1
|
Yang Q, Wu Y, Zhang S, Xie H, Han D, Yan H. Recent advancements in the extraction and analysis of phthalate acid esters in food samples. Food Chem 2025; 463:141262. [PMID: 39298858 DOI: 10.1016/j.foodchem.2024.141262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phthalate acid esters (PAEs) are ubiquitous environmental pollutants present in food samples, necessitating accurate detection for risk assessment and remediation efforts. This review provides an updated overview of the recent progress on the PAEs analysis regarding sample pretreatment techniques and analytical methodologies over the latest decade. Advances in sample preparation include solid-based extraction techniques replacing conventional liquid-liquid extraction, with solid sorbents emerging as promising alternatives due to their minimal solvent consumption and enhanced selectivity. Although techniques like the microextraction methods offer versatility and reduced solvent reliance, there is a need for more efficient and environmentally friendly techniques enabling on-site portable detection. High-resolution mass spectrometry is increasingly utilized for its enhanced sensitivity and reduced contamination risks. However, challenges persist in developing in situ analytical techniques for trace PAEs in complex food samples. Future research should prioritize novel analytical techniques with superior sensitivity and selectivity, addressing current limitations to meet the demand for precise PAEs detection in diverse food matrices.
Collapse
Affiliation(s)
- Qian Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Yangqing Wu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Xie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Xu CY, Zhen CQ, He YJ, Cui YY, Yang CX. Solvent and monomer regulation synthesis of core-shelled magnetic β-cyclodextrin microporous organic network for efficient extraction of estrogens in biological samples prior to HPLC analysis. J Chromatogr A 2024; 1728:464991. [PMID: 38788322 DOI: 10.1016/j.chroma.2024.464991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The abnormal estrogens levels in human body can cause many side effects and diseases, but the quantitative detection of the trace estrogens in complex biological samples still remains great challenge. Here we reported the fabrication of a novel core-shell structured magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON) for rapid magnetic solid phase extraction (MSPE) of four estrogens in human serum and urine samples prior to HPLC-UV determination. The uniform spherical core-shell Fe3O4@CD-MONs was successfully regulated by altering the reactive monomers and solvents. The Fe3O4@CD-MONs owned high specific surface area, good hydrophobicity, large superparamagnetism, and abundant extraction sites for estrogens. Under optimal conditions, the proposed MSPE-HPLC-UV method provided wide linearity range (2.0-400 μg L-1), low limits of detection (0.5-1.0 μg L-1), large enrichment factors (183-198), less adsorbent consumption (3 mg), short extraction time (3 min), and good stability and reusability (at least 8 cycles). The established method had also been successfully applied to the enrichment and detection of four estrogens in serum and urine samples with a recovery of 88.4-105.1 % and a relative standard deviation of 1.0-5.9 %. This work confirmed the feasibility of solvent and monomer regulation synthesis of Fe3O4@CD-MON composites, and revealed the great prospects of magnetic CD-MONs for efficient enrichment of trace estrogens in complex biological samples.
Collapse
Affiliation(s)
- Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Chang-Qing Zhen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yu-Jing He
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Zhang S, Chen Y, Liu S, Li Y, Zhao H, Chen Q, Hou X. Dissolution-precipitation method concatenated sodium alginate/MOF-derived magnetic multistage pore carbon magnetic solid phase extraction for determination of antioxidants and ultraviolet stabilizers in polylactic acid food contact plastics. Talanta 2024; 270:125487. [PMID: 38101034 DOI: 10.1016/j.talanta.2023.125487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Antioxidants and UV stabilizers have some endocrine disrupting effects and liver toxicity. Both types of additives are still widely used in food contact plastics to improve the durability of plastic products. However, efficient and rapid detection of antioxidants and UV stabilizers has been a challenge due to the complexity of the plastic matrix and the low content of antioxidants and UV stabilizers. In this study, a sodium alginate/MOF-derived magnetic multistage pore carbon material (MIL-101(Fe)/SA-CAs) was developed, having the merits of abundant multistage pore structure, large specific surface area, and good magnetic separation properties. Thus, this material was selected as the sorbent for magnetic solid-phase extraction combined with a dissolution-precipitation method for the extraction and purification of antioxidants and UV stabilizers from polylactic acid food contact plastics. The extraction parameters such as sorbent type, sorbent dosage, sample solution pH, ionic strength, sorption time, elution solution type, volume, and time were investigated. Under the optimized conditions, all the analytes determined by UPLC-MS/MS showed good linear range (r > 0.99), detection limit (0.023-3.105 ng g-1), accuracy (70.6-102.3 %), and reproducibility (RSD<9.8 %). Further, the developed method was applied to determine the antioxidants and UV stabilizers in polylactic acid lunch boxes and straws, showing excellent applicability. The results showed that the antioxidants and UV stabilizers were detected in some of the samples, with a maximum detection of antioxidant 1010 at 7297 ng g-1. This study provided a sensitive, efficient, and environmentally friendly method for antioxidants and UV stabilizers in polylactic acid food contact plastics. The ideas for the design of environmentally friendly metal-organic frameworks and biomass composite multifunctional materials would promise in the sample pretreatment field for the emerging contaminants.
