maize varieties could be divided into three categories according to b* value and antioxidant activity. The heatmap visualization further underscored the component differences across various varieties, unveiling the intricate phytochemical profiles of these maize varieties.
Collapse
Affiliation(s)
- Jingjing Zhang
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
| | - Junyang Liu
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
| | - Zanping Han
- Henan University of Science & Technology, Faculty of Agronomy, Luoyang, Henan 471023, China
| | - Xiangxiang He
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China
| | | | - Jinle Xiang
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471023, China; Henan University of Science & Technology, Henan International Joint Laboratory of Food Green Processing and Safety Control, Luoyang, Henan 471023, China.
| |
Collapse
|
4
|
He M, Guo T, Li D, Xie C, Wang P, Yang R. Effects of roasting on physicochemical characteristics and flavor substances of germinated brown rice. Food Sci Biotechnol 2025; 34:125-135. [PMID: 39758724 PMCID: PMC11695666 DOI: 10.1007/s10068-024-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 01/07/2025] Open
Abstract
Roasting can dissolve the nutrients accumulated in germinated brown rice (GBR). This study investigated the effects of roasting on physical properties, nutrients and flavor substances of GBR. Results demonstrated that longer roasting time resulted in more browning and a decrease in the moisture content. The total soluble sugar content increased significantly, while the soluble protein content decreased initially and then slightly increased. Roasting also resulted in a decrease in γ-aminobutyric acid (GABA) content. However, the content of total phenolics increased significantly. Phenolic acids content increased and then decreased with the roasting time. The volatile components of GBR were found to be mainly organic sulfides and furans after roasting, 1-pentene-3-alcohol and 2-butanone (dimer) were the most differentiating components contributing to the distinguish of roasting times. Correlation analysis showed that total soluble sugar and GABA were important flavor precursors. These findings provide a theoretical basis for development of GBR-based products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01655-4.
Collapse
Affiliation(s)
- Meimei He
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Tianwei Guo
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| |
Collapse
|
5
|
Lu F, Wang Y, Wu S, Huang W, Yao H, Wang S, Shi X, Laborda P, Herrera-Balandrano DD. Germination time and in vitro gastrointestinal digestion impact on the isoflavone bioaccessibility and antioxidant capacities of soybean sprouts. Food Chem 2024; 460:140517. [PMID: 39043074 DOI: 10.1016/j.foodchem.2024.140517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Soybeans' isoflavone content increases with germination; nevertheless, their bioaccessibility in the gastrointestinal system is limited. This study evaluated the influence of germination time (1, 3, 5, and 7 days) and in vitro gastrointestinal conditions on the isoflavone profile of soybean sprouts. The total isoflavones (4.07 mg/g) and the malonyl genistin (1.37 mg/g) had the highest contents on day 5 in the gastric phase. The highest isoflavone bioaccessibility was observed in daidzein, genistein, and glycitin. An increase in antioxidant capacity was found during germination (day 7 > day 5 > day 3); however, the same trend was not observed during in vitro digestion. In summary, the results indicate that soybean sprouts germinated for 5 days may be more beneficial for consumption since they have the highest and most readily absorbed levels of isoflavones. These data suggest that soybean sprouts may be a functional food that provides bioavailable antioxidants.
Collapse
Affiliation(s)
- Fengyi Lu
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Yanxia Wang
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Siqi Wu
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Hongliang Yao
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Suyan Wang
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Xinchi Shi
- School of Life Sciences, Nantong University, Nantong, 226019, PR China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, 226019, PR China.
| | | |
Collapse
|
6
|
Zhu C, Lin Z, Jiang H, Wei F, Wu Y, Song L. Recent Advances in the Health Benefits of Phenolic Acids in Whole Grains and the Impact of Processing Techniques on Phenolic Acids: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24131-24157. [PMID: 39441722 DOI: 10.1021/acs.jafc.4c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Phenolic acids, essential compounds in whole grains, are renowned for their health-enhancing antioxidant and anti-inflammatory properties. Variations in concentration, particularly of hydroxybenzoic and hydroxycinnamic acids, are observed among grain types. Their antiobesity and antidiabetes effects are linked to their modulation of key signaling pathways like AMPK and PI3K, crucial for metabolic regulation and the body's response to inflammation and oxidative stress. Processing methods significantly influence phenolic acid content and bioavailability in whole grains. Thermal techniques like boiling, baking, or roasting can degrade these compounds, with loss influenced by processing conditions. Nonthermal methods such as germination, fermentation, or their combination, can protect or enhance phenolic acid content under ideal conditions. Novel nonthermal approaches like ultrahigh pressure (UHP), irradiation, and pulsed electric fields (PEF) show promise in preserving these compounds. Further research is needed to fully comprehend the impact mechanisms of these innovative methods on the nutritional and sensory attributes of cereals.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Alshehri AA, Younes NM, Kamel R, Shawir SM. Characterization and potential health benefits of millet flour and banana peel mixtures on rats fed with a high-fat diet. Heliyon 2024; 10:e39424. [PMID: 39497975 PMCID: PMC11532225 DOI: 10.1016/j.heliyon.2024.e39424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Millet (M) and banana peel (Bp) possess significant nutritional qualities and have been shown to reduce obesity resulting from a high-fat diet (HFD). The present research assessed the effect of millet flour and banana peel mixtures on lipid profiles, liver and kidney functions, and characterized food products derived from these mixtures. Thirty-five male albino rats were allocated into five groups for a biochemical analysis. The control group (n = 7) received a basal diet, while the remaining 28 rats were fed a high-fat diet (HFD) for 8 weeks to induce obesity. These rats were then separated into four sub-groups (n = 7 each): sub-group 1 as the positive control (+ve) receiving only HFD, while sub-groups 2, 3, and 4 were administered HFD supplemented with millet flour and banana peel mixtures (M90+Bp10 %, M80+Bp20 %, and M70+Bp30 %), respectively for an additional 8 weeks. The chemical composition analysis showed that banana peel (Bp) has higher levels of fat, ash, fiber, magnesium, and potassium, while millet flour is richer in carbohydrates. Bp also had superior antioxidant activity and total phenol content (13.32 % and 10.54 mg/100g) compared to millet flour (3.75 % and 4.55 mg/100g). Biochemical tests on the HFD plus (M70+Bp30 %) group revealed improved lipid profiles, leptin, antioxidant enzymes, and kidney and liver functions. Glucose levels were higher in the HFD group (137.33 mg/dl) than in the control (85.70 mg/dl), but these levels were reduced with millet and banana peel treatment. The histology of liver tissues confirmed the biochemical results. Sensory evaluation of pancakes and toast from the (M70+Bp30 %) mixture by forty panelists showed high acceptability, aligning with the biochemical outcomes. This study suggests that a banana peel and millet flour mixture could help reduce obesity.
Collapse
Affiliation(s)
- Azizah A. Alshehri
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Nashwa M. Younes
- Home Economics Department, Faculty of Specific Education, Alexandria, University Alexandria, Egypt
| | - Reham Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Giza, 12611, Egypt
| | - Samar M. Shawir
- Home Economics Department, Faculty of Specific Education, Alexandria, University Alexandria, Egypt
| |
Collapse
|
8
|
Gao Y, Ping H, He Z, Liu J, Zhao M, Ma Z. Characterization of the active components and bioaccessibility of phenolics in differently colored foxtail millets. Food Chem 2024; 452:139355. [PMID: 38733679 DOI: 10.1016/j.foodchem.2024.139355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Differently colored foxtail millet (Setaria italica) cultivars were compared regarding their amylose, B-complex vitamin, vitamin E, and phenolic compositions, as well as the bioaccessibility of their phenolics in simulated in vitro digestion. Dark-colored foxtail millets contained more thiamine, pyridoxine, and tocopherols, but less riboflavin, than light-colored ones. Phenolics were more abundant in dark-colored cultivars. Insoluble bound fractions accounted for 75%-83% of the total phenolics, with ferulic acid detected as the most plentiful compound. The major bioaccessible phenolic was free ferulic acid, with 100%-120% bioaccessibility, depending on cultivar, followed by p-coumaric acid and isoferulic acid (50%-80%). These relatively high bioaccessibilities were likely due to the release of soluble conjugated or insoluble bound phenolics during digestion. However, the contents of other free phenolics were largely decreased following in vitro digestion, resulting in low bioaccessibility, which also means that the release from the conjugated and bound fractions was poor.
