1
|
Jiang J, Deng X, Xu C, Wu Y, Huang J. Naringenin inhibits ferroptosis to reduce radiation-induced lung injury: insights from network Pharmacology and molecular docking. PHARMACEUTICAL BIOLOGY 2025; 63:1-10. [PMID: 39969099 PMCID: PMC11841155 DOI: 10.1080/13880209.2025.2465312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
CONTEXT Naringenin is a natural flavanone with potent pharmacological properties. It has demonstrated therapeutic potential in treating various diseases and organ injuries, including radiation-induced lung injury (RILI). Ferroptosis is a newly type of cell death, and naringenin has been shown to attenuates ferroptosis. OBJECTIVE To evaluate the inhibitory effect and molecular mechanism of naringenin on ferroptosis during RILI process. MATERIALS & METHODS Firstly, BEAS-2B and HUVECs cells were pre-incubated with naringenin for 1 h prior to 8 Gy of X-ray irradiation to evaluate oxidative stress, inflammation, and the mRNA levels of ferroptosis-related genes. Next, target genes of naringenin, RILI, and ferroptosis were identified using the TCMSP, SwissTargetPrediction, and GeneCards databases. The target network was constructed with Cytoscape and STRING. Finally, the core target genes were identified through in vitro experiments by qRT-PCR, western blot and immunofluorescence staining. RESULTS Naringenin effectively reduced radiation-induced increasement of oxidative stress, inflammation, and ferroptosis markers in both cell lines. Network pharmacology identified 14 target genes, with prostaglandin endoperoxide synthase (PTGS2) and Valosin-containing protein (VCP) mRNA levels being prominent, which were crucial for ferroptosis regulation. Molecular docking revealed strong binding interactions between naringenin and the two target proteins. Subsequently, experimental validation confirmed that naringenin reduced the elevated levels of PTGS2 and VCP induced by radiation. DISCUSSION & CONCLUSION Naringenin alleviates radiation-induced lung damage by inhibiting ferroptosis, with PTGS2 and VCP emerging as potential therapeutic targets.
Collapse
Affiliation(s)
- Junlin Jiang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Chengkai Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Luo Y, Peng Z, Tang J, Wang D, Tao S, Liu J. Study on the synthesis and biological activity of kojic acid triazol thiosemicarbazide Schiff base derivatives. J Enzyme Inhib Med Chem 2025; 40:2475071. [PMID: 40197056 PMCID: PMC11983575 DOI: 10.1080/14756366.2025.2475071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
A series of kojic acid triazol thiosemicarbazide Schiff base derivatives were designed and synthesised. Evaluation on the inhibition of tyrosinase activity showed that these compounds possessed potent inhibit tyrosinase activity, and the compound 6w (IC50 = 0.94 μM) exhibited the best inhibitory effect. Preliminary structure-activity relationships indicate that steric hindrance, halogen atom radius, and electron donating ability of functional groups have some impact on the inhibition of tyrosinase activity. Inhibition mechanism showed that compound 6w is a non-competitive mixed inhibitor, and this result was further confirmed by molecular docking. The fluorescence quenching mode of compound 6w is dynamic quenching, and interacts with tyrosinase by changing the amide structure of tyrosinase. Compound 6w has some anti-browning effect. Compound 6p had the strongest DPPH radical scavenging activity (IC50 = 10.53 ± 0.014 μM), and compound 6w showed the best ABTS scavenging activity (IC50 = 3.03 ± 0.009 μM).