Collapse
Affiliation(s)
- Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yuhan Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Shuanghe Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Huanhuan Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|
4
|
Preparation of Fe3O4-Reduced Graphene-Activated Carbon from Wastepaper in the Dispersive Solid-Phase Extraction and UHPLC-PDA Determination of Antibiotics in Human Plasma. SEPARATIONS 2023. [DOI: 10.3390/separations10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
In this work, a sorbent was prepared from wastepaper samples enriched with iron oxide particles and graphene oxide and used in the solid phase extraction of antibiotics. The precursor underwent a carbothermal reduction to promote the formation of paramagnetic phases useful for the recovery of the sorbent during the analysis, and to disperse and fix graphene and the iron oxide in a durable way throughout the cellulose structure. Characterizations were carried out to evaluate the composition (Raman, XRD and EDX) and the morphological structure (SEM) of the material. A UHPLC-PDA method was developed for the simultaneous determination of antibiotics from different drug families (carbapenems, fluoroquinolones, β-lactams) using a 120 SB-C 18 poroshell column (50 × 2.1 mm I.D., 2.7 um particle size) and a mobile phase consisting of 10 mM acetate buffer at pH 5 (Line A) and acetonitrile (Line B) both containing 0.1% of triethylamine. A gradient elution was used for the separation of the analytes, while for the quantitative analysis each analyte was determined at its maximum wavelength. Several experiments were carried out to evaluate the influence of different parameters involving the dispersive magnetic solid phase extraction of these analytes. Samples were extracted using 25 mg of sorbent at pH 5 and desorbed in 5 min using methanol. We report herein on some of the outstanding advantages of using carbon-based sorbent, such as lower toxicity, scalability, improved absorption capacity, target selectivity and stability in acidic medium. Moreover, from the results obtained it is evident that, despite the use of some recycled materials, the performances obtained were comparable or even superior to the methods reported in the literature.
Collapse
|
5
|
Wang Z, Zhang X, Yang Q, Zhang S, Chang G, Zang X, Wang C, Wang Z. Covalent triazine-based frameworks for efficient solid-phase microextraction of phthalic acid esters from food-contacted plastics. J Chromatogr A 2022; 1681:463474. [PMID: 36088777 DOI: 10.1016/j.chroma.2022.463474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Owing to various health threats associated with phthalic acid esters (PAEs), this category of endocrine-disrupting compounds has attracted more and more public scrutiny. However, the efficient preconcentration of PAEs from complex food-contacted plastics still remains challenging. Herein, three covalent triazine-based frameworks (CTFs) were constructed by facile Friedel-Crafts reactions of cyanuric chloride (CC), with triptycene (TPC), fluorene (FL) and 1,3,5-triphenylbenzene (TPB), respectively. Three CTFs were then employed as solid-phase microextraction (SPME) coatings for the extraction of PAEs. Benefiting from the large surface area and high pore volume, the newly-synthesized CC-TPC based SPME method exhibited large enrichment factors (978-2210), low limits of detection (0.027-0.10 ng g - 1), satisfactory linear ranges (0.09-20 ng g - 1), acceptable repeatabilities (4.3-9.6%) and high relative recoveries (92.0-104.6%).
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Xinyue Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Qian Yang
- College of Public Health, Hebei University, Baoding 071002 Hebei, PR. China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China.
| | - Guifen Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001 Hebei, PR. China.
