1
|
Huang L, Fan J, Han C, Du C, Wei Z, Du D. Methods and instruments for the evaluation of food texture: Advances and perspectives. Food Res Int 2025; 208:116162. [PMID: 40263828 DOI: 10.1016/j.foodres.2025.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
Evaluation of food texture is crucial for product development and quality control in the food industry. To objectively evaluate the texture, the methods to characterize the texture attributes by instruments become increasingly important. This review mainly introduces the advances of instrumental methods by rheology and tribology in food texture studies, with a focus on the instrumental applications in four complex texture attributes, including thickness, astringency, creaminess, and graininess. It discusses the mechanism of food texture perception by finding the optimal instrumental method, but quantitatively correlating the instrumental parameters with sensory texture remains a challenge. Moreover, the perspectives of new cutting-edge technologies including micro-analytical, tactile sensing, and biomimetic techniques, are introduced. The review provides a possible direction that integrating the technologies not only by rheology and tribology, but also by multi-modal tactile sensing, will deepen the understanding of sensory texture perception and advance the instrument development for food texture evaluation.
Collapse
Affiliation(s)
- Liwen Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Fan
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Chaoyue Han
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chengjin Du
- Soft BioRobotics Perception, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Zhenbo Wei
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Du
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Montemerlo AE, Azcarate SM, Camiña JM, Messina G. Chemometrically assisted differential pulse voltammetry for simultaneous and interference-free quantification of gallic and caffeic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3774-3783. [PMID: 38818890 DOI: 10.1039/d4ay00536h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
This article explores the application of chemometric tools including multivariate curve resolution with alternating least squares for the simultaneous determination of gallic and caffeic acids on the surface of a glassy carbon electrode without additional modification. Gallic and caffeic acids are primary polyphenols, the most abundant in red wines produced in Argentina, and are often used as quality markers for them. These polyphenols significantly contribute to the organoleptic properties of wines from this origin, but their electrochemical signals overlap significantly, making simultaneous quantification challenging without additional experiments such as electrode modification or alternative analytical techniques beyond differential pulse voltammetry. This study successfully quantified these compounds in complex mixtures by generating second-order data from differential pulse voltammetry experiments conducted at various potential steps and subsequently applying multivariate curve resolution with alternating least squares. The use of constraints during optimization prevented rotational ambiguities common in this modeling, leading to unique results in validation samples. The limits of detection (LOD) found for gallic and caffeic acids were 1.6 and 7.6 mg L-1, which are in excellent agreement with the expected concentrations of these compounds in red wines. The concentration ranges analyzed showed a linear dependency (between the LOD and 300 mg L-1) with the signals estimated by the model for both analytes. Advantages such as simplicity, low cost, and high speed, as well as not requiring electrode modification, combined with excellent results obtained for real samples, make it a promising alternative for polyphenol analysis in the wine industry.
Collapse
Affiliation(s)
- Antonella E Montemerlo
- Instituto de Química de San Luis, "Dr Roberto A. Olsina" (INQUISAL-CONICET-UNSL), San Luis, 5700, Argentina
- Facultad Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, 6300, La Pampa, Argentina.
| | - Silvana M Azcarate
- Facultad Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, 6300, La Pampa, Argentina.
- Instituto de Ciencias de la Tierra y Ambientales de la Pampa - CONICET, Santa Rosa, 6300, La Pampa, Argentina
| | - José M Camiña
- Facultad Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, 6300, La Pampa, Argentina.
- Instituto de Ciencias de la Tierra y Ambientales de la Pampa - CONICET, Santa Rosa, 6300, La Pampa, Argentina
| | - Germán Messina
- Instituto de Química de San Luis, "Dr Roberto A. Olsina" (INQUISAL-CONICET-UNSL), San Luis, 5700, Argentina
| |
Collapse
|
3
|
Zhang D, Lin Z, Xuan L, Lu M, Shi B, Shi J, He F, Battino M, Zhao L, Zou X. Rapid determination of geographical authenticity and pungency intensity of the red Sichuan pepper (Zanthoxylum bungeanum) using differential pulse voltammetry and machine learning algorithms. Food Chem 2024; 439:137978. [PMID: 38048663 DOI: 10.1016/j.foodchem.2023.137978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023]
Abstract
The development of an analytical method for assessing pungency intensity and determining geographical origins is crucial for evaluating the quality of visually similar Zanthoxylum bungeanum pericarp (PZB). This study analyzed 210 PZB samples from 14 origins across China, focusing on origin adulteration identification and pungency intensity using a combination of differential pulse voltammetry (DPV) and machine learning algorithms. The artificial neural network (ANN) and K-nearest neighbor (KNN) algorithms provided the highest accuracy in origin identification (100 %) and adulteration detection (97.9 %) respectively. Moreover, the ANN excelled in predicting pungency intensity (R2 = 0.918). Assessment via feature importance analysis of DPV features revealed that segments of polyphenols (0.34-0.52 V and 1.0-1.2 V) and alkylamides (1.0-1.2 V) contributed significantly to the PZB pungency intensity. These findings highlight the potential of DPV as a reliable method for assessing the quality of PZB, and offer a promising solution for ensuring the geographical authenticity of this important crop.
Collapse
Affiliation(s)
- Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zitao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lilei Xuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minmin Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bolin Shi
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, China.