Collapse
Affiliation(s)
- Yayuan Luo
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Zhiyong Peng
- Chengda Pharmaceuticals Co., Ltd., Jiaxing, People’s Republic of China
| | - Junyuan Tang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Dahan Wang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Sheng Tao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| | - Jinbing Liu
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, People’s Republic of China
| |
Collapse
|
3
|
Sang X, Zhen F, Lv P, Zhang Z, Qu B, Wang Y. Green and chemical-free pretreatment of flavonoids in tea plant seed husk using ultrasound-cold isostatic pressure synergistic extraction. Food Chem 2025; 478:143725. [PMID: 40073604 DOI: 10.1016/j.foodchem.2025.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
A new method was established to extract flavonoids from tea plant seed husk: ultrasonic-cold isostatic pressure synergistic extraction. The effects of pressure, ethanol concentration, tea plant seed husk addition and treatment time on the extraction of flavonoids were investigated. The optimal extraction process was determined as follows: applied pressure 468.440 MPa, 31.169 g of tea plant seed husk, ethanol concentration 69.067 %, and processing time 10.916 min. Characterization experiments demonstrated that ultrasonic synergistic cold isostatic pressure extraction could effectively destroy the plant structure and promote the efflux of active ingredients. Then, the flavonoid extracts were analyzed qualitatively and quantitatively by LC-MS/MS, and three flavonoids were identified and found to be higher in the ultrasonic-cold isostatic pressure synergistic extraction group. Finally, the antioxidant, anti-inflammatory and bacteriostatic tests revealed that the activity of the extract was higher in the ultrasonic-cold isostatic pressure synergistic extraction group and did not destroy the activity of extraction.
Collapse
Affiliation(s)
- Xueting Sang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Peng Lv
- Heihe Customs Technical Center, Heihe 164300, China
| | - Zhiyun Zhang
- College of Animal Medicine, Northeast Agr Univ, Harbin 150030, China
| | - Bin Qu
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China.
| | - Yuxin Wang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| |
Collapse
|
4
|
Tian C, Wang Y, Wang R, Pan L, Xu T. Pharmacological and therapeutic effects of natural products on liver regeneration-a comprehensive research. Chin Med 2025; 20:57. [PMID: 40329344 PMCID: PMC12057117 DOI: 10.1186/s13020-025-01108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Liver regeneration (LR) refers to the physiological process by which hepatocytes undergo cellular proliferation to restore the structure and function of the liver following significant hepatocyte loss due to injury or partial hepatectomy (PH). While the liver possesses a remarkable regenerative capacity, this process is tightly regulated to ensure appropriate cessation once homeostasis is reestablished. Various strategies, including technological interventions and pharmacological agents, have been explored to enhance LR. Among these, natural products have emerged as promising candidates for promoting LR. For instance, quercetin, a natural compound, has been shown to enhance LR following PH by maintaining redox homeostasis and stimulating hepatocyte proliferation. However, natural products present certain limitations, such as poor solubility and low bioavailability, which may hinder their clinical application. Modifications in the formulation and mode of administration have demonstrated potential in overcoming these challenges and optimizing their pharmacological effects. Recent advancements in research have further highlighted the growing relevance of natural products, including traditional Chinese medicine (TCM), in the context of LR. Despite this progress, a comprehensive and systematic review of their roles, mechanisms, and therapeutic potential remains lacking. This review aims to bridge this gap by summarizing natural products with demonstrated potential to promote LR. Drawing on data from PubMed, Web of Science, and CNKI databases, it elucidates their pharmacological effects and regulatory mechanisms, providing a valuable reference for future research and clinical application in the field of LR.