Collapse
Affiliation(s)
- Yuan Gao
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Quality Standard and Testing Technology, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Hua Ping
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Quality Standard and Testing Technology, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Zhaoying He
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Quality Standard and Testing Technology, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Jing Liu
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Quality Standard and Testing Technology, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Meng Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Quality Standard and Testing Technology, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Zhihong Ma
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Quality Standard and Testing Technology, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
| |
Collapse
|
9
|
Han N, Woo KS, Lee JY, Lee HG, Lee J, Lee YY, Kim M, Kang MS, Kim HJ. Comparative study on the effects of grain blending on functional compound content and in vitro biological activity. Sci Rep 2024; 14:12638. [PMID: 38825591 PMCID: PMC11144691 DOI: 10.1038/s41598-024-63660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
In this study, changes in bioactive compound contents and the in vitro biological activity of mixed grains, including oats, sorghum, finger millet, adzuki bean, and proso millet, with eight different blending ratios were investigated. The total phenolic compounds and flavonoid contents ranged from 14.43-16.53 mg gallic acid equivalent/g extract and 1.22-5.37 mg catechin equivalent/g extract, respectively, depending on the blending ratio. The DI-8 blend (30% oats, 30% sorghum, 15% finger millet, 15% adzuki bean, and 10% proso millet) exhibited relatively higher antioxidant and anti-diabetic effects than other blending samples. The levels of twelve amino acids and eight organic acids in the grain mixes were measured. Among the twenty metabolites, malonic acid, asparagine, oxalic acid, tartaric acid, and proline were identified as key metabolites across the blending samples. Moreover, the levels of lactic acid, oxalic acid, and malonic acid, which are positively correlated with α-glucosidase inhibition activity, were considerably higher in the DI-blending samples. The results of this study suggest that the DI-8 blend could be used as a functional ingredient as it has several bioactive compounds and biological activities, including anti-diabetic activity.
Collapse
Affiliation(s)
- Narae Han
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Koan Sik Woo
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, 58545, Korea
| | - Jin Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, 28644, Korea
| | - Yu-Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Mihyang Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Moon Seok Kang
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea.
| |
Collapse
|
10
|
Nayak N, Bhujle RR, Nanje-Gowda N, Chakraborty S, Siliveru K, Subbiah J, Brennan C. Advances in the novel and green-assisted techniques for extraction of bioactive compounds from millets: A comprehensive review. Heliyon 2024; 10:e30921. [PMID: 38784533 PMCID: PMC11112340 DOI: 10.1016/j.heliyon.2024.e30921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Millets are rich in nutritional and bioactive compounds, including polyphenols and flavonoids, and have the potential to combat malnutrition and various diseases. However, extracting these bioactive compounds can be challenging, as conventional methods are energy-intensive and can lead to thermal degradation. Green-assisted techniques have emerged as promising methods for sustainable and efficient extraction. This review explores recent trends in employing green-assisted techniques for extracting bioactive compounds from millets, and potential applications in the food and pharmaceutical industries. The objective is to evaluate and comprehend the parameters involved in different extraction methods, including energy efficiency, extraction yield, and the preservation of compound quality. The potential synergies achieved by integrating multiple extraction methods, and optimizing extraction efficiency for millet applications are also discussed. Among several, Ultrasound and Microwave-assisted extraction stand out for their rapidity, although there is a need for further research in the context of minor millets. Enzyme-assisted extraction, with its low energy input and ability to handle complex matrices, holds significant potential. Pulsed electric field-assisted extraction, despite being a non-thermal approach, requires further optimization for millet-specific applications, are few highlights. The review emphasizes the importance of considering specific compound characteristics, extraction efficiency, purity requirements, and operational costs when selecting an ideal technique. Ongoing research aims to optimize novel extraction processes for millets and their byproducts, offering promising applications in the development of millet-based nutraceutical food products. Therefore, the current study benefits researchers and industries to advance extraction research and develop efficient, sustainable, and scalable techniques to extract bioactive compounds from millets.
Collapse
Affiliation(s)
- Nidhi Nayak
- Department of Food Technology, Jain Deemed-to-be University, Bangalore, Karnataka, India
| | - Rohan Rajendraji Bhujle
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - N.A. Nanje-Gowda
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Snehasis Chakraborty
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Department of Food Engineering & Technology, Institute of Chemical Technology, Mumbai, India
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Charles Brennan
- STEM College, Royal Melbourne Institute of Technology, Melbourne, Australia
| |
Collapse
|
11
|
Razem M, Morozova K, Ding Y, Ferrentino G, Scampicchio M. Determination of free and bound antioxidants in Kamut® wheat by HPLC with triple detector (DAD-CAD-MS). Food Chem X 2024; 21:101216. [PMID: 38384689 PMCID: PMC10879663 DOI: 10.1016/j.fochx.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Kamut® wheat (Triticum turgidum ssp. turanicum), an ancient, underutilized cereal, offers potential health benefits due to its phenolic compounds. This study aimed to investigate the antioxidant potential of Kamut® wheat's free and bound phenolic extracts using an HPLC system equipped with three detectors. The bound extracts, released after alkaline hydrolysis, exhibited higher total phenolic and flavonoid content compared to the free extracts (p < 0.05). The total antioxidant capacity of bound extracts was six-fold greater than in free extracts (p < 0.05). The main antioxidants in free extracts were tyrosine, phenylalanine, tryptophan, and apigenin. In bound extracts, ferulic acid, its dimers and trimer were present. Kamut® wheat exhibited a source of dietary antioxidants and should be considered a potential ingredient for the development of functional foods. Also, the HPLC-triple detector system is effective for in-depth profiling of antioxidant compounds, paving the way for future research on similar grains.
Collapse
Affiliation(s)
- Mutasem Razem
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Yubin Ding
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| |
Collapse
|
12
|
Dubey A, Tripathy PP. Ultrasound-mediated hydration of finger millet: Effects on antinutrients, techno-functional and bioactive properties, with evaluation of ANN-PSO and RSM optimization methods. Food Chem 2024; 435:137516. [PMID: 37774624 DOI: 10.1016/j.foodchem.2023.137516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Finger millet, rich in nutrients, faces bioavailability limitations due to antinutrients like phytates and tannins that can be reduced by ultrasound mediated hydration (USH). Here, USH process of finger millet was optimized by varying ultrasound amplitude, water to grain ratio (W:G), treatment time, and frequency for reducing antinutrients and improving techno-functional attributes. USH resulted in a maximum reduction of 73% and 71% in phytates and tannins, respectively. The process was modeled using artificial neural network (ANN) and response surface methodology (RSM). ANN outperformed RSM in process prediction, and particle swarm optimization (ANN-PSO) suggested optimal conditions: 76% amplitude, W:G of 3.5:1, 17.5 min treatment time at 40 kHz. USH samples showed higher β-sheet, β-turn, and random coil proportions, with lower α-helix levels. Multivariate analysis also identified higher amplitude and frequency, with shorter treatment time as desirable USH conditions. USH could aid in enhancing commercial viability and nutritional quality of finger millet.