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fatao He
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-operatives, Jinan, Shandong 250200, China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Ding Y, Zhang Y, Huang C, Wang J, Li H, Wang X. An electrochemical biosensor based on phage-encoded protein RBP 41 for rapid and sensitive detection of Salmonella. Talanta 2024; 270:125561. [PMID: 38128279 DOI: 10.1016/j.talanta.2023.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Salmonellosis caused by Salmonella contaminated food poses a serious threat to human health. The rapid and accurate detection of Salmonella is critical for preventing foodborne illness outbreaks. In this study, an electrochemical biosensor was developed using a newly identified biorecognition element, RBP 41, which is capable of specifically recognizing and binding to Salmonella. The biosensor was constructed through a layer-by-layer assembly of graphene oxide (GO), gold nanoparticles (GNPs), and RBP 41 on a glassy carbon electrode (GCE), with the GNPs amplifying the detection signal. The established biosensor was able to detect Salmonella in concentrations ranging from 3 to 106 CFU/mL within approximately 30 min by using differential pulse voltammetry (DPV) signal, and the estimated detection limit was to be 0.2984 Log10 CFU/mL. The biosensor demonstrated excellent specificity and was effective in detecting Salmonella in food matrices, such as skim milk and lettuce. Overall, this study highlights the potential of phage tail receptor binding proteins in biosensing and the proposed biosensor as a promising alternative for rapid and sensitive Salmonella detection in various samples.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yiming Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Huihui Li
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Xing Y, Zhang Y, Zhu X, Wang C, Zhang T, Cheng F, Qu J, Peijnenburg WJGM. A highly selective and sensitive electrochemical sensor for tetracycline resistant genes detection based on the non-covalent interaction of graphene oxide and nucleobase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167615. [PMID: 37806581 DOI: 10.1016/j.scitotenv.2023.167615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Antibiotic resistance genes (ARGs) are causing worldwide environmental problems, however, the traditional analytical methods and test equipment for them are time-consuming and expensive. The electrochemical sensor using the non-covalent bond between graphene oxide (GO) and single-stranded tet (ss-tet) was established for specific tetracycline resistance genes (tet, composed of ss-tet and complementary ss-tet (ss-tet') in water) detection, which preparation time was only 35 min and far less than most reported sensors based on covalent bond. As the result of the detection for tet, the developed sensor not only had the low detection limit of 50.0 pM (8.1 × 102 copies·mL-1), the short detection time within 42 min, but also had satisfactory stability, excellent reproducibility, and highly selectivity (RSD < 4.43 %). Besides, it also had acceptable accuracy comparing to the real-time quantitative polymerase chain reaction (RT-qPCR) and PCR array in tet detection. Noticeably, it also had been successfully applied to tetA detection in different water samples. In brief, the prepared non-covalent bond sensor is simple, rapid, and suitable for highly selective and sensitive detection of the ARGs in actual water.
Collapse
Affiliation(s)
- Yi Xing
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yanan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chengzhi Wang
- Center for Water Research, Beijing Normal University, Beijing 100875, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
6
|
Clarke S, Bosman G, du Toit W, Aleixandre‐Tudo JL. White wine phenolics: current methods of analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7-25. [PMID: 35821577 PMCID: PMC9796155 DOI: 10.1002/jsfa.12120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
White wine phenolic analyses are less common in the literature than analyses of red wine phenolics. Analytical techniques for white wine phenolic analyses using spectrophotometric, chromatographic, spectroscopic, and electrochemical methods are reported. The interest of research in this area combined with the advances in technology aimed at the winemaking industry are promoting the establishment of novel approaches for identifying, quantifying, and classifying phenolic compounds in white wine. This review article provides an overview of the current research into white wine phenolics through a critical discussion of the analytical methods employed. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarah Clarke
- South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and OenologyStellenbosch UniversityStellenboschSouth Africa
| | - Gurthwin Bosman
- Department of PhysicsStellenbosch UniversityStellenboschSouth Africa
| | - Wessel du Toit
- South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and OenologyStellenbosch UniversityStellenboschSouth Africa
| | - Jose Luis Aleixandre‐Tudo
- South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and OenologyStellenbosch UniversityStellenboschSouth Africa
- Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de AlimentosUniversidad Politécnica de ValenciaValenciaSpain
| |
Collapse
|
7
|
Martínez-Pérez-Cejuela H, Mesquita RB, Couto JA, Simó-Alfonso E, Herrero-Martínez J, Rangel AOS. Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta 2022; 250:123747. [DOI: 10.1016/j.talanta.2022.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
|
8
|
Phichi M, Chobpradit P, Nhujak T, Aeungmaitrepirom W, Kulsing C. Development of a new paper-based voltage step electrocoagulation technique and application to wine classification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4344-4351. [PMID: 36263601 DOI: 10.1039/d2ay01267g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study developed a novel voltage step electrocoagulation (VSEC) technique on paper for analysis and classification of red wine samples. The concept relies on the electrode system applying voltage steps along a strip of filter paper soaked with a wine sample. The system employed a cathode array system (CAS) for voltage step application and an aluminium anode undergoing corrosion to form the green sludges responsible for wine color bleaching along the paper. The VSEC technique led to the shade of colors along the paper which can be observed by the naked-eye or using image processing software. The system was applied to classify 15 wine samples into different groups and to perform dilution and adulteration tests. In addition, the approach could be applied to approximate antioxidant properties of the wine samples as observed via the correlation between the results from VSEC and IC50 values obtained from the DPPH assay with an R2 of 0.76.