| |
Collapse
|
6
|
Liu Q, Wei L, Chen X, Xu Y, Gao X, Zhao J. Three-dimensional (3D) thermal controlled polymer for simplified dispersive liquid-liquid microextraction in phthalic acid easters detection of straw. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Simple Synthesis of Fe3O4@-Activated Carbon from Wastepaper for Dispersive Magnetic Solid-Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs and Their UHPLC–PDA Determination in Human Plasma. FIBERS 2022. [DOI: 10.3390/fib10070058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present society, the recycling and reuse of valuable substances are of utmost importance for economic and environmental purposes. At the same time, there is a pressing need to develop new methods to protect the ecosystem from many human activities, including those that have contributed to an ever-increasing presence of pharmaceutical pollutants. In this study, a straightforward approach that applies a magnetic carbon composite for the effective removal of NSAIDs from biological fluids is reported. The composite was produced by recycling wasted handkerchiefs, to provide cellulose to the reactive system and then transformed into carbon via calcination at high temperature. The morphological and structural features of the prepared “Fe3O4@-activated carbon” samples were investigated via thermal analysis, X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Magnetic solid-state extraction was carried out to reveal the adsorption capabilities of the magnetic carbon composite and then combined with UHPLC–PDA for the determination and quantification of five NSAIDs (furprofen, indoprofen, ketoprofen, flurbiprofen, and indomethacin). The method developed herein proved to be fast and accurate. The adsorbent could be reused for up to 10 cycles, without any decrease in performance; thus, it contributes to an intelligent and sustainable economic strategy projected toward minimal waste generation.
Collapse
|
8
|
Polyhedral Oligomeric Silsesquioxane–Based Hybrid Monolithic Column On-line In-Tube Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography for the Determination of Five Phthalate Esters in Bottled Water. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
A composite of magnetic GOx@MOF incorporated in alginate hydrogel fiber adsorbent for the extraction of phthalate esters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Alhaddad FA, Abu-Dieyeh M, Da’ana D, Helaleh M, Al-Ghouti MA. Occurrence and removal characteristics of phthalate esters from bottled drinking water using silver modified roasted date pits. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:733-751. [PMID: 34150270 PMCID: PMC8172698 DOI: 10.1007/s40201-021-00642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND This paper aims to investigate the occurrence and removal characteristics of phthalate esters from bottled drinking water using silver modified roasted date pits. Three adsorbents, namely roasted date pits (RODP), silver-modified roasted date pits (S-RODP), and activated carbon (AC) were used to investigate their adsorption characterizations in removing dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP), and di-n-octyl phthalate (DNOP) from the collected bottle water samples. METHODS The occurrences of the phthalate esters in the collected bottled water samples were carried out at different temperatures (30, 50, and 60 °C), and analyzed using gas chromatography-mass spectrometry analysis - selected ion monitoring. Batch adsorption isotherms were used to study and establish the efficiency of such adsorbents in removing phthalate esters, in which they describe the adsorbent-adsorbate interaction systems. Adsorption efficiency of the various adsorbents was investigated by using different adsorbent masses (0.05 g, 0.10 g, and 0.15 g) and temperature (30 °C, 50 °C, and 60 °C). Different physical and chemical characterizations were studied using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Brunauer-Emmett-Teller (BET) surface area, pore radius, and pore volume. RESULTS The results indicated that the most abundant phthalate esters were DMP followed by DEP under 30 °C; however, DNOP was not detected in any of the tested water samples, except for one sample under 30 °C with a concentration of 0.031 μg/mL. The obtained results showed that phthalate esters leaching to the bottled drinking water were affected by storage temperature. The phthalate esters levels were increased with increasing the temperature to 60 °C. It was concluded that the ability of S-RODP for the adsorption of phthalate esters was better than the removal percentage obtained by AC and RODP. The removal percentage was increased from 90 to 99% by increasing the temperature from 30 to 50 °C and then decreased to 92.3% at 60 °C. CONCLUSION RODP was successfully used as an effective adsorbent for phthalate esters removal from drinking water. However, S-RODP has the highest removal abilities than other adsorbents due to the newly formed functional groups on its surface.
Collapse
Affiliation(s)
- Fedae A. Alhaddad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
| | - Mohammed Abu-Dieyeh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133 Jordan
| | - Dana Da’ana
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
| | - Murad Helaleh
- Section Head Supplements Testing, Anti Doping Lab Qatar, P.O. Box 27775, Doha, Qatar
| | - Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
| |
Collapse
|
11
|
Choline proline ionic liquid-modified magnetic graphene oxide combined with HPLC for analysis of fenthion. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Wang Y, Zhang L. Improved performance of 3D hierarchical NiAl-LDHs micro-flowers via a surface anchored ZIF-8 for rapid multiple-pollutants simultaneous removal and residues monitoring. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122635. [PMID: 32305721 DOI: 10.1016/j.jhazmat.2020.122635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we report a new type of 3D ZIF-8@NiAl-LDHs micro-flowers material consisting of sandwich-like structured 2D nanopetals (highly compact ZIF-8 film anchored on both sides of petals). ZIF-8 was successfully incorporated into NiAl-LDHs (ZIF-8@NiAl-LDHs) via seeding strategy directed growth of ZIFs on the surface of LDHs nanopetals. The coating of ZIF-8 significantly increased the adsorption ability to organic pollutants and inorganic cation. 3D ZIF-8@NiAl-LDHs with excellent enrichment and filtration properties has been exploited for the application in water purification, and exhibit superior high adsorption rate and adsorption efficiency of organic (nonsteroidal anti-inflammatory drugs: ketoprofen, flurbiprofen, indometacin and ibuprofe; anionic dyes: congo red, orange g; cationic dyes: methylene blue, rhodamine b) and inorganic cation (Cu2+, Pb2+) residues due to their novel hierarchical and submicroscopic structures. Further, 3D ZIF-8@NiAl-LDHs as filter membrane to extraction four kind of trace anti-inflammatory drugs followed by direct quantification detection of targets with HPLC was demonstrated. The validated method was successfully applied for analysis of four anti-inflammatory drugs in environmental water and human urine samples. This work provided a feasible way to design and construct purification materials for wastewater treatment and contaminant detection.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, 110036, People's Republic of China.