Collapse
Affiliation(s)
- Chang Tian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmaceutical Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Key Lab of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yuhan Wang
- International Cooperation and Exchange Department, Shanghai General Hospital, 85/86 Wujin Road, Hongkou District, Shanghai, 200434, China
| | - Ran Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmaceutical Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Key Lab of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Linxin Pan
- College of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmaceutical Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Key Lab of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Cheng G, Zhang M, Zhang J, Teng S, Wang Z, Cui T, Xiao S. E se tea aqueous-ethanol extract ameliorates D-galactose induced oxidative stress and inflammation via the Nrf2 signal pathway. Food Res Int 2025; 209:116323. [PMID: 40253213 DOI: 10.1016/j.foodres.2025.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/01/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
E Se tea is a traditional herbal tea produced by traditional green tea processing technique from the tender leaves of Malus toringoides (Rehd.) Hughes with anti-inflammatory and antioxidant activities. This study investigated the inhibitory effect of the aqueous-ethanol extract of E Se tea against oxidative stress induced damage on D-galactose (D-gal) induced mice. UPLC-ESI-HRMS/MS analysis resulted in the identification of eleven compounds inclusive of 1 isoflavone (9), 1 phenolic acid (2), 2 flavanols (1 and 10), 3 dihydrochalcones (5, 8, and 11), and 4 flavones (3, 4, 6, and 7). The quantitative analysis demonstrated that phlorizin (8) had the highest content, followed by phloretin (11) and kaempferol-3-O-glucoside (7). The aqueous-ethanol extract of E Se tea significantly increased the total antioxidant capacity (T-AOC) in serum, reduced MDA level, and enhanced SOD activity and GSH level in brain and liver tissues. In addition, this extract also remarkably decreased the levels of inflammatory cytokines (IL-6 and IL-1β) in serum, and inhibited the AchE activity in brain. The possible mechanism might be related to the upregulation of Nrf2, HO-1, and NQO1 the expressions by using western blotting experiment. The pearson correlation analysis revealed that phloretin was the possible antioxidant and anti-inflammatory compound, and coumaroyl quinic acid was the active compound on AChE enzyme. These findings indicated that E Se tea extract had the protective effect on D-gal induced oxidative stress damage in mice via activating the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Meng Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Jinke Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Sifan Teng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Tianqi Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
6
|
An J, Zhang Z, Jin A, Tan M, Jiang S, Li Y. Organic Functional Groups and Their Substitution Sites in Natural Flavonoids: A Review on Their Contributions to Antioxidant, Anti-Inflammatory, and Analgesic Capabilities. Food Sci Nutr 2025; 13:e70191. [PMID: 40313799 PMCID: PMC12041660 DOI: 10.1002/fsn3.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Natural flavonoids are regularly consumed orally and are known to possess antioxidant, anti-inflammatory, and analgesic properties. Yet, there is limited understanding of the role of organic functional groups in imparting these properties. This review paper suggests that several organic functional groups, including the hydroxyl, methoxy, glycosyl, prenylated, and flavonoid groups, play crucial roles in determining the antioxidant, anti-inflammatory, and analgesic abilities of flavonoids. Of particular significance is the contribution of the prenylated group, which notably enhances the anti-inflammatory and analgesic abilities of flavonoids. Among isoflavones, the prenylated groups are primarily situated at C6. Despite their importance, prenylated flavonoids have not received sufficient attention from researchers. Another crucial class of organic functional groups is glycosyl groups, with C3 being a key substitution site among anthocyanins because monosaccharides are commonly found at this position. Conversely, the presence of trisaccharides or a combination of disaccharides and monosaccharides within flavonoids appears to impede their anti-inflammatory and analgesic properties. Additionally, the majority of biflavonoids, excluding polymerized flavanols, demonstrate either anti-inflammatory or analgesic abilities. C8 holds paramount importance among flavanols as the main substitution site for flavonoid substitution. Examination of the significance of substitution sites in flavanones, flavonols, flavones, and chalcones, which possess antioxidant, anti-inflammatory, and analgesic abilities, revealed the importance of total substitution with diverse organic functional groups. Insights from this review can provide the guiding light to the discovery of flavonoids with antioxidant, anti-inflammatory, and analgesic abilities in the future.