Collapse
Affiliation(s)
- Manoon Phichi
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pattraporn Chobpradit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thumnoon Nhujak
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Chadin Kulsing
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Special Task Force for Activating Research (STAR) in Flavor Science, Chulalongkorn University, Phayatai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Electrochemical modified electrode with bismuth film for ultrasensitive determination of aluminum (iii). J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Sahragard A, Varanusupakul P, Miró M. Interfacing liquid-phase microextraction with electrochemical detection: A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Distinctive Features of Composts of Different Origin: A Thorough Examination of the Characterization Results. SUSTAINABILITY 2022. [DOI: 10.3390/su14127449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The potential of composts produced from different origin residues to be used in environmentally friendly agriculture is addressed in this work. Seven composts obtained from different raw materials and composting methodologies are compared using elemental, thermal and spectroscopic characterization data. Despite the stabilization of the organic matter in all composts being adequate for agricultural applications, they display distinct elemental and structural compositions. Likewise, the fertilisers have very different effects on lettuce growth. Despite the observed differences, some common features were found, namely a mass loss (TGA) of 25.2 g per mol C, association between groups of elements (Fe, Al, Ni, Co, Cr, Cu and S; Mg, Na, K and P, C, Coxi, N and Pb) and correlations between the amount of carbon nanostructures and the characteristic aromaticity parameters. These results suggest that the tuning of the compost features for specific cultures may be possible for sustainable food production.
Collapse
|
13
|
Sherif A, Abdel Tawab M, Abdel-Ghani N, El Nashar R. Computational design and application of molecularly imprinted /MWCNT based electrochemical sensor for the determination of silodosin. ELECTROANAL 2022. [DOI: 10.1002/elan.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
A single screen-printed electrode in tandem with chemometric tools for the forensic differentiation of Brazilian beers. Sci Rep 2022; 12:5630. [PMID: 35379877 PMCID: PMC8980006 DOI: 10.1038/s41598-022-09632-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In the present study a single screen-printed carbon electrode (SPCE) and chemometric techniques were utilized for forensic differentiation of Brazilian American lager beers. To differentiate Brazilian beers at the manufacturer and brand level, the classification techniques: soft independent modeling of class analogy (SIMCA), partial least squares regression discriminant analysis (PLS-DA), and support vector machines discriminant analysis (SVM-DA) were tested. PLS-DA model presented an inconclusive assignment ratio of 20%. On the other hand, SIMCA models had a 0 inconclusive rate but an sensitivity close to 85%. While the non-linear technique (SVM-DA) showed an accuracy of 98%, with 95% sensitivity and 98% specificity. The SPCE-SVM-DA technique was then used to distinguish at brand level two highly frauded beers. The SPCE coupled with SVM-DA performed with an accuracy of 97% for the classification of both brands. Therefore, the proposed electrochemicalsensor configuration has been deemed an appropriate tool for discrimination of American lager beers according to their producer and brands.
Collapse
|
15
|
Bakhshi A, Saravani H, Rezvani A, Sargazi G, Shahbakhsh M. A new method of Bi-MOF nanostructures production using UAIM procedure for efficient electrocatalytic oxidation of aminophenol: a controllable systematic study. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-021-01664-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Baluta S, Meloni F, Halicka K, Szyszka A, Zucca A, Pilo MI, Cabaj J. Differential pulse voltammetry and chronoamperometry as analytical tools for epinephrine detection using a tyrosinase-based electrochemical biosensor. RSC Adv 2022; 12:25342-25353. [PMID: 36199318 PMCID: PMC9446417 DOI: 10.1039/d2ra04045j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
The main goal of the presented study was to design a biosensor-based system for epinephrine (EP) detection using a poly-thiophene derivative and tyrosinase as a biorecognition element. We compared two different electroanalytical techniques to select the most prominent technique for analyzing the neurotransmitter. The prepared biosensor system exhibited good parameters; the differential pulse (DPV) technique presented a wide linear range (1–20 μM and 30–200 μM), with a low detection limit (0.18 nM and 1.03 nM). In the case of chronoamperometry (CA), a high signal-to-noise ratio and lower reproducibility were observed, causing a less broad linear range (10–200 μM) and a higher detection limit (125 nM). Therefore, the DPV technique was used for the calculation of sensitivity (0.0011 μA mM−1 cm−2), stability (49 days), and total surface coverage (4.18 × 10−12 mol cm−2). The biosensor also showed very high selectivity in the presence of common interfering species (i.e. ascorbic acid, uric acid, norepinephrine, dopamine) and was successfully applied for EP determination in a pharmaceutical sample. GCE/poly-4,4′-bBT/tyrosinase biosensor for epinephrine was constructed. Comparison of differential pulse voltammetry (DPV) and chronoamperometry was performed. DPV showed more reproducible results giving high selectivity, sensitivity, stability.![]()
Collapse
Affiliation(s)
- Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Francesca Meloni
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Kinga Halicka
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adam Szyszka
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Antonio Zucca
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Maria Itria Pilo
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
17
|
González-Hernández J, Ott CE, Arcos-Martínez MJ, Colina Á, Heras A, Alvarado-Gámez AL, Urcuyo R, Arroyo-Mora LE. Rapid Determination of the 'Legal Highs' 4-MMC and 4-MEC by Spectroelectrochemistry: Simultaneous Cyclic Voltammetry and In Situ Surface-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2021; 22:295. [PMID: 35009837 PMCID: PMC8749763 DOI: 10.3390/s22010295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
The synthetic cathinones mephedrone (4-MMC) and 4-methylethcathinone (4-MEC) are two designer drugs that represent the rise and fall effect of this drug category within the stimulants market and are still available in several countries around the world. As a result, the qualitative and quantitative determination of 'legal highs', and their mixtures, are of great interest. This work explores for the first time the spectroelectrochemical response of these substances by coupling cyclic voltammetry (CV) with Raman spectroscopy in a portable instrument. It was found that the stimulants exhibit a voltammetric response on a gold screen-printed electrode while the surface is simultaneously electro-activated to achieve a periodic surface-enhanced Raman spectroscopy (SERS) substrate with high reproducibility. The proposed method enables a rapid and reliable determination in which both substances can be selectively analyzed through the oxidation waves of the molecules and the characteristic bands of the electrochemical SERS (EC-SERS) spectra. The feasibility and applicability of the method were assessed in simulated seized drug samples and spiked synthetic urine. This time-resolved spectroelectrochemical technique provides a cost-effective and user-friendly tool for onsite screening of synthetic stimulants in matrices with low concentration analytes for forensic applications.