Collapse
Affiliation(s)
- Arpan Dubey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Punyadarshini Punam Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
13
|
Zhu J, Wang R, Zhang Y, Lu Y, Cai S, Xiong Q. Metabolomics Reveals Antioxidant Metabolites in Colored Rice Grains. Metabolites 2024; 14:120. [PMID: 38393012 PMCID: PMC10891847 DOI: 10.3390/metabo14020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Colored rice is richer in nutrients and contains more nutrients and bioactive substances than ordinary white rice. Moderate consumption of black (purple) rice has a variety of physiological effects, such as antioxidant effects, blood lipid regulation, and blood sugar control. Therefore, we utilized nontargeted metabolomics, quantitative assays for flavonoid and phenolic compounds, and physiological and biochemical data to explore the correlations between metabolites and the development of antioxidant characteristics in pigmented rice seeds. The findings indicated that, among Yangjinnuo 818 (YJN818), Hongnuo (HN), Yangchannuo 1 hao (YCN1H), and Yangzi 6 hao (YZ6H), YZ6H exhibited the highest PAL activity, which was 2.13, 3.08, and 3.25 times greater than those of YJN818, HN, and YCN1H, respectively. YZ6H likewise exhibited the highest flavonoid content, which was 3.8, 7.06, and 35.54 times greater than those of YJN818, HN, and YCN1H, respectively. YZ6H also had the highest total antioxidant capacity, which was 2.42, 3.76, and 3.77 times greater than those of YJN818, HN, and YCN1H, respectively. Thus, purple rice grains have stronger antioxidant properties than other colored rice grains. Receiver operating characteristic (ROC) curve analysis revealed that trans-3,3',4',5,5',7-hexahydroxyflavanone, phorizin, and trilobatin in the YZ6H, HN, and YCN1H comparison groups all had area under the curve (AUC) values of 1. Phlorizin, trans-3,3',4',5,5',7-hexahydroxyflavanone, and trilobatin were recognized as indices of antioxidant capability in colored rice in this research. This research adds to the understanding of antioxidant compounds in pigmented rice, which can increase the nutritional value of rice and promote the overall well-being of individuals. This type of information is of immense importance in maintaining a balanced and healthy diet.
Collapse
Affiliation(s)
- Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ruizhi Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Yu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Yanyao Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Shuo Cai
- Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| |
Collapse
|
14
|
Singh S, Sharma H, Ramankutty R, Ramaswamy S. Review on Nutritional Potential of Underutilized Millets as a Miracle Grain. Curr Pharm Biotechnol 2024; 25:1082-1098. [PMID: 37861015 DOI: 10.2174/0113892010248721230921093208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
The current situation, which includes changes in eating habits, an increasing population, and the unrestricted use of natural resources, has resulted in a lack of resources that could be used to provide nourishing food to everyone. Natural plant resources are quickly being depleted, so it is necessary to consider new alternatives. In addition to the staple grains of rice and wheat, many other crops are being consumed that need to be utilized to their full potential and have the potential to replace the staple crops. Millets are one of the most important underutilized crops that have the potential to be used as a nutricereal. Millets have a high nutritional value, do not produce acids, do not contain gluten, and can contribute to a healthy diet. Due to a lack of awareness regarding the nutritional value of millets, their consumption is still restricted to the population that adheres to conventional diets and is economically disadvantaged even though millets contain a significant amount of nutrients. Millets are becoming increasingly unpopular due to a lack of processing technologies, food subsidies, and the inconvenience of preparing food with millets. Millets are a Nutricereal rich in carbohydrates, dietary fibers, energy, essential fatty acids, proteins, vitamin B, and minerals such as calcium, iron, magnesium, potassium, and zinc. These nutrients help to protect against post-translational diseases such as diabetes, cancer, cardiovascular disease, and celiac disease, among others. Millets are beneficial for controlling blood pressure, blood sugar level, and thyroid function; however, despite these functional properties, millets consumption has declined. Utilizing millets and other staple food crops to develop alternative food sources has become a new area of focus for businesses in the food industry. In addition, millet consumption can help foster immunity and health, which is essential in strengthening our fight against malnutrition in children and adolescents. In this article, the authors examine the potential of millets in terms of their nutricereal qualities.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P: 281406, India
| | | | - Sarada Ramaswamy
- Datha Ayuryoga International Health Institute, D.O.O, Podgorica, Montenegro
| |
Collapse
|
15
|
Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, Aniza Yusof Y. Optimization of Pluchea indica (L.) leaf extract using ultrasound-assisted extraction and its cytotoxicity on the HT-29 colorectal cancer cell line. ULTRASONICS SONOCHEMISTRY 2023; 101:106702. [PMID: 38041881 PMCID: PMC10701412 DOI: 10.1016/j.ultsonch.2023.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
Collapse
Affiliation(s)
- Siti Aishah Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, 11200 Tanjong Bungah, Penang, Malaysia
| | - Nor Nadiah Abd Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit, Institute for Medical Research, National Institutes of Health, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Alhussein M Al-Awaadh
- Department of Agricultural Engineering, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
16
|
Alreshidi M, Abdulhakeem MA, Badraoui R, Amato G, Caputo L, De Martino L, Nazzaro F, Fratianni F, Formisano C, De Feo V, Snoussi M. Pulicaria incisa (Lam.) DC. as a Potential Source of Antioxidant, Antibacterial, and Anti-Enzymatic Bioactive Molecules: Phytochemical Constituents, In Vitro and In Silico Pharmacological Analysis. Molecules 2023; 28:7439. [PMID: 37959858 PMCID: PMC10648406 DOI: 10.3390/molecules28217439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Plants with medicinal benefits are a crucial source of compounds for developing drugs. This study was designed to determine the chemical composition, antibacterial, antibiofilm, antioxidant, and anti-enzymatic activities of Pulicaria incisa (Lam.) DC. We also reported the molecular interaction between identified molecules and several receptors associated with antimicrobial and antibiofilm activities. A total of seventeen and thirteen compounds were identified in aqueous and methanolic extracts of P. incisa, respectively. The methanolic extract yielded a higher total content of polyphenols and flavonoids of about 84.80 ± 2.8 mg GAE/g and 28.30 ± 1.2 mg QE/g, respectively. Significant antibacterial activity was recorded for both extracts, with minimum inhibitory concentration (MIC) values ranging from 30 to 36 µg/mL, and the result was comparable to the reference antibiotic control. Antibiofilm assays revealed that both extracts were able to reduce the attachment of bacterial cells to 96-well plates, but the highest antibiofilm activity was recorded against Staphylococcus aureus. The methanolic extract also showed anti-enzymatic potency and high antioxidant activity, as demonstrated by all assays used, including DPPH, FRAP, and ABTS. These results were further validated by in silico approaches, particularly the molecular interaction of the identified compounds with the targeted receptors. These findings present P. incisa as a significant source of antibacterial, antibiofilm, antioxidant, and anti-enzymatic molecules.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
| | - Mohammad A. Abdulhakeem
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | | | | | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, 80131 Napoli, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
17
|
Kalsi R, Bhasin J, Goksen G, Kashyap P. Exploration of nutritional, pharmacological, and the processing trends for valorization of finger millet ( Eleusine coracana): A review. Food Sci Nutr 2023; 11:6802-6819. [PMID: 37970380 PMCID: PMC10630810 DOI: 10.1002/fsn3.3659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/17/2023] Open
Abstract
High nutrient variability and food security are the needs of the hour. Millets may be as effective as other cereal crops for dealing with severe malnutrition and increasing global population problems. Due to their physiologically active components, millets have attracted more research interest. Finger millet (FM), one of the climate-resilient and minor cereal crop species, is well known for several health benefits, primarily attributed to its nutritional value and polyphenolic content. FM seed coat phenolics exhibit excellent anti-diabetic, anti-oxidant, antimicrobial, anti-osteoporosis, wound healing, anti-lithiatic, inhibiting collagen glycation, cross-linking, and enzyme properties, which may serve well for the pharmacological purposes. Furthermore, the processing of FM is an important factor in its commercial use. It is necessary to invent some novel technologies to increase the productivity of FM by lowering the cost of processing and its effective utilization in the pharmaceutical and food industries. The literature presented will further explore the potential prospects of processing as well as value-added utilization and its nutritional and pharmacological aspects in view of initiating further research in the food industry to formulate ready-to-eat and ready-to-cook products, thereby acting as future crops for sustainability.