| |
Collapse
|
13
|
|
14
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
15
|
Wang Y, Liu X, Zhang L. Assembling 3D hierarchical hollow flower-like Ni@N-doped graphitic carbon for boosting simultaneously efficient removal and sensitive monitoring of multiple sulfonamides. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121629. [PMID: 31759760 DOI: 10.1016/j.jhazmat.2019.121629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The excessive accumulation of sulfonamides (SAs) drugs makes it imperative to develop novel materials for boosting simultaneously efficient removal and precise monitoring of multiple SAs. Herein, three-dimensional hollow flower-like Ni@nitrogen-doped graphitic carbon (3DHFNi@NGC) was designed/fabricated via a facile one-pot hydrothermal route and subsequent pyrolysis. The resultant 3DHFNi@NGC exhibits a unique 3D hollow hierarchical architecture assembled by a layer-by-layer interlacing of corrugated nanosheets subunits, thereby affording numerous interconnected channels, available internal/external surfaces as well as suitable interior cavities. By virtue of its special architecture and in-situ generated N-doped graphitic carbon along with good magnetism, the 3DHFNi@NGC demonstrates superior sorption performance towards SAs, accompanied by high total saturated adsorption capacity, fast sorption rate and easy magnetic recycling. It is noteworthy that as-constructed 3DHFNi@NGC also exhibits high-sensitive/simultaneous detection of trace multiple SAs combined high performance liquid chromatography (HPLC), together with a low detection limit (0.035-0.071 ng mL-1) and a broad linear range (0.2-100 ng mL-1) as well as high enrichment factors (252 < EFs < 291). These indicate that the smart 3DHFNi@NGC could be a promising candidate for the synchronous remediation and sensitive detection of multiple SAs in aqueous systems, presenting a viable option for sewage treatment and water quality monitoring.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xueyan Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
16
|
Fabrication of WO 2/W@C core-shell nanospheres for voltammetric simultaneous determination of thymine and cytosine. Mikrochim Acta 2019; 187:62. [PMID: 31853653 DOI: 10.1007/s00604-019-3987-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Pomegranate-like multicore WO2/W nanocrystals wrapped with layers of multiporous carbon were fabricated via carbonization of a copper(II)-organic framework host and a tungsten-based polyoxometalates guest, and subsequent etching off the metallic copper. The WO2/W@C core-shell nanospheres were employed to modify an electrode for the analysis of the DNA bases thymine (T) and cytosine (C) by differential pulse voltammetry. The WO2/W@C exhibited strongly increased oxidation signal of T and C. Under optimized conditions, the enhanced peak current represented excellent analytical performance for determination of T and C. This is attributed to the synergic effects of the porous multicore-shell microstructure and the use of tungsten-based materials with their excellent electrocatalytic activity for T and C, with typical peaks voltages near 1.26 V and 1.44 V. The calibration plots for T and C extend from 1 to 4000 μM and from 1 to 3000 μM, respectively, and both detection limits are 0.2 μM. The method was successfully applied to the determination of T and C in spiked blood and urine samples, and the recoveries are form 97.3 to 105.0%. Graphic abstractCore-shell nanospheres of type WO2/W-carbon were prepared for highly sensitive simultaneous voltammetric determination of thymine and cytosine.