Collapse
Affiliation(s)
- Jerson González-Hernández
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica; (J.G.-H.); (A.L.A.-G.); (R.U.)
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Colby Edward Ott
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506, USA;
| | - María Julia Arcos-Martínez
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain; (M.J.A.-M.); (Á.C.); (A.H.)
| | - Álvaro Colina
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain; (M.J.A.-M.); (Á.C.); (A.H.)
| | - Aránzazu Heras
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain; (M.J.A.-M.); (Á.C.); (A.H.)
| | - Ana Lorena Alvarado-Gámez
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica; (J.G.-H.); (A.L.A.-G.); (R.U.)
| | - Roberto Urcuyo
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica; (J.G.-H.); (A.L.A.-G.); (R.U.)
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Centro de Investigación en Ciencias e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Luis E. Arroyo-Mora
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
18
|
Red Wine Oxidation Characterization by Accelerated Ageing Tests and Cyclic Voltammetry. Antioxidants (Basel) 2021; 10:antiox10121943. [PMID: 34943046 PMCID: PMC8750522 DOI: 10.3390/antiox10121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
In order to obtain information on the oxidative behavior of red wines, oxygen consumption rates and electrochemical changes (cyclic voltammetry) were measured for nine red wines subject to three different accelerated ageing tests: chemical (with hydrogen peroxide), enzymatic (with laccase from Trametes versicolor), and temperature (at 60 °C). Oxidative behavior depended both on the wine sample and accelerated ageing test type. A good correlation was observed between electrochemical parameters of charges for reference/non-oxidized wines, in accordance with their antioxidant capacity, and the variation of charges after enzymatic and temperature tests, meaning that cyclic voltammetry could be used in order to predict these two oxidation tests and reflect the wine sensitivity towards respective oxidation targets. However, it was not possible to predict wine chemical oxidation test based on hydrogen peroxide from the electrochemical measurements.
Collapse
|
19
|
A series of D-π-A and A-π-A’ fluorescent probes were used to explore the influence of terminal groups on the properties of the hemicyanine probes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Jin Mei C, Ainliah Alang Ahmad S. A review on the determination heavy metals ions using calixarene-based electrochemical sensors. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Ferreira C, Sáenz-Navajas MP, Carrascón V, Næs T, Fernández-Zurbano P, Ferreira V. An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chem 2021; 365:130405. [PMID: 34284330 DOI: 10.1016/j.foodchem.2021.130405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
The present work aimed at determining the applicability of linear sweep voltammetry coupled to disposable carbon paste electrodes to predict chemical composition and wine oxygen consumption rates (OCR) by PLS-modeling of the voltammetric signal. Voltammetric signals were acquired in a set of 16 red commercial wines. Samples were extensively characterized including SO2, antioxidant indexes, metals and polyphenols measured by HPLC. Wine OCRs were calculated by measuring oxygen consumption under controlled oxidation conditions. PLS-Regression models were calculated to predict chemical variables and wine OCRs from first order difference voltammogram curves. A significant number of fully validated models predicting chemical variables from voltammetric signals were obtained. Interestingly, monomeric and polymerized anthocyanins can be differently predicted from the first and second wave of the first derivative of voltammograms, respectively. This fast, cheap and easy-to-use approach presents an important potential to be used in wineries for rapid wine chemical characterization.
Collapse
Affiliation(s)
- Chelo Ferreira
- Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain; Instituto Universitario de Matemáticas y Aplicaciones (IUMA-UNIZAR), Spain
| | - Maria-Pilar Sáenz-Navajas
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja-CSIC-Gobierno de La Rioja), Carretera de Burgos Km. 6, Finca La Grajera, 26007 Logroño, La Rioja, Spain
| | - Vanesa Carrascón
- Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Tormod Næs
- Nofima AS, Osloveien 1, P.O. Box 210, N-1431 Ås, Norway
| | - Purificación Fernández-Zurbano
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja-CSIC-Gobierno de La Rioja), Carretera de Burgos Km. 6, Finca La Grajera, 26007 Logroño, La Rioja, Spain
| | - Vicente Ferreira
- Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
22
|
Li C, Sun F. Graphene-Assisted Sensor for Rapid Detection of Antibiotic Resistance in Escherichia coli. Front Chem 2021; 9:696906. [PMID: 34136468 PMCID: PMC8201492 DOI: 10.3389/fchem.2021.696906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, antibiotic-resistant bacteria caused by antibiotic abuse in the medical industry have become a new environmental pollutant that endangers public health. Therefore, it is necessary to establish a detection method for evaluating drug-resistant bacteria. In this work, we used Escherichia coli as a target model and proposed a method to evaluate its drug resistance for three antibiotics. Graphene dispersion was used to co-mix with E. coli cells for the purpose of increasing the current signal. This electrochemical-based sensor allows the evaluation of the activity of E. coli on the electrode surface. When antibiotics were present, the electrocatalytic reduction signal was diminished because of the reduced activity of E. coli. Based on the difference in the electrochemical reduction signal, we can evaluate the antibiotic resistance of different E. coli strains.