Collapse
Affiliation(s)
- Rhythm Kalsi
- Department of Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraPunjabIndia
| | - Jasleen Bhasin
- Department of Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraPunjabIndia
| | - Gulden Goksen
- Department of Food TechnologyVocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus UniversityMersinTurkey
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
18
|
Balli D, Bellumori M, Masoni A, Moretta M, Palchetti E, Bertaccini B, Mulinacci N, Innocenti M. Proso Millet ( Panicum miliaceum L.) as Alternative Source of Starch and Phenolic Compounds: A Study on Twenty-Five Worldwide Accessions. Molecules 2023; 28:6339. [PMID: 37687168 PMCID: PMC10489065 DOI: 10.3390/molecules28176339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Proso millet has been proposed as an effective anti-diabetic food thanks to the combined action of polyphenols and starch. This study aimed to characterize the chemical composition of twenty-five accessions, in order to enhance this cereal as an alternative to available starch for food applications or to propose new food ingredients with health benefits. Proso millet contained a high percentage of starch, reaching values of 58.51%. The amylose content showed high variability, with values ranging from 1.36 to 42.70%, and significantly higher values were recorded for the white accessions than for the colored ones. High-resistant starch content (13.41-26.07%) was also found. The HPLC-MS analysis showed the same phenolic pattern in all the samples. Cinnamic acids are the most abundant compounds and significant differences in their total content were found (0.69 to 1.35 mg/g DW), while flavonoids were only detected in trace amounts. Statistical results showed significantly higher antiradical activity in the colored accessions than in the white ones.
Collapse
Affiliation(s)
- Diletta Balli
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| | - Maria Bellumori
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| | - Alberto Masoni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; (A.M.); (M.M.); (E.P.)
| | - Michele Moretta
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; (A.M.); (M.M.); (E.P.)
| | - Enrico Palchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; (A.M.); (M.M.); (E.P.)
| | - Bruno Bertaccini
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Viale Morgagni 59, 50134 Florence, Italy;
| | - Nadia Mulinacci
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| | - Marzia Innocenti
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| |
Collapse
|
19
|
Martínez-Olivo AO, Zamora-Gasga VM, Medina-Torres L, Pérez-Larios A, Sáyago-Ayerdi SG, Sánchez-Burgos JA. Biofunctionalization of natural extracts, trends in biological activity and kinetic release. Adv Colloid Interface Sci 2023; 318:102938. [PMID: 37329675 DOI: 10.1016/j.cis.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The health benefits provided by plant matrices is due to the presence of certain compounds that, in studies carried out in vitro and in vivo, have shown to have biological activity in certain conditions, not only as a natural treatment against various conditions, but also for the quality of preventing chronic diseases, these compounds, already identified and studied, they can increase their biological function by undergoing structural chemical modifications or by being incorporated into polymer matrices that allow, in the first instance, to protect said compound and increase its bioaccessibility, as well as to preserve or increase the biological effects. Although the stabilization of compounds is an important aspect, it is also the study of the kinetic parameters of the system that contains them, since, due to these studies, the potential application to these systems can be designated. In this review we will address some of the work focused on obtaining compounds with biological activity from plant sources, the functionalization of extracts through double emulsions and nanoemulsions, as well as their toxicity and finally the pharmacokinetic aspects of entrapment systems.
Collapse
Affiliation(s)
- Abraham Osiris Martínez-Olivo
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Víctor Manuel Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico
| | - Alejandro Pérez-Larios
- Universidad de Guadalajara, Centro Universitario de los Altos, División de Ciencias Agropecuarias e Ingenierías, Laboratorio de Materiales, Agua y Energía, Av. Rafael Casillas Aceves 1200, C.P. 47600, Tepatitlán de Morelos, Mexico
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico.
| |
Collapse
|
20
|
Wawoczny A, Gillner D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433265 PMCID: PMC10375538 DOI: 10.1021/acs.jafc.3c01656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
21
|
Xiang J, Yuan Y, Du L, Zhang Y, Li C, Beta T. Modification on phenolic profiles and enhancement of antioxidant activity of proso millets during germination. Food Chem X 2023; 18:100628. [PMID: 36949751 PMCID: PMC10025011 DOI: 10.1016/j.fochx.2023.100628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Changes in phenolic profiles and antioxidant activity of three varieties of proso millet during germination were investigated. Total phenolic content (TPC) and total flavonoid content (TFC) increased significantly with prolongation in germination period. After germination for 6 days, TPC of the free and bound fractions increased 6.30-8.66-fold and 77.65-116.18%, respectively. The free and bound phenolic compounds identified by UPLC-MS/MS, displayed significant variations. Feruloylquinic acid and N,N'-bis-(p-coumaroyl)-putrescine biosynthesized during germination, are reported for the first time in proso millets. Other phenolics including trans- and cis-ferulic, trans-p-coumaric, vanillic acid and ferulic acid dimers (DFAs) were increased significantly along with a new DFA (8,5'-DFA) seemingly produced during germination. The germinated proso milllets displayed superior antioxidant activity than the corresponding ungerminated samples indicating that germination could be one applicable method for improving phenolic profiles and antioxidant capacity of proso millets. Thus germinated proso millet could be exploited as a functional ingredient in several products.
Collapse
Affiliation(s)
- Jinle Xiang
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471000, China
- Henan University of Science & Technology, Henan International Joint Laboratory of Food Green Processing and Safety Control, Luoyang, Henan 471000, China
| | - Yuan Yuan
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471000, China
| | - Lin Du
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471000, China
| | - Youyang Zhang
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471000, China
| | - Chunqiu Li
- Henan University of Science & Technology, Faculty of Food & Bioengineering, Luoyang, Henan 471000, China
- Henan University of Science & Technology, Henan International Joint Laboratory of Food Green Processing and Safety Control, Luoyang, Henan 471000, China
| | - Trust Beta
- University of Manitoba, Department of Food & Human Nutritional Sciences, Winnipeg, Manitoba R3T 2N2, Canada
- Corresponding author at: Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
22
|
Nani M, Krishnaswamy K. A natural whitening alternative from upcycled food waste (acid whey) and underutilized grains (millet). Sci Rep 2023; 13:6482. [PMID: 37081016 PMCID: PMC10119097 DOI: 10.1038/s41598-023-32204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
The dairy industry faces a daunting challenge in managing acid whey (AW), a byproduct of Greek yogurt manufacturing that is costly to dispose of and challenging to incorporate into other food products. However, recent studies have demonstrated that AW can be transformed into a viable white powder by encapsulating it in millet flour. Recently, concerns over the safety of the commonly used food-grade whitener titanium dioxide (TiO2) have arisen, and the search for an alternative food-whitening agent has become essential. This study evaluated the color attribute, proximate composition, sugar profile, amino acid profile, total phenolic content, antioxidant activity, and antinutrient content of the novel acid whey millet (AWM) powder. The L* values of the AWM powders were significantly higher than TiO2 and the rest of the millet formulations. The crude protein content in the AWM powders was significantly (p < 0.05) lower when compared to the crude protein content in millet flours. AWM powders had higher lactose levels and retained all major amino acids after spray drying. Macrominerals (P, K, Ca, and Na) and microminerals (Zn and Cu) significantly increased in the AWM powder, while tannin content was reduced in AWM powders. These findings suggest that AWM powder is a white powder that contains a wide range of components with high nutritional value that could be readily incorporated into various applications. In summary, this study provides a valuable contribution to the dairy industry by highlighting the potential of AWM powders as a natural alternative food whitening agent to TiO2.
