1
|
Lertjindaporn M, Geng JT, Keratimanoch S, Lee GY, Ryo K, Osako K. Chitin and chitosan from North Pacific krill (Euphausia Pacifica): Comparative study of conventional and microwave-assisted extraction methods and the potential use in chitosan film production. Int J Biol Macromol 2025; 296:139692. [PMID: 39793789 DOI: 10.1016/j.ijbiomac.2025.139692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The characteristics and prospective applications of North Pacific krill chitin and chitosan are currently unexplored, and their conventional isolation method is time- and energy-consuming. In this study, chitin and chitosan were extracted from North Pacific krill using conventional and microwave-assisted methods, followed by comprehensive characterisation and evaluation of chitosan film potential. The extracted chitin was identified as an α-polymorph, and chitosan exhibited a remarkable degree of deacetylation (90 %) in both methods. Microwave-assisted extraction provided comparable chitin and chitosan yields without adversely affecting their properties, and the resulting products also exhibited enhanced crystallinity and thermal stability. Moreover, microwave-assisted-extracted chitosan (MCS) had a significantly lower molecular weight (Mw). Krill chitosan films demonstrated superior performance as food packaging materials compared to films prepared from commercial chitosan, due to their greater extensibility and transparency. Notably, the MCS film exhibited exceptional antioxidant activity and solubility. These findings suggest that North Pacific krill holds promise as a viable source of α-chitin and chitosan, and microwave-assisted extraction is effective in producing low Mw chitosan that has the potential to be used for preparing functional biodegradable film, with a fivefold reduction in treatment time.
Collapse
Affiliation(s)
- Manisin Lertjindaporn
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Jie-Ting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Sumate Keratimanoch
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Ga-Yang Lee
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Koki Ryo
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
2
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
3
|
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15041313. [PMID: 37111795 PMCID: PMC10144389 DOI: 10.3390/pharmaceutics15041313] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chitosan, a biocompatible and biodegradable polysaccharide derived from chitin, has surfaced as a material of promise for drug delivery and biomedical applications. Different chitin and chitosan extraction techniques can produce materials with unique properties, which can be further modified to enhance their bioactivities. Chitosan-based drug delivery systems have been developed for various routes of administration, including oral, ophthalmic, transdermal, nasal, and vaginal, allowing for targeted and sustained release of drugs. Additionally, chitosan has been used in numerous biomedical applications, such as bone regeneration, cartilage tissue regeneration, cardiac tissue regeneration, corneal regeneration, periodontal tissue regeneration, and wound healing. Moreover, chitosan has also been utilized in gene delivery, bioimaging, vaccination, and cosmeceutical applications. Modified chitosan derivatives have been developed to improve their biocompatibility and enhance their properties, resulting in innovative materials with promising potentials in various biomedical applications. This article summarizes the recent findings on chitosan and its application in drug delivery and biomedical science.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
4
|
Zhong H, Wei S, Kang M, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu M, Liu S. Effects of different storage conditions on microbial community and quality changes of greater amberjack (Seriola dumerili) fillets. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Rozman AS, Hashim N, Maringgal B, Abdan K, Sabarudin A. Recent advances in active agent-filled wrapping film for preserving and enhancing the quality of fresh produce. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Singh S, Negi T, Sagar NA, Kumar Y, Tarafdar A, Sirohi R, Sindhu R, Pandey A. Sustainable processes for treatment and management of seafood solid waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152951. [PMID: 34999071 DOI: 10.1016/j.scitotenv.2022.152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Seafood processing is an important economical activity worldwide and is an integral part of the food chain system. However, their processing results in solid waste generation whose disposal and management is a serious concern. Proteins, amino acids, lipids with high amounts of polyunsaturated fatty acids (PUFA), carotenoids, and minerals are abundant in the discards, effluents, and by-catch of seafood processing waste. As a result, it causes nutritional loss and poses major environmental risks. To solve the issues, it is critical that the waste be exposed to secondary processing and valorization for recovery of value added products. Although chemical waste treatment technologies are available, the majority of these procedures have inherent flaws. Biological solutions, on the other hand, are safe, efficacious, and ecologically friendly while maintaining the intrinsic bioactivities after waste conversion. Microbial fermentation or the actions of exogenously introduced enzymes on waste components are used in most bioconversion processes. Algal biotechnology has recently developed unique technologies for biotransformation of nutrients, which may be employed as a feedstock for the recovery of important chemicals as well as biofuel. Bioconversion methods combined with a bio-refinery strategy offer the potential to enable environmentally-friendly and cost-effective seafood waste management. The refinement of these wastes through sustainable bioprocessing interventions can give rise to various circular bioeconomies within the seafood processing sector. Moreover, a techno-economic perspective on the developed solid waste processing lines and its subsequent environmental impact could facilitate commercialization. This review aims to provide a comprehensive view and critical analysis of the recent updates in seafood waste processing in terms of bioconversion processes and byproduct development. Various case studies on circular bioeconomy formulated on seafood processing waste along with techno-economic feasibility for the possible development of sustainable seafood biorefineries have also been discussed.