Collapse
Affiliation(s)
- Chunlei Li
- Department of Gastroenterology, Jiaozhou Central Hospital, Jiaozhou, China
| | - Feng Sun
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Noh S, Kim J, Kim G, Park C, Jang H, Lee M, Lee T. Recent Advances in CRP Biosensor Based on Electrical, Electrochemical and Optical Methods. SENSORS 2021; 21:s21093024. [PMID: 33925825 PMCID: PMC8123455 DOI: 10.3390/s21093024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
C-reactive protein (CRP) is an acute-phase reactive protein that appears in the bloodstream in response to inflammatory cytokines such as interleukin-6 produced by adipocytes and macrophages during the acute phase of the inflammatory/infectious process. CRP measurement is widely used as a representative acute and chronic inflammatory disease marker. With the development of diagnostic techniques measuring CRP more precisely than before, CRP is being used not only as a traditional biomarker but also as a biomarker for various diseases. The existing commercialized CRP assays are dominated by enzyme-linked immunosorbent assay (ELISA). ELISA has high selectivity and sensitivity, but its limitations include requiring complex analytic processes, long analysis times, and professional manpower. To overcome these problems, nanobiotechnology is able to provide alternative diagnostic tools. By introducing the nanobio hybrid material to the CRP biosensors, CRP can be measured more quickly and accurately, and highly sensitive biosensors can be used as portable devices. In this review, we discuss the recent advancements in electrochemical, electricity, and spectroscopy-based CRP biosensors composed of biomaterial and nanomaterial hybrids.
Collapse
Affiliation(s)
- Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Korea;
| | - Minho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| |
Collapse
|
24
|
Haque MA, Morozova K, Ferrentino G, Scampicchio M. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202060600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Md Azizul Haque
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
- Department of Food Technology and Nutritional Science (FTNS) Mawlana Bhashani Science and Technology University (MBSTU) Tangail 1902 Bangladesh
| | - Ksenia Morozova
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Giovanna Ferrentino
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| |
Collapse
|
25
|
Dumitru (m.Vodă) R, Negrea S, Păcurariu C, Surdu A, Ianculescu A, Pop A, Manea F. CuBi 2O 4 Synthesis, Characterization, and Application in Sensitive Amperometric/Voltammetric Detection of Amoxicillin in Aqueous Solutions. NANOMATERIALS 2021; 11:nano11030740. [PMID: 33804252 PMCID: PMC8001249 DOI: 10.3390/nano11030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
CuBi2O4 synthesized by thermolysis of a new Bi(III)-Cu(II) oxalate coordination compound, namely Bi2Cu(C2O4)4·0.25H2O, was tested through its integration within carbon nanofiber paste electrode, namely CuBi/carbon nanofiber (CNF), for the electrochemical detection of amoxicillin (AMX) in the aqueous solution. Thermal analysis and IR spectroscopy were used to characterize a CuBi2O4 precursor to optimize the synthesis conditions. The copper bismuth oxide obtained after a heating treatment of the precursor at 700 °C/1 h was investigated by an X-ray diffraction and scanning electron microscopy. The electrochemical behavior of CuBi/CNF in comparison with CNF paste electrode showed the electrocatalytic activity of CuBi2O4 toward amoxicillin detection. Two potential detections, with one at the potential value of +0.540 V/saturated calomel electrode (SCE) and the other at the potential value of −1.000 V/SCE, were identified by cyclic voltammetry, which were exploited to develop the enhanced voltammetric and/or amperometric detection protocols. Better electroanalytical performance for AMX detection was achieved for CuBi/CNF using differential-pulsed and square-wave voltammetries than others reported in the literature. Very nice results obtained through anodic and cathodic currents recorded at +0.750 V/SCE and −1.000 V/SCE in the same time period using a pseudo multiple-pulsed amperometry technique showed the great potential of the CuBi/CNF paste electrode for practical applications in amoxicillin detection in aqueous solutions.
Collapse
Affiliation(s)
- Raluca Dumitru (m.Vodă)
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
| | - Sorina Negrea
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), 300431 Timisoara, Romania;
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
| | - Adrian Surdu
- Department of Oxide Materials Science and Engineering, Faculty of Applied Chemistry and Materials Science, Polytehnic University of Bucharest, Gh. Polizu Street No. 1–7, 011061 Bucharest, Romania; (A.S.); (A.I.)
| | - Adelina Ianculescu
- Department of Oxide Materials Science and Engineering, Faculty of Applied Chemistry and Materials Science, Polytehnic University of Bucharest, Gh. Polizu Street No. 1–7, 011061 Bucharest, Romania; (A.S.); (A.I.)
| | - Aniela Pop
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
| | - Florica Manea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
- Correspondence: ; Tel.: +40-256-403-070
| |
Collapse
|
26
|
The Importance of Developing Electrochemical Sensors Based on Molecularly Imprinted Polymers for a Rapid Detection of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10030382. [PMID: 33806514 PMCID: PMC8001462 DOI: 10.3390/antiox10030382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
This review aims to pin out the importance of developing a technique for rapid detection of antioxidants, based on molecular imprinting techniques. It covers three major areas that have made great progress over the years in the field of research, namely: antioxidants characterization, molecular imprinting and electrochemistry, alone or combined. It also reveals the importance of bringing these three areas together for a good evaluation of antioxidants in a simple or complex medium, based on selectivity and specificity. Although numerous studies have associated antioxidants with molecular imprinting, or antioxidants with electrochemistry, but even electrochemistry with molecular imprinting to valorize different compounds, the growing prominence of antioxidants in the food, medical, and paramedical sectors deserves to combine the three areas, which may lead to innovative industrial applications with satisfactory results for both manufacturers and consumers.