Collapse
Affiliation(s)
- Mercy Nani
- Division of Food, Nutrition and Exercise Science, University of Missouri, Columbia, MO, USA
| | - Kiruba Krishnaswamy
- Division of Food, Nutrition and Exercise Science, University of Missouri, Columbia, MO, USA.
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
23
|
Johnson JB, Walsh KB, Naiker M, Ameer K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023; 28:molecules28073215. [PMID: 37049978 PMCID: PMC10096661 DOI: 10.3390/molecules28073215] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Infrared spectroscopy (wavelengths ranging from 750-25,000 nm) offers a rapid means of assessing the chemical composition of a wide range of sample types, both for qualitative and quantitative analyses. Its use in the food industry has increased significantly over the past five decades and it is now an accepted analytical technique for the routine analysis of certain analytes. Furthermore, it is commonly used for routine screening and quality control purposes in numerous industry settings, albeit not typically for the analysis of bioactive compounds. Using the Scopus database, a systematic search of literature of the five years between 2016 and 2020 identified 45 studies using near-infrared and 17 studies using mid-infrared spectroscopy for the quantification of bioactive compounds in food products. The most common bioactive compounds assessed were polyphenols, anthocyanins, carotenoids and ascorbic acid. Numerous factors affect the accuracy of the developed model, including the analyte class and concentration, matrix type, instrument geometry, wavelength selection and spectral processing/pre-processing methods. Additionally, only a few studies were validated on independently sourced samples. Nevertheless, the results demonstrate some promise of infrared spectroscopy for the rapid estimation of a wide range of bioactive compounds in food matrices.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kerry B Walsh
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Mani Naiker
- School of Health, Medical & Applied Science, Central Queensland University, North Rockhampton, QLD 4701, Australia
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
24
|
From Foxtail Millet Husk (Waste) to Bioactive Phenolic Extracts Using Deep Eutectic Solvent Extraction and Evaluation of Antioxidant, Acetylcholinesterase, and α-Glucosidase Inhibitory Activities. Foods 2023; 12:foods12061144. [PMID: 36981072 PMCID: PMC10048580 DOI: 10.3390/foods12061144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Foxtail millet husk (FMH) is generally removed and discarded during the first step of millet processing. This study aimed to optimize a method using deep eutectic solvents (DESs) combined with ultrasonic-assisted extraction (UAE) to extract phenols from FMH and to identify the phenolic compositions and evaluate the biological activities. The optimized DES comprised L-lactic acid and glycol with a 1:2 molar ratio by taking the total flavonoid content (TFC) and total phenolic content (TPC) as targets. The extraction parameters were optimized to maximize TFC and TPC, using the following settings: liquid-to-solid ratio of 25 mL/g, DES with water content of 15%, extraction time of 41 min and temperature of 51 °C, and ultrasonic power at 304 W. The optimized UAE-DES, which produced significantly higher TPC, TFC, antioxidant activity, α-glucosidase, and acetylcholinesterase inhibitory activities compared to conventional solvent extraction. Through UPLC–MS, 12 phenolic compounds were identified, with 1-O-p-coumaroylglycerol, apigenin-C-pentosyl-C-hexoside, and 1-O-feruloyl-3-O-p-coumaroylglycerol being the main phenolic components. 1-O-feruloyl-3-O-p-coumaroylglycerol and 3,7-dimethylquercetin were identified first in foxtail millet. Our results indicated that FMH could be exploited by UAE-DES extraction as a useful source of naturally derived antioxidants, along with acetylcholinesterase and α-glucosidase inhibitory activities.
Collapse
|
25
|
Adiguna SP, Panggabean JA, Swasono RT, Rahmawati SI, Izzati F, Bayu A, Putra MY, Formisano C, Giuseppina C. Evaluations of Andrographolide-Rich Fractions of Andrographis paniculata with Enhanced Potential Antioxidant, Anticancer, Antihypertensive, and Anti-Inflammatory Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061220. [PMID: 36986909 PMCID: PMC10052505 DOI: 10.3390/plants12061220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Andrographis paniculata is widely used as a traditional medicine in Asian countries. It has been classified as a safe and non-toxic medicine by traditional Chinese medicine. The investigation of the biological activities of A. paniculata is still focused on the crude extract and isolation of its main active compound, andrographolide, and its derivatives. However, the use of andrographolide alone has been shown to exacerbate unwanted effects. This highlights the importance of developing a fraction of A. paniculata with enhanced efficacy as an herbal-based medicine. In this study, the extraction and fractionation of A. paniculata, followed by quantitative analysis using high-performance liquid chromatography coupled with a DAD detector, were established to quantify the andrographolide and its derivative in each fraction. Biological activities, such as antioxidant, anticancer, antihypertensive, and anti-inflammatory activities, were evaluated to study their correlations with the quantification of active substances of A. paniculata extract and its fractions. The 50% methanolic fraction of A. paniculata exhibited the best cytotoxic activities against CACO-2 cells, as well as the best anti-inflammatory and antihypertensive activities compared to other extracts. The 50% methanolic fraction also displayed the highest quantification of its main active compound, andrographolide, and its derivatives, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and andrograpanin, among others.
Collapse
Affiliation(s)
- Sya’ban Putra Adiguna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Jonathan Ardhianto Panggabean
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
| | - Siti Irma Rahmawati
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Fauzia Izzati
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Asep Bayu
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Chianese Giuseppina
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| |
Collapse
|
26
|
Barathikannan K, Chelliah R, Yeon SJ, Tyagi A, Elahi F, Vijayalakshmi S, Agastian P, Arockiasami V, Hawn Oh D. Untargeted metabolomics of fermented onion (Allium cepa L) using UHPLC Q-TOF MS/MS reveals anti-obesity metabolites and in vivo efficacy in Caenorhabditis elegans. Food Chem 2023; 404:134710. [DOI: 10.1016/j.foodchem.2022.134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
|
27
|
Study on the interaction between grain polyphenols and intestinal microorganisms: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Health-Promoting Potential of Millet: A Review. SEPARATIONS 2023. [DOI: 10.3390/separations10020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Being a key source of animal food, millet production has been sharply increasing over the last few years in order to cope with the dietary requirements of the ever-increasing world population. It is a splendid source of essential nutrients such as protein, carbohydrates, fat, minerals, vitamins, and also some other bioactive compounds that eventually help through multiple biological activities, including antioxidant, anti-hyperglycemic, anti-cholesterol, anti-hypertensive, anthropometric effects and regulation of gut microbiota composition. These bioactive compounds, nutrients, and functions of cereal grains can be affected by processing techniques such as decortication, soaking, malting, milling, fermentation, etc. This study discusses the nutritional and functional properties of millet-incorporated foods and their impact on health, based on around 150 articles between 2015 and 2022 from the Web of Science, Google Scholar, Food and Agriculture Organization of the United Nations (FAO), Breeding Bid Survey (BBS), and FoodData Central (USDA) databases. Analyzing literature reviews, it is evident that the incorporation of millet and its constituents into foodstuffs could be useful against undernourishment and several other health diseases. Additionally, this review provides crucial information about the beneficial features of millet, which can serve as a benchmark of guidelines for industry, consumers, researchers, and nutritionists.