Collapse
Affiliation(s)
- Jingxian An
- Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand
| | - Zhipeng Zhang
- Jiangxi Copper Technology Institute Co., Ltd.NanchangChina
| | - Anwen Jin
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| | - Muqiu Tan
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| | | | - Yilin Li
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| |
Collapse
|
7
|
Baky MH, Rashad SM, Elgendy O, Ahmed SA. Metabolites profiling of Mimusops caffra leaf via multiplex GC-MS and UPLC-MS/MS approaches in relation to its antioxidant and anti-inflammatory activities. Sci Rep 2025; 15:15072. [PMID: 40301498 PMCID: PMC12041594 DOI: 10.1038/s41598-025-97161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
Mimusops caffra is a small to medium-sized fruit-producing tree belonging to the Sapotaceae family with potential commercial, medicinal, and nutritional value. The main goal of the current study is to profile the phytochemical composition of M. caffra leaf targeting both volatile and non-volatile metabolites using gas chromatography and mass spectrometry (GC-MS) and ultrahigh performance liquid chromatograpy coupled with mass spectrometry (UPLC-MS/MS), respectively. A total of 62 secondary metabolites were annotated via UPLC-MS/MS belonging to organic acids, phenolic acids, flavonoids, triterpenes, fatty acids and their derivatives, and sphingolipids. Moreover, 50 volatile compounds were detected by using GC-MS classified as monoterpene, aliphatic and aromatic hydrocarbons, alcohols, phenols, fatty acids/esters, and triterpenes. The antioxidant and anti-inflammatory activities of the crude methanol extract, ethyl acetate, n-butanol fractions were evaluated using DPPH radical scavenging capacity and nitric oxide inhibition activity, respectively. The crude methanol extract exhibited the strongest antioxidant activity as compared to ethyl acetate, n-butanol fractions and ascorbic acid (used as a reference antioxidant). The IC50 values of the crude methanol extract, ethyl acetate, n-butanol fractions in DPPH assay were 9 ± 0.37 µg/ml, 22.1 ± 0.79 µg/ml and 42.2 ± 1.65 µg/ml, respectively, compared to 12.5 ± 0.7 µg/ml for ascorbic acid. Furthermore, NO inhibition assay revealed that most of tested extracts exhibited marked inhibition (78-88%) at a dose of 1280 µg/mL, the crude methanol extract showed the most potent anti-inflammatory activity with IC50 of 137 µg/ml. Overall, these findings suggest that the crude methanol extract, n-butanol and ethyl acetate fractions of M. caffra contain potential antioxidant compounds highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt.
| | - Sara M Rashad
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt
| | - Omayma Elgendy
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Falconi-Páez C, Aldaz MAN, Navarro TG, González-Vaca CC, Campos LA, Davila-Sanchez A, Arrais CAG. How Universal Adhesive Systems With Nanoencapsulated Flavonoids Improve Long-Term Bonding to Caries-Affected Dentin. J ESTHET RESTOR DENT 2025. [PMID: 39894994 DOI: 10.1111/jerd.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES To determine the presence of nano-encapsulated flavonoids and their effect in universal adhesives on resin-dentin bond-strength (μTBS) and nanoleakage (NL) on artificial caries-affected dentin (CAD) after 24-h and 6 months of water storage (WS). MATERIALS AND METHODS Artificial CAD was created on the occlusal dentin surfaces of 60 human third molars by a microbiological assay. Nanoencapsulated quercetin (Q) and naringin (N) were incorporated into Prime&Bond Universal (PBU; Dentsply-Sirona) and Single Bond Universal (SBU, 3M ESPE). The adhesive systems with and without (control) flavonoids were applied to the CAD surface, and a 4-mm resin composite block (TPH Spectrum, Dentsply Sirona) was built up and light-cured. Specimens were sectioned into resin-dentin beams (0.8 mm2). The hybrid layer (HL) was subjected to micro-Raman analysis to detect N and Q. The specimens were tested in tension in a universal testing machine at 0.5 mm/min. μTBS and NL tests were performed after 24-h and WS. μTBS and NL data were analyzed using a nonparametric three-way ANOVA test followed by Bonferroni's test (α = 5%). RESULTS Q and N were detected within the HL. N and Q nanocapsules increased μTBS and reduced NL values after WS. At 24 h, the PBU group showed higher NL values than the SBU group, and the values decreased after WS. CONCLUSIONS Incorporating nanoencapsulated flavonoids may improve the longevity of universal bonding systems applied to CAD. CLINICAL RELEVANCE Adhesive restorations incorporating nanoencapsulated quercetin or naringin might be a promising alternative for achieving long-term bonding stability.