Collapse
Affiliation(s)
- Shikhangi Singh
- Department of Post Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, -263 145, Uttarakhand, India
| | - Taru Negi
- Department of Food Science and Technology(,) G. B. Pant University of Agriculture and Technology, Pantnagar 263 125, Uttarakhand, India
| | - Narashans Alok Sagar
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Saint Longwal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Ayon Tarafdar
- Livestock Production and Management Section(,) ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136 713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow 226 001, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
7
|
A review on source-specific chemistry, functionality, and applications of chitin and chitosan. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100036] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Šimat V, Čagalj M, Skroza D, Gardini F, Tabanelli G, Montanari C, Hassoun A, Ozogul F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:55-118. [PMID: 34311904 DOI: 10.1016/bs.afnr.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contribution of food in promotion of health has become of most importance. The challenges that lie before the global food supply chain, such as climate changes, food contamination, and antimicrobial resistance may compromise food safety at international scale. Compounds with strong antimicrobial and antioxidant activity can be extracted from different natural and sustainable sources and may contribute to extend the shelf life of meat and seafood products, enhance food safety and enrich foods with additional biologically active and functional ingredients. This chapter describes the use of bioprotective cultures, essential oils, plant extracts, seaweed extracts and grape pomace compounds in production of value-added meat and seafood products with improved shelf life and safety, following the requests from the market and consumers.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
9
|
Horse mackerel (Trachurus trachurus) fillets biopreservation by using gallic acid and chitosan coatings. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Yuan Y, Zhang X, Pan Z, Xue Q, Wu Y, Li Y, Li B, Li L. Improving the properties of chitosan films by incorporating shellac nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
|
12
|
Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Mar Drugs 2020; 18:md18080406. [PMID: 32752203 PMCID: PMC7459837 DOI: 10.3390/md18080406] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a carotenoid produced by different organisms and microorganisms such as microalgae, bacteria, yeasts, protists, and plants, and it is also accumulated in aquatic animals such as fish and crustaceans. Astaxanthin and astaxanthin-containing lipid extracts obtained from these sources present an intense red color and a remarkable antioxidant activity, providing great potential to be employed as food ingredients with both technological and bioactive functions. However, their use is hindered by: their instability in the presence of high temperatures, acidic pH, oxygen or light; their low water solubility, bioaccessibility and bioavailability; their intense odor/flavor. The present paper reviews recent advances in the micro/nanoencapsulation of astaxanthin and astaxanthin-containing lipid extracts, developed to improve their stability, bioactivity and technological functionality for use as food ingredients. The use of diverse micro/nanoencapsulation techniques using wall materials of a different nature to improve water solubility and dispersibility in foods, masking undesirable odor and flavor, is firstly discussed, followed by a discussion of the importance of the encapsulation to retard astaxanthin release, protecting it from degradation in the gastrointestinal tract. The nanoencapsulation of astaxanthin to improve its bioaccessibility, bioavailability and bioactivity is further reviewed. Finally, the main limitations and future trends on the topic are discussed.