Collapse
|
29
|
Singh V, Lee G, Son H, Amani S, Baunthiyal M, Shin JH. Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Front Nutr 2022; 9:1056445. [PMID: 36618686 PMCID: PMC9815516 DOI: 10.3389/fnut.2022.1056445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Finger millet (Eleusine coracana) is a staple food in several parts of the world because of its high nutritional value. In addition to its high nutrient content, finger millet contains numerous bioactive compounds, including polyphenol (10.2 mg/g TAE), flavonoid (5.54 mg/g CE), phytic acid (0.48%), and dietary fiber (15-20%). Polyphenols are known for their anti-oxidant and anti-diabetic role. Phytic acid, previously considered an anti-nutritive substance, is now regarded as a nutraceutical as it reduces carbohydrate digestibility and thus controls post-prandial glucose levels and obesity. Thus, finger millet is an attractive diet for patients with diabetes. Recent findings have revealed that the anti-oxidant activity and bio-accessibility of finger millet polyphenols increased significantly (P < 0.05) in the colon, confirming the role of the gut microbiota. The prebiotic content of finger millet was also utilized by the gut microbiota, such as Faecalibacterium, Eubacterium, and Roseburia, to generate colonic short-chain fatty acids (SCFAs), and probiotic Bifidobacterium and Lactobacillus, which are known to be anti-diabetic in nature. Notably, finger millet-induced mucus-degrading Akkermansia muciniphila can also help in alleviate diabetes by releasing propionate and Amuc_1100 protein. Various millet bio-actives effectively controlled pathogenic gut microbiota, such as Shigella and Clostridium histolyticum, to lower gut inflammation and, thus, the risk of diabetes in the host. In the current review, we have meticulously examined the role of gut microbiota in the bio-accessibility of millet compounds and their impact on diabetes.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sliti Amani
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, India,*Correspondence: Mamta Baunthiyal,
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea,Jae-Ho Shin,
| |
Collapse
|
30
|
Wei X, Yang W, Wang J, Zhang Y, Wang Y, Long Y, Tan B, Wan X. Health Effects of Whole Grains: A Bibliometric Analysis. Foods 2022; 11:foods11244094. [PMID: 36553836 PMCID: PMC9777732 DOI: 10.3390/foods11244094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Whole grains have been recommended in the diet in most countries, with numerous publications focusing on their health effect. A systematic analysis of these publications on different research methods, regions and perspectives will contribute to an understanding of the innovation pattern in this field. This bibliometric study analyzes the global publication characteristics, hotspots and frontiers of whole grain health benefit research, and discusses the trends and prospects of this topic. The overall number of publications is on the rise, with the United States contributing the most publications. The most cited literature shows that observational studies, systematic reviews and meta-analysis are the most widely used methods. The main focus in this area is on dietary fiber and bioactive substances, while the latter has received increased attention in recent years in particular. With the increasingly prominent problems of hidden hunger and chronic disease, the development of whole grain foods and their optimum intake have gradually become hot topics. In addition to the need to reveal the mechanism of whole grain health effects, consensus needs to be reached on standards and definitions for whole grain foods, and attention should be paid to the retention of taste and healthy nutrients in processing.
Collapse
Affiliation(s)
- Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Wei Yang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Jianhui Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yong Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yaxuan Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- Correspondence: (B.T.); (X.W.); Tel.: +86-132-6143-7257 (B.T.); +86-186-0056-1850 (X.W.)
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (B.T.); (X.W.); Tel.: +86-132-6143-7257 (B.T.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
31
|
Insights into the effects of extractable phenolic compounds and Maillard reaction products on the antioxidant activity of roasted wheat flours with different maturities. Food Chem X 2022; 17:100548. [PMID: 36845526 PMCID: PMC9943760 DOI: 10.1016/j.fochx.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Experiments were performed to determine the effect of roasting whole wheat flours at 80 °C, 100 °C and 120 °C for 30 min on four forms of phenolics, Maillard reaction products (MRPs), and the DPPH scavenging activity (DSA) at 15, 30 and 45 days after flowering (15-DAF, 30-DAF, and 45-DAF). Roasting increased the phenolic content and antioxidant activity of the wheat flours, which were the dominant contributions to the formation of Maillard reaction products. The highest total phenolic content (TPC) and total phenolic DSA (TDSA) were determined in the DAF-15 flours at 120 °C/30 min. The DAF-15 flours exhibited the highest browning index and fluorescence of free intermediate compounds and advanced MRPs, suggesting that a substantial quantity of MRPs were formed. Four forms of phenolic compounds were detected with significantly different DSAs in the roasted wheat flours. The insoluble-bound phenolic compounds exhibited the highest DSA, followed by the glycosylated phenolic compounds.
Collapse
|
32
|
Diverse polyphenol components contribute to antioxidant activity and hypoglycemic potential of mulberry varieties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Nutritional, physical, functional properties and antioxidant potential of different colors proso millet husks and brans. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Abioye V, Babarinde G, Ogunlakin G, Adejuyitan J, Olatunde S, Abioye A. Varietal and processing influence on nutritional and phytochemical properties of finger millet: A review. Heliyon 2022; 8:e12310. [PMID: 36590554 PMCID: PMC9800331 DOI: 10.1016/j.heliyon.2022.e12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Food and nutrition insecurity is a problem for the majority of developing nations; incidentally, some underutilized crops have the potential to increase food security. A minor cereal grain called finger millet (Eleusine coracana L.) is widely cultivated in various regions of India and Africa and is consumed for its numerous health advantages. There is a wealth of research on the nutritional and health benefits of this crop, but little is known about how varietal difference and processing affect these qualities. Therefore, this study reviewed the effects of variety and different processing methods on the nutrition, antinutrients, phytochemicals, and antioxidative properties of finger millet and its probable uses in ensuring nutrition and food security. Finger millet is a nutritious cereal with relatively high values of protein, vitamins, minerals, fibre, and energy. The amount of minerals, particularly calcium and potassium, is larger than what is found in the most popular grains, including wheat and rice. The grain of finger millet is non-glutinous and contains only 1.3% fat; in contrast to other types of millet which are noticeably higher in dietary fibre, protein, ash, and fat. The coloured varieties particularly have high levels of minerals, antioxidants, and phytochemicals. The nutritional and phytochemical qualities of finger millet are affected by the cultivars, varieties, and geographical locations. This study elucidates the qualities of finger millet varieties and methods of processing which will help in the selection of appropriate cultivars for food applications.
Collapse
Affiliation(s)
- V.F. Abioye
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - G.O. Babarinde
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - G.O. Ogunlakin
- Department of Food Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - J.A. Adejuyitan
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - S.J. Olatunde
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - A.O. Abioye
- Department of Food Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
35
|
A Comparative Study of Physicochemical Attributes of Pigmented Landrace Maize Varieties. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6294336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Maize has been cultivated and continues to be cultivated for its usability in calorie supply to humans and livestock. There has been great interest in pigmented landrace maize varieties (PLMVs) due to their importance in the pharmaceutical industry. Landraces are to a large extent a repository of the gene pool that enriches biodiversity and maintains but also stabilizes the ecosystem in a sustainable way. PLMVs are still being cultivated by smallholder farmers in smaller portions of their fields and home surroundings despite the high adoption of white hybrid maize. This study examined the ash, moisture, mineral, crude protein, fat, and carbohydrate content of three different PLMVs from central (Ntcheu and Dedza districts) and northern (Mzimba district) Malawi. The mineral content of soils from fields where PLMVs were grown was also analyzed. The study areas experience a warm temperate climate and higher rainfall in summer than in winter but they differ in that Ntcheu has the highest average annual temperature of 20.3°C while Dedza receives the highest annual precipitation of about 1010 mm. Mzimba’s average annual temperature and precipitation are 20.1°C and 915 mm, respectively. The study showed that orange maize from Dedza had a significantly higher content of calcium (71.00 ± 0.58 mg·kg−1), magnesium (819.00 ± 0.58 mg·kg−1), and phosphorus (2720.35 ± 0.03 mg·kg−1). Significantly higher contents of zinc (54.61 ± 0.43 mg·kg−1) and potassium (808.58 ± 0.27 mg·kg−1) were observed in purple maize from Dedza and Ntcheu, respectively. Red maize from Dedza had a significantly higher content of iron (59.80 ± 0.26 mg·kg−1). Purple maize from Dedza has significantly higher carbohydrate content (65.52 ± 0.07%). The findings also revealed that red maize from Dedza provenance had a high content of crude protein (12.57 ± 0.07%) and fat (10.73 ± 0.14%). Moisture (17.30 ± 0.21%) and ash (2.28 ± 0.02%) were significantly higher in orange maize from Dedza. Dedza’s provenance revealed a high content of the analyzed attributes in PLMVs. Mineral analysis showed different levels of mineral bioavailability in different PLMVs and in the soils where maize was grown. It can, therefore, be concluded that production location and maize variety have an influence on the attributes of PLMVs. Understanding the physicochemical attributes of PLMVs and its maximum utilization have the potential of improving food and nutrition security in Sub-Saharan African countries and globally.