Collapse
|
27
|
Kongkaew S, Kanatharana P, Thavarungkul P, Limbut W. Studying the preparation, electrochemical performance testing, comparison and application of a cost-effective flexible graphene working electrode. J Colloid Interface Sci 2021; 583:487-498. [PMID: 33017693 DOI: 10.1016/j.jcis.2020.08.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
-A cost-effective flexible graphene working electrode (FGWE) was fabricated using overhead projector transparent film (OPTF) and a screen-printing technique. The surface morphology and electrochemical behavior of the electrode were characterized by scanning electron microscopy and cyclic voltammetry. The electrode presented a very thin layer of conductive ink (16.0 ± 0.7 µm) on a large effective surface area (0.301 ± 0.001 cm-2). The anodic peak current density (jpa) of acetaminophen (ACT) in FGWE was 5.2, 3.7, 3.5 and 6.0 times greater than the jpa of glassy carbon electrode (GCE), flexible carbon working electrode (FCWE), SPE1, and SPE2, respectively. The electrochemical performance of FGWE toward ACT was evaluated by differential pulse voltammetry. Under optimized condition, ACT was quantified in a range of 4-100 µM, with good sensitivity, good accuracy (recovery = 82.3 ± 0.4 to 106 ± 3%), and excellent precision. FGWE was applied to determine ACT in commercial pharmaceutical formulations. The results of the study are in good agreement with those obtained by the standard spectrophotometric method. These results indicate that disposable FGWE is particularly useful for the detection of ACT, and its performance may serve as a platform for cost-effective flexible electrochemical sensors.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
28
|
Abstract
The present review deals with the recent progress made in the field of the electrochemical detection of serotonin by means of electrochemical sensors based on various nanomaterials incorporated in the sensitive element. Due to the unique chemical and physical properties of these nanomaterials, it was possible to develop sensitive electrochemical sensors with excellent analytical performances, useful in the practice. The main electrochemical sensors used in serotonin detection are based on carbon electrodes modified with carbon nanotubes and various materials, such as benzofuran, polyalizarin red-S, poly(L-arginine), Nafion/Ni(OH)2, or graphene oxide, incorporating silver-silver selenite nanoparticles, as well as screen-printed electrodes modified with zinc oxide or aluminium oxide. Also, the review describes the nanocomposite sensors based on conductive polymers, tin oxide-tin sulphide, silver/polypyrole/copper oxide or a hybrid structure of cerium oxide-gold oxide nanofibers together with ruthenium oxide nanowires. The presentation focused on describing the sensitive materials, characterizing the sensors, the detection techniques, electroanalytical properties, validation and use of sensors in lab practice.
Collapse
|
29
|
ÖZTÜRK M, DEMİR E, OZDAL T. Voltammetric and spectrophotometric pathways for the determination of total antioxidant capacity in commercial turnip juice. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.752982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Rosa LN, Gonçalves TR, Gomes STM, Matsushita M, Gonçalves RP, Março PH, Valderrama P. N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil. Molecules 2020; 25:E4366. [PMID: 32977514 PMCID: PMC7583810 DOI: 10.3390/molecules25194366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 01/30/2023] Open
Abstract
The use of chemometric tools is progressing to scientific areas where analytical chemistry is present, such as food science. In analytical food evaluation, oils represent an important field, allowing the exploration of the antioxidant effects of herbs and seeds. However, traditional methodologies have some drawbacks which must be overcome, such as being time-consuming, requiring sample preparation, the use of solvents/reagents, and the generation of toxic waste. The objective of this study is to evaluate the protective effect provided by plant-based substances (directly, or as extracts), including pumpkin seeds, poppy seeds, dehydrated goji berry, and Provençal herbs, against the oxidation of antioxidant-free soybean oil. Synthetic antioxidants tert-butylhydroquinone and butylated hydroxytoluene were also considered. The evaluation was made through thermal degradation of soybean oil at different temperatures, and near-infrared spectroscopy was employed in an n-way mode, coupled with Parallel Factor Analysis (PARAFAC) to extract nontrivial information. The results for PARAFAC indicated that factor 1 shows oxidation product information, while factor 2 presents results regarding the antioxidant effect. The plant-based extract was more effective in improving the frying stability of soybean oil. It was also possible to observe that while the oxidation product concentration increased, the antioxidant concentration decreased as the temperature increased. The proposed method is shown to be a simple and fast way to obtain information on the protective effects of antioxidant additives in edible oils, and has an encouraging potential for use in other applications.