Collapse
|
17
|
Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography. J Chromatogr A 2019; 1608:460426. [DOI: 10.1016/j.chroma.2019.460426] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 01/20/2023]
|
18
|
Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115669] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography: A rapid approach for determination of estrogens in milk and cosmetics. Talanta 2019; 209:120542. [PMID: 31891994 DOI: 10.1016/j.talanta.2019.120542] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 01/16/2023]
Abstract
Several magnetic ionic liquids (MILs), [P6,6,6,14+][FeCl4-], [P6,6,6,14+]2[MnCl42-], [P6,6,6,14+]2[CoCl42-] and [P6,6,6,14+]2[NiCl42-] were synthesized and applied for the extraction of six estrogens (estrone, estradiol, 17-α-hydroxyprogesterone, chloromadinone 17-acetate, megestrol 17-acetate and medroxyprogesterone 17-acetate) in dispersive liquid-liquid microextraction (DLLME). The [CoCl42-]-based MIL was selected as extraction solvent for the separation and concentration of estrogens from milk and cosmetics due to its visual recognition, no sign of hydrolysis, solution acquisition easier and the highest extraction capacity. In addition, the [CoCl42-]-based MIL with low UV absorbance allows direct analysis of the extraction solvent by HPLC-UV. The influence of the mass of MIL, extraction time, salt concentration, and the pH of the sample solution was investigated to obtain optimized extraction efficiency. Besides, extraction conditions including salt concentration, mass of MIL and extraction time were further optimized by the Box-Behnken design through the response surface method. Under optimized conditions, the limits of detection (LODs) of all estrogens were ranged from 5 ng mL-1 to 15 ng mL-1. The recoveries ranging from 98.5% to 109.3% in milk and from 96.3% to 111.4% in cosmetics were also studied, respectively. Furthermore, the proposed method were statistically compared with the reported conventional IL-DLLME method and the National standard methods of food safety and cosmetics. The experimental results showed that the functionalized MIL could successfully applied for extraction, separation and pretreatment of estrogens in milk and cosmetics.
Collapse
|
20
|
Dispersive solid-phase extraction based on β-cyclodextrin grafted hyperbranched polymers for determination of pyrethroids in environmental water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Preparation of nickel-doped nanoporous carbon microspheres from metal-organic framework as a recyclable magnetic adsorbent for phthalate esters. J Chromatogr A 2019; 1605:460364. [DOI: 10.1016/j.chroma.2019.460364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022]
|
22
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
HS-β-cyclodextrin-functionalized Ag@Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate. Anal Bioanal Chem 2019; 411:5691-5701. [DOI: 10.1007/s00216-019-01947-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/25/2022]
|
24
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Recent Applications of Magnetic Solid-phase Extraction for Sample Preparation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03721-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Tong Y, Liu X, Zhang L. One-pot fabrication of magnetic porous Fe3C/MnO/graphitic carbon microspheres for dispersive solid-phase extraction of herbicides prior to their quantification by HPLC. Mikrochim Acta 2019; 186:256. [DOI: 10.1007/s00604-019-3358-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 01/15/2023]
|
26
|
Asfaram A, Sadeghi H, Goudarzi A, Panahi Kokhdan E, Salehpour Z. Ultrasound combined with manganese-oxide nanoparticles loaded on activated carbon for extraction and pre-concentration of thymol and carvacrol in methanolic extracts of Thymus daenensis, Salvia officinalis, Stachys pilifera, Satureja khuzistanica, and mentha, and water samples. Analyst 2019; 144:1923-1934. [DOI: 10.1039/c8an02338g] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A dispersive micro solid-phase extraction (DMSPE) technique was developed using manganese-oxide nanoparticles loaded on activated carbon (Mn3O4-NPs-AC) as an effective sorbent combined with ultrasound for the extraction and determination of a trace amount of thymol and carvacrol in methanolic extracts of Thymus daenensis, Salvia officinalis, Stachys pilifera, Satureja khuzistanica and mentha, and water samples.
Collapse
Affiliation(s)
- Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering
- Golestan University
- Gorgan 49188-88369
- Iran
| | | | - Zeinab Salehpour
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| |
Collapse
|
27
|
Moradi Z, Alipanahpour Dil E, Asfaram A. Dispersive micro-solid phase extraction based on Fe3O4@SiO2@Ti-MOF as a magnetic nanocomposite sorbent for the trace analysis of caffeic acid in the medical extracts of plants and water samples prior to HPLC-UV analysis. Analyst 2019; 144:4351-4361. [DOI: 10.1039/c9an00120d] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, Fe3O4@SiO2@Ti-MOF-NCs, as an efficient sorbent, have been synthesized in a laboratory and utilized for extracting CA in the medical extracts of plants and water samples before their analysis by HPLC.
Collapse
Affiliation(s)
- Zohreh Moradi
- Department of Chemistry
- Yasouj University
- Yasouj 75918-74831
- Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| |
Collapse
|