Collapse
|
36
|
Steryl ferulates composition in twenty-two millet samples: Do “microwave popping” and fermentation affect their content? Food Chem 2022; 391:133222. [DOI: 10.1016/j.foodchem.2022.133222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
|
37
|
Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
38
|
Chinma CE, Ibrahim PA, Adedeji OE, Ezeocha VC, Ohuoba EU, Kolo SI, Abdulrahman R, Ogochukwu Anumba NL, Adebo JA, Adebo OA. Physicochemical properties, in vitro digestibility, antioxidant activity and consumer acceptability of biscuits prepared from germinated finger millet and Bambara groundnut flour blends. Heliyon 2022; 8:e10849. [PMID: 36247135 PMCID: PMC9562233 DOI: 10.1016/j.heliyon.2022.e10849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/03/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
The formulation of new food products with high nutritional quality and functionality is gaining global attention. The physicochemical properties, in vitro digestibility, antioxidant activity and consumer acceptability of biscuits produced from germinated finger millet (GFM) (Eleusine coracana) and Bambara groundnut (GBGN) (Vigna subterranea) flour blends were investigated. As the proportion of GBGN flour increased in the biscuit samples, protein, in vitro protein digestibility (80.52–89.20 %), slowly digestible and resistant starch, total phenolic content and antioxidant activities increased significantly, while rapidly digestible starch, starch hydrolysis index, glycemic index and phytic acid decreased. Addition of GBGN also positively influenced the physical attributes of the biscuits. The blending of 80% GFM with 20 % GBGN resulted in a biscuit with acceptable sensory qualities such as taste, aroma, appearance, crunchiness, and overall acceptability. This study showed that GFM and GBGN flour blends could serve as functional ingredients to produce better products.
Collapse
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology Minna, Nigeria
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, 2028, Gauteng, South Africa
- Corresponding author.
| | - Patricia Ayuba Ibrahim
- Department of Food Science and Technology, Federal University of Technology Minna, Nigeria
- Department of Administration, Catering Services Unit, Federal Medical Center, Keffi, Nigeria
| | | | - Vanessa Chinelo Ezeocha
- Department of Food Science and Technology, Michael Okpara University of Agriculture, Umudike, Nigeria
| | | | - Salamatu Ibrahim Kolo
- Department of Food Science and Technology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Ruhaimat Abdulrahman
- Department of Food Science and Technology, Federal University of Technology Minna, Nigeria
| | | | - Janet Adeyinka Adebo
- Food Evolution Research Laboratory, School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Bunting Campus, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, 2028, Gauteng, South Africa
- Corresponding author.
| |
Collapse
|
39
|
Wei J, Li S, Su T, Zhao J, Jiang Y, Zubarev YA, Bi Y. Phenolic compositions and antioxidant activities of Hippophae tibetana and H. rhamnoides ssp. sinensis berries produced in Qinghai-Tibet Plateau. Food Chem X 2022; 15:100397. [PMID: 36211784 PMCID: PMC9532713 DOI: 10.1016/j.fochx.2022.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
Sea buckthorn berry contained high concentrations of total phenolics and flavonoids. Flavonols was the predominant phenolics in Hippophae rhamnoides ssp. sinensis berry. Flavonols and flavanols were the two abundant subclasses in Hippophae tibetana berry. Hippophae rhamnoides ssp. sinensis berry showed much higher antioxidant activity.
Phenolic ingredients of Hippophae tibetana (Tib) and H. rhamnoides ssp. sinensis (Rha) berry from Qinghai-Tibet Plateau were identified by Ultra Performance Liquid Chromatography-triple Quadrupole Tandem Mass Spectrometry. Results demonstrated that both of them possessed high levels of total phenolic and flavonoid, and compared to Tib, Rha berry exhibited higher contents. Moreover, flavonols was the most predominant subclass in Rha berry, flavonols and flavanols were the two most abundant subclasses in Tib berry. Among them, rutin and narcissin were present in the most abundant amounts in Rha berry, while (−)-epigallocatechin was the richest substance in Tib berry. Furthermore, both phenolic extracts of sea buckthorn berry exhibited strong in vitro and cellular antioxidant properties. Rha berry extract exhibited much stronger effects because of its higher levels of phenolic and flavonoid profiles. This finding proved that the Rha berry could serve as a food source for better health with great potential antioxidant activity.
Collapse
|
40
|
Chaya H, Kumar SS, Jayarama S, Mahadevappa P. Comprehensive Nutritional Analysis, Antioxidant Activities, and Bioactive Compound Characterization from Seven Selected Cereals and Pulses by UHPLC-HRMS/MS. ACS OMEGA 2022; 7:31377-31387. [PMID: 36092608 PMCID: PMC9453962 DOI: 10.1021/acsomega.2c03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cereals and pulses comprise the largest proportion in a typical Indian diet plate. This research mainly focuses on determining the nutritional composition, bioactive compound characterization, and antioxidant activities of seven selected cereals and pulses. The total carbohydrate content was high in unripe banana (67.65/100 g) and arrowroot (63.76/100 g). Finger millet (44.55 μmol %), chickpea (53.33 μmol %), and green gram (17.40 μmol %) showed high oleic, linoleic, and linolenic acid contents, respectively. The ascorbic acid content was the highest in chickpea and horse gram at 86.83 and 83.76 mg/100 g, respectively. The major phenolics and flavonoids quantified and confirmed using HPLC and UHPLC-HRMS/MS were gallic, protocatechuic, vanillic, para-coumaric, ferulic, chlorogenic, sinapic, and trans-cinnamic acids, rutin, and quercetin. The sample extracts showed dose-dependent antioxidant activity to combat the reactive oxygen species. Hence, these serve as an excellent source for the development of functional food formulations for lowering the risk of various diseases.
Collapse
|
41
|
Mudau M, Ramashia SE, Mashau ME. Mineral Content, Functional, Thermo-Pasting, and Microstructural Properties of Spontaneously Fermented Finger Millet Flours. Foods 2022; 11:foods11162474. [PMID: 36010473 PMCID: PMC9407397 DOI: 10.3390/foods11162474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Finger millet is a cereal grain which is superior to wheat and rice in terms of dietary fibre, minerals, and micronutrients. Fermentation is one of the oldest methods of food processing, and it has been used to ferment cereal grains such as finger millet (FM) for centuries. The aim of this study was to investigate the impact of spontaneous fermentation (SF) on mineral content, functional, thermo-pasting, and microstructural properties of light- and dark-brown FM flours. Spontaneous fermentation exhibited a significant increase in the macro-minerals and micro-minerals of FM flours. In terms of functional properties, SF decreased the packed bulk density and swelling capacity, and it increased the water/oil absorption capacity of both FM flours. Spontaneous fermentation had no effect on the cold paste viscosity of FM flours. However, significant decreases from 421.61 to 265.33 cP and 320.67 to 253.67 cP were observed in the cooked paste viscosity of light- and dark-brown FM flours, respectively. Moreover, SF induced alterations in the thermal properties of FM flours as increments in gelatinisation temperatures and gelatinisation enthalpy were observed. The results of pasting properties exhibited the low peak viscosities (1709.67 and 2695.67 cP), through viscosities (1349.67 and 2480.33 cP), and final viscosities (1616.33 and 2754.67 cP), along with high breakdown viscosities (360.00 and 215.33 cP) and setback viscosity (349.33 and 274.33 cP), of spontaneously fermented FM flours. Scanning electron microscopy showed that SF influenced changes in the microstructural properties of FM flours. The changes induced by SF in FM flours suggest that flours can be used in the food industry to produce weaning foods, jelly foods, and gluten-free products that are rich in minerals.