Collapse
Affiliation(s)
- Larissa Naida Rosa
- Universidade Estadual de Maringá (UEM), Maringá, Paraná 87320-900, Brazil; (L.N.R.); (T.R.G.); (S.T.M.G.); (M.M.)
| | - Thays Raphaela Gonçalves
- Universidade Estadual de Maringá (UEM), Maringá, Paraná 87320-900, Brazil; (L.N.R.); (T.R.G.); (S.T.M.G.); (M.M.)
| | - Sandra T. M. Gomes
- Universidade Estadual de Maringá (UEM), Maringá, Paraná 87320-900, Brazil; (L.N.R.); (T.R.G.); (S.T.M.G.); (M.M.)
| | - Makoto Matsushita
- Universidade Estadual de Maringá (UEM), Maringá, Paraná 87320-900, Brazil; (L.N.R.); (T.R.G.); (S.T.M.G.); (M.M.)
| | - Rhayanna Priscila Gonçalves
- Universidade Tecnol·ógica Federal do Paraná (UTFPR), Campo Mourão, Paraná 87301-899, Brazil; (R.P.G.); (P.H.M.)
| | - Paulo Henrique Março
- Universidade Tecnol·ógica Federal do Paraná (UTFPR), Campo Mourão, Paraná 87301-899, Brazil; (R.P.G.); (P.H.M.)
| | - Patrícia Valderrama
- Universidade Tecnol·ógica Federal do Paraná (UTFPR), Campo Mourão, Paraná 87301-899, Brazil; (R.P.G.); (P.H.M.)
| |
Collapse
|
31
|
Voltammetric Behavior, Flavanol and Anthocyanin Contents, and Antioxidant Capacity of Grape Skins and Seeds during Ripening ( Vitis vinifera var. Merlot, Tannat, and Syrah). Antioxidants (Basel) 2020; 9:antiox9090800. [PMID: 32867242 PMCID: PMC7554950 DOI: 10.3390/antiox9090800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Skin and seed grape extracts of three red varieties (Merlot, Tannat, and Syrah) at different stages of ripening were studied for their total phenolic content (TPC) by using the Folin-Ciocalteu assay and for their total antioxidant capacity (TAC) by using spectrophotometric and electrochemical assays. Flavanol and anthocyanin compositions were also investigated using Ultra Performance Liquid Chromatography coupled with Mass Spectrometry (UPLC-MS). Results showed that seeds had the highest phenolic content and the highest antioxidant potential compared to skins at all stages of ripening. The highest TPC and TAC values were measured in seeds at close to veraison and veraison ripening stages. In skins, the highest values were found at the green stage, it was in accordance with the flavanols content. The voltammetric measurements were carried out using disposable single walled carbon nanotubes modified screen-printed carbon electrodes (SWCNT-SPCE). Three peaks on voltammograms were obtained at different oxidation potentials. The first anodic peak that oxidized at a low potential describes the oxidation of ortho-dihydroxy phenols and gallate groups, the second peak corresponds to the malvidin anthocyanins oxidation and the second oxidation of flavonoids. The third voltammetric peak could be due to phenolic acids such as p-coumaric acid and ferulic acid or the second oxidation of malvidin anthocyanins. The high linear correlation was observed between antioxidant tests and flavanols in skins (0.86 ≤ r ≤ 0.94), while in seeds, 'r' was higher between electrochemical parameters and flavanols (0.64 ≤ r ≤ 0.8).
Collapse
|
32
|
Pires MA, Pastrana LM, Fuciños P, Abreu CS, Oliveira SM. Sensorial Perception of Astringency: Oral Mechanisms and Current Analysis Methods. Foods 2020; 9:E1124. [PMID: 32824086 PMCID: PMC7465539 DOI: 10.3390/foods9081124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding consumers' food choices and the psychological processes involved in their preferences is crucial to promote more mindful eating regulation and guide food design. Fortifying foods minimizing the oral dryness, rough, and puckering associated with many functional ingredients has been attracting interest in understanding oral astringency over the years. A variety of studies have explored the sensorial mechanisms and the food properties determining astringency perception. The present review provides a deeper understanding of astringency, a general view of the oral mechanisms involved, and the exciting variety of the latest methods used to direct and indirectly quantify and simulate the astringency perception and the specific mechanisms involved.
Collapse
Affiliation(s)
- Mariana A. Pires
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
- Center for Microelectromechanical Systems, University of Minho, Azurém, 4800-058 Guimarães, Portugal;
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| | - Pablo Fuciños
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| | - Cristiano S. Abreu
- Center for Microelectromechanical Systems, University of Minho, Azurém, 4800-058 Guimarães, Portugal;
- Physics Department, Porto Superior Engineering Institute, ISEP, 4200-072 Porto, Portugal
| | - Sara M. Oliveira
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| |
Collapse
|
33
|
Uchimiya M, Knoll JE. Electroactivity of polyphenols in sweet sorghum (Sorghum bicolor (L.) Moench) cultivars. PLoS One 2020; 15:e0234509. [PMID: 32663216 PMCID: PMC7360041 DOI: 10.1371/journal.pone.0234509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
Polyphenols and other potential health-promoting components of sorghum (Sorghum bicolor (L.) Moench) drove its recent growth in the U.S. consumer food industry. Linear sweep (cyclic voltammetry, CV) and differential (cyclic differential pulse) voltammetry methods were developed to detect target polyphenols and amino acids in sweet sorghum juice without interference from the dominant secondary (trans-aconitic acid) and primary (sucrose) metabolites. Of 24 cultivars investigated, No.5 Gambela showed the highest electron-donating capacity, as indicated by the highest peak area, height, and peak anodic potential. Pearson’s correlation analysis indicated the contribution of polyphenols (rather than amino acids) on CV voltammograms of juice samples. The Eh-pH values of 173 sweet sorghum juice samples collected in 2017 aligned with quercetin model polyphenol. Accumulation of quercetin-like polyphenols in No.5 Gambela could offer antioxidant-rich juice for conversion to edible syrup as well as an increased tolerance against a recently emerged pest, sugarcane aphid [(Melanaphis sacchari (Zehntner)].