Collapse
|
13
|
Tian B, Liu Y. Chitosan‐based biomaterials: From discovery to food application. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi, Xinjiang China
| | - Yumei Liu
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi, Xinjiang China
| |
Collapse
|
14
|
Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:127-185. [PMID: 32402443 DOI: 10.1016/bs.afnr.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing concern about chronic diseases such as obesity, diabetes, hypertension, hypercholesterolemia, cancer and cardiovascular diseases resulting from profound changes in the western lifestyle. Aquaculture by-products are generated in large quantities and they can be profitably recycled through their bioactive compounds used for health or food supplements. Improving waste utilization in the field of aquaculture is essential for a sustainable industry to prevent or minimize the environmental impact. In this sense fish by-products are a great source of protein and omega-3 polyunsaturated fatty acids which are particularly studied on Atlantic salmon or rainbow trout. Fish protein hydrolysate (FPH) obtained from chemical, enzymatical and microbial hydrolysis of processing by-products are being used as a source of amino acids and peptides with high digestibility, fast absorption and important biological activities. Omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) from fish discards have been reported to decrease postprandial triacylglycerol levels, reduction of blood pressure, platelet aggregation and the inflammatory response. Crustacean by-products can also be used to produce chitosan with antioxidant and antimicrobial activity for food and pharmaceutical industries and carotenoids with important biological activity. Seaweeds are rich in bioactive compounds such as alginate, carrageenan, agar, carotenoids and polyphenols with different biological activities such as antioxidant, anticancer, antidiabetic, antimicrobial or anti-inflammatory activity. Finally, regarding harvest microalgae, during the past decades, they were mainly used in the healthy food market, with >75% of the annual microalgal biomass production, used for the manufacture of powders, tablets, capsules or pills. We will report and discuss the present and future role of aquaculture by-products as sources of biomolecules for the design and development of functional foods/beverages. This chapter will focus on the main bioactive compounds from aquaculture by-products as functional compounds in food and their applications in biomedicine for the prevention and treatment of diseases.
Collapse
|
15
|
The thiolated chitosan: Synthesis, gelling and antibacterial capability. Int J Biol Macromol 2019; 139:521-530. [PMID: 31377297 DOI: 10.1016/j.ijbiomac.2019.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
Abstract
Chitosan-1-(mercaptomethyl)-cyclopropane acetic acid (CS-MCA) copolymer was synthesized by amino linkage. The obtained copolymer was characterized by FTIR, 1H NMR, XRD, TGA and SEM. Porous and reticulate morphologies were found on the CS-MCA surface. The effects of pH on the rheological properties of CS-MCA were investigated. On the one hand, the apparent viscosity of CS-MCA indicated a shear-thinning behavior. The graft of MCA enhanced the moduli and the maximum elastic properties were observed at pH = 7.00. The addition of dithiothreitol reduced the viscosity and modulus of CS-MCA hydrogel, and the gelation time, temperature and frequency were obtained in dynamic oscillatory tests. The antibacterial effect of CS-MCA against E. coli was investigated for the inhibition zone and bacterial growth curve. These results showed that CS-MCA had better antibacterial ability than chitosan without modification. Therefore, the rheological behavior and functional activities can be applied for the hydrocolloid gels in food and pharmaceutical applications.
Collapse
|
16
|
Ha HK, Lee MR, Lee WJ. Bioaccessibility of β-Lactoglobulin Nanoemulsions Containing Coenzyme Q 10: Impact of Droplet Size on the Bioaccessibility of Coenzyme Q 10. Korean J Food Sci Anim Resour 2018; 38:1294-1304. [PMID: 30675122 PMCID: PMC6335127 DOI: 10.5851/kosfa.2018.e65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
The aims of this research were to examine the effect of heating temperature (65, 75, and 85℃) and CaCl2 concentration level (3, 4, and 5 mM) on the physicochemical properties of β-lactoglobulin (β-lg) nanoemulsions (NEs) and to study how the droplet size of NEs affects the bioaccessibility (BA) of coenzyme Q10 (CoQ10). The droplet size of NEs and BA of CoQ10 was assessed by particle size analyzer and UV-Vis spectrophotometer, respectively. An increase in heating temperature and CaCl2 concentration level resulted in a significant (p<0.05) increase in the droplet size of NEs while there were no significant differences in polydispersity index and zeta-potential of NEs. When NEs containing CoQ10 were incubated in simulated small intestinal phases, an increase in the droplet size and polydispersity index of NEs was observed. This indicated that NEs were not stable in small intestine and digestion of NEs occurred. As heating temperature and CaCl2 concentration level were decreased, a significant (p<0.05) increase in BA of CoQ10 was observed. There was a significant (p<0.05) increase in BA of CoQ10 with a decrease in the droplet size of NEs. In conclusion, heating temperature and CaCl2 concentration level were key-parameters affecting the initial droplet size of NEs and BA of CoQ10 was negatively correlated with initial droplet size of NEs.
Collapse
Affiliation(s)
- Ho-Kyung Ha
- Department of Animal Science and Technology,
Sunchon National University, Suncheon
57922, Korea
| | - Mee-Ryung Lee
- Department of Food and Nutrition, Daegu
University, Gyeongsan 38453, Korea
| | - Won-Jae Lee
- Department of Animal Bioscience (Institute of Agriculture
and Life Science), Gyeongsang National University,
Jinju 52828, Korea
| |
Collapse
|