Collapse
|
42
|
Mitharwal S, Chauhan K. Physicochemical, nutritional, and sensory characteristics of gluten free muffins prepared from finger millet, germinated black soybean and kenaf leaves composite flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Swati Mitharwal
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship & Management (NIFTEM) India
| | - Komal Chauhan
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship & Management (NIFTEM) India
| |
Collapse
|
43
|
Variation in Phenolic, Mineral, Dietary Fiber, and Antioxidant Activity across Southern Tunisian Pearl Millet Germplasm. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1437306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pearl millet crop, reputed as one of the most important food sources cultivated in arid and semiarid parts of Africa and Asia, is known to be a source of many bioactive molecules with potential health-promoting properties. In Tunisia, this crop presented historically rich and diversified germplasm, which is being threatened by genetic erosion. The preservation programs of these species have been held for more than 20 years via participatory breeding schemes. A prospection was undertaken to collect pearl millet cultivars preserved in the last two decades from south-eastern Tunisian farmers to estimate their variability and performances. The aim of this study was to assess the profiles of phenolic compounds, antioxidant capacities, mineral composition, and dietary fiber contents of ten pearl millet cultivars in south-eastern Tunisia. The total phenolics and flavonoids in the free fraction ranged from 506.33 to 1287.71 µg.g−1 DM ferulic acid equivalent (FAE) and 4.17 to 12.53 µg.g−1 DM catechin equivalent (CE), respectively. The highest polyphenolic content from all genotypes was 1134.96 µg·g−1 DM (genotype Med.AG1.3). LC-MS analysis of individual phenol compounds allowed the identification of eight phenolic acids in millet grains. The quinic acid, p-coumaric acid, and caffeic acid were predominant phenolic acids, and six flavonoid compounds with cirsiliol and silymarin were the predominant flavonoids. The ranges of mineral contents variation were 693.10 to 1075.40 and 80.75 to 175.40 μg·g−1 for Ca and Mg, respectively, and 9.55 to 32.80, 0.75 to 8.60, 1.84 to 12.21, and 3.63 to 11.40 μg·g−1 for Na, Zn, Cu, and Fe, respectively. The content of NDF, ADF, and ADL per dry weight varied from 20 to 31%, 1 to 4.2%, and 0.4 to 2.3%, respectively. Overall, considering the variability among the assessed attributes, heatmap analysis showed the association between each of the traits as related to the clustered genotypes.
Collapse
|
44
|
Shi Z, Liu Y, Hu Z, Liu L, Yan Q, Geng D, Wei M, Wan Y, Fan G, Yang H, Yang P. Effect of radiation processing on phenolic antioxidants in cereal and legume seeds: A review. Food Chem 2022; 396:133661. [PMID: 35849987 DOI: 10.1016/j.foodchem.2022.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Phenolic compounds in cereal and legume seeds show numerous benefits to human health mainly because of their good antioxidant capacity. However, long-term storage and some improper preservation may reduce their antioxidant potential. It is necessary to retain or modify the phenolic antioxidants with improved technology before consumption. Radiation processing is usually applied as a physical method to extend the shelf life and retain the quality of plant produce. However, the effect of radiation processing on phenolic antioxidants in cereal and legume seeds is still not well understood. This review summarizes recent research on the effect of radiation, including ionizing and nonionizing radiation on the content and profile of phenolic compounds, and antioxidant activities in cereal and legume seeds, the influencing factors and possible mechanisms are also discussed. The article will improve the understanding of radiation effect on phenolic antioxidants, and promote the radiation modification of natural phenolic compounds in cereal and legume seeds and other sources.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Ying Liu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Liu Liu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Qinghai Yan
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Dandan Geng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Min Wei
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan 611130, PR China
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan 611130, PR China
| | - Pinghua Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| |
Collapse
|
45
|
Xiu T, Liu P, Zhang S, Du D, Xue C, Hu Y, Yang S, Dongye Z, Kang M, Li Z, Wang L. Polyphenol nanoparticles of millet, rice and wheat: extraction, identification, functional and morphological characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tiantian Xiu
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Peng Liu
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs No. 12, Zhongguancun South Street Beijing 100081 China
| | - Shuangling Zhang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Dehong Du
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Changhui Xue
- Chemistry and Pharmaceutical Sciences College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Yue Hu
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Shuo Yang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Zixuan Dongye
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Mengchen Kang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Zhenru Li
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Li Wang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| |
Collapse
|
46
|
Understanding the Antinutritional Factors and Bioactive Compounds of Kodo Millet (Paspalum scrobiculatum) and Little Millet (Panicum sumatrense). J FOOD QUALITY 2022. [DOI: 10.1155/2022/1578448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kodo and little millet (Kutki) have a variety of phytochemical constituents including derivatives of hydroxybenzoic acid and hydroxycinnamic acids, myricetin, catechin, luteolin, apigenin, daidzein, naringenin, kaempferol, and quercetin with vast health benefits and thus can be utilized as functional food ingredients. Millet-based foods and their food products have physiological and health-promoting impacts, notably antidiabetic, anti-obesity, and cardiovascular disease, and based on the actions of phytochemicals, it plays a major role in the body’s immune system. However, antinutrients (tannins, oxalate, trypsin inhibitor, and phytates) present in these millets restrict their utilization since these factors bind the essential nutrients and make them unavailable. Therefore, this review suggested overcoming the effects of antinutrients in these millets, thereby opening up important applications in food industries that may promote the development of novel functional foods. Various methods were discussed to eliminate the antinutrient factors in these millets, and hence, the review holds immense significance to the food industry for effectively utilizing these millets to develop value-added RTE/RTC products/functional food/beverages.
Collapse
|
47
|
Wang G, Lu M, Zhang S, Ji J, Li B, Li J, Zhang L, Yang D, Wang W, Guan C. Anthocyanin release and absorption properties of boiling pigmented rice using an in vitro digestion model. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Wang H, Fu Y, Zhao Q, Hou D, Yang X, Bai S, Diao X, Xue Y, Shen Q. Effect of Different Processing Methods on the Millet Polyphenols and Their Anti-diabetic Potential. Front Nutr 2022; 9:780499. [PMID: 35223942 PMCID: PMC8873100 DOI: 10.3389/fnut.2022.780499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Interest in polyphenols has grown due to their beneficial effect on diabetes attenuation. Millets are ancient crops that are rich in polyphenols and used for both food and feed. They are grown worldwide and are adapted to production under dry, hot conditions. The polyphenols found in millets have anti-diabetic properties. However, millet is usually consumed after being processed by heating, germination, fermentation, and other processing methods, which may alter polyphenol content and thus affect their anti-diabetic potential. This mini-review profiles the effects of different processing methods on millet polyphenols and how changes in millet polyphenols affect the hypoglycemic effect of millet. Future studies are needed to compare the anti-diabetes potential of millet polyphenols before and after processing and to explore ways to minimize polyphenol losses and thus maintain their hypoglycemic effect in final products.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing, China
| | - Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing, China
| | - Dianzhi Hou
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Shuqun Bai
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing, China
- *Correspondence: Qun Shen
| |
Collapse
|
49
|
Sharma R, Rawat P, Singh P, Kanojiya S, Gupta P. Statistical optimization of ultrasound assisted extraction of free and bound phenolic acids, antioxidant and antibacterial activities and UPLC–MS/MS characterization from two varieties of Eleusine coracana. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Zheng RL, Ren T, Niu CT, Zheng FY, Wang JJ, Liu CF, Li Q. Anthocyanins composition and antioxidant activity of purple rice and color degradation under sunlight exposure of purple rice wine. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|