Collapse
Affiliation(s)
- Minori Uchimiya
- USDA-ARS Southern Regional Research Center, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Joseph E. Knoll
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, Georgia, United States of America
| |
Collapse
|
34
|
Abstract
Background:
This review investigates the ophthalmic drugs that have been studied with
voltammetry in the web of science database in the last 10 years.
Introduction:
Ophthalmic drugs are used in the diagnosis, evaluation and treatment of various ophthalmological
diseases and conditions. A significant literature has emerged in recent years that investigates
determination of these active compounds via electroanalytical methods, particularly voltammetry. Low
cost, rapid determination, high availability, efficient sensitivity and simple application make voltammetry
one of the most used methods for determining various kinds of drugs including ophthalmic ones.
Methods:
In this particular review, we searched the literature via the web of science database for ophthalmic
drugs which are investigated with voltammetric techniques using the keywords of voltammetry,
electrochemistry, determination and electroanalytical methods.
Results:
We found 33 types of pharmaceuticals in nearly 140 articles. We grouped them clinically into
seven major groups as antibiotics, antivirals, non-steroidal anti-inflammatory drugs, anti-glaucomatous
drugs, steroidal drugs, local anesthetics and miscellaneous. Voltammetric techniques, electrodes, optimum
pHs, peak potentials, limit of detection values, limit of quantification values, linearity ranges,
sample type and interference effects were compared.
Conclusion:
Ophthalmic drugs are widely used in the clinic and it is important to determine trace
amounts of these species analytically. Voltammetry is a preferred method for its ease of use, high sensitivity,
low cost, and high availability for the determination of ophthalmic drugs as well as many other
medical drugs. The low limits of detection values indicate that voltammetry is quite sufficient for determining
ophthalmic drugs in many media such as human serum, urine and ophthalmic eye drops.
Collapse
Affiliation(s)
- Onur Inam
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar University of Health Sciences, Afyonkarahisar, 03200, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
35
|
Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods. Antioxidants (Basel) 2019; 8:antiox8110523. [PMID: 31683530 PMCID: PMC6912615 DOI: 10.3390/antiox8110523] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
This paper evaluates the antioxidant ability of polyphenols as a function of their chemical structures. Several common food indexes including Folin-Ciocalteau (FC), ferric reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays were applied to selected polyphenols that differ in the number and position of hydroxyl groups. Voltammetric assays with screen-printed carbon electrodes were also recorded in the range of −0.2 to 0.9 V (vs. Ag/AgCl reference electrode) to investigate the oxidation behavior of these substances. Poor correlations among assays were obtained, meaning that the behavior of each compound varies in response to the different methods. However, we undertook a comprehensive study based on principal component analysis that evidenced clear patterns relating the structures of several compounds and their antioxidant activities.
Collapse
|
36
|
Rocha P, Vilas‐Boas Â, Fontes N, Geraldo D, Bento F. Evaluation of Polyphenols in Wine by Voltammetric Techniques with Screen Printed Carbon Electrodes. ELECTROANAL 2019. [DOI: 10.1002/elan.201900392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pedro Rocha
- Centre of ChemistryUniversidade do Minho Braga Portugal
| | | | | | - Dulce Geraldo
- Centre of ChemistryUniversidade do Minho Braga Portugal
| | - Fátima Bento
- Centre of ChemistryUniversidade do Minho Braga Portugal
- Departamento de QuímicaUniversidade do Minho Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
37
|
Kalinke C, Oliveira PR, Bonet San Emeterio M, González‐Calabuig A, Valle M, Salvio Mangrich A, Humberto Marcolino Junior L, Bergamini MF. Voltammetric Electronic Tongue Based on Carbon Paste Electrodes Modified with Biochar for Phenolic Compounds Stripping Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201900072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Cristiane Kalinke
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| | - Paulo Roberto Oliveira
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| | - Marta Bonet San Emeterio
- Sensors and Biosensors GroupDepartment of Chemistry, Universitat Autonoma de Barcelona, Bellaterra Barcelona Spain
| | - Andreu González‐Calabuig
- Sensors and Biosensors GroupDepartment of Chemistry, Universitat Autonoma de Barcelona, Bellaterra Barcelona Spain
| | - Manel Valle
- Sensors and Biosensors GroupDepartment of Chemistry, Universitat Autonoma de Barcelona, Bellaterra Barcelona Spain
| | - Antonio Salvio Mangrich
- Laboratory of Process and Environmental Projects, Department of ChemistryFederal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
- National Institute of Science and Technology of Energy and Environment (INCT E&A/CNPq) Brazil
| | - Luiz Humberto Marcolino Junior
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| | - Márcio F. Bergamini
- Laboratory of Electrochemical SensorsDepartment of Chemistry, Federal University of Paraná CEP 81.531-980 Curitiba, Paraná Brazil
| |
Collapse
|
38
|
Kulikova TN, Porfireva AV, Vorobev VV, Saveliev AA, Ziyatdinova GK, Evtugyn GA. Discrimination of Tea by the Electrochemical Determination of its Antioxidant Properties by a Polyaniline – DNA – Polyphenazine Dye Modified Glassy Carbon Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1618321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- T. N. Kulikova
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - A. V. Porfireva
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - V. V. Vorobev
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University, Kazan, Russian Federation
| | - A. A. Saveliev
- Institute of Environemntal Sciences of Kazan Federal University, Kazan, Russian Federation
| | - G. K. Ziyatdinova
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - G. A. Evtugyn
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|