Collapse
Affiliation(s)
- Camila Falconi-Páez
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
| | - Mayra Alejandra Nuñez Aldaz
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
- Department of Restorative Dentistry and Dental Materials, School of Dentistry, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Tobia Gastón Navarro
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
| | - Claudia Carolina González-Vaca
- Department of Restorative Dentistry and Dental Materials, School of Dentistry, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Lucas Arrais Campos
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- School of Dentistry, Campus Araraquara, São Paulo State University (UNESP), São Paulo, Brazil
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andres Davila-Sanchez
- Department of Restorative Dentistry and Dental Materials, School of Dentistry, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Cesar Augusto Galvão Arrais
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
| |
Collapse
|
9
|
Liu Y, Deng W, Wei F, Kang X, Han R, Feng X, Li C, Li M, Zhao G, Yu J, Liu C. Recent Advances in the Application of Foodborne Substances in Hyperuricemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27639-27653. [PMID: 39630974 DOI: 10.1021/acs.jafc.4c07267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Hyperuricemia (HUA) is a purine metabolism disorder characterized by the excessive production or inadequate excretion of uric acid. Current pharmacological strategies targeting uric acid reduction have potential adverse effects. Following the concept of "homology of medicine and food", food ingredients are increasingly being explored to prevent HUA and gout, with xanthine oxidase (XOD) emerging as a crucial therapeutic target in managing HUA. Recent scientific investigations have determined that uric acid-lowering substances come from various food sources, such as seafood, dairy products, and agricultural products. These bioactive substances have attracted wide attention because of their effective antihyperuricemia and XOD inhibitory ability. In this study, the pathogenesis, many side effects of uric acid-lowering drugs, and some components of uric acid-lowering drugs are mainly described, with emphasis on the source, composition, preparation technology, and mechanism of uric acid-lowering peptides.
Collapse
Affiliation(s)
- Yanxia Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Deng
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Fashan Wei
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Chuang Li
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Miaoyun Li
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiming Zhao
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiahuan Yu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chun Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
11
|
Zhou Y, Nan F, Zhang Q, Xu W, Fang S, Liu K, Zhao B, Han H, Xie X, Qin C, Pang X. Natural products that alleviate depression: The putative role of autophagy. Pharmacol Ther 2024; 264:108731. [PMID: 39426604 DOI: 10.1016/j.pharmthera.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a common mental disorder that severely disrupts psychosocial function and decreases the quality of life. Although the pathophysiological mechanism underlying MDD is complex and remains unclear, emerging evidence suggests that autophagy dysfunction plays a role in MDD occurrence and progression. Natural products serve as a major source of drug discovery and exert tremendous potential in developing antidepressants. Recently published reports are paying more attention on the autophagy regulatory effect of antidepressant natural products. In this review, we comprehensively discuss the abnormal changes occurred in multiple autophagy stages in MDD patients, and animal and cell models of depression. Importantly, we emphasize the regulatory mechanism of antidepressant natural products on disturbed autophagy, including monomeric compounds, bioactive components, crude extracts, and traditional Chinese medicine formulae. Our comprehensive review suggests that enhancing autophagy might be a novel approach for MDD treatment, and natural products restore autophagy homeostasis to facilitate the renovation of mitochondria, impede neuroinflammation, and enhance neuroplasticity, thereby alleviating depression.
Collapse
Affiliation(s)
- Yunfeng Zhou
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Fengwei Nan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qianwen Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wangjun Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shaojie Fang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ke Liu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bingxin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hao Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Xiaobin Pang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
12
|
Ye J, Cao J, Chen X, Ma J, Li Y, Gao X, Zhang Y, Wang C. Extraction optimisation and compositional characterisation of total flavonoids from the Chinese herb tulip: a natural source of antioxidants and anti-inflammatory agents. Nat Prod Res 2024; 38:4332-4339. [PMID: 37967021 DOI: 10.1080/14786419.2023.2281000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
In this study, total flavonoids from the Chinese herb tulip were extracted by ultrasound-assisted extraction (UAE), their main components were analysed and confirmed, and their antioxidant and anti-inflammatory activities were evaluated. The results showed that the extraction rate of total flavonoids from the Chinese herb tulip reached 390.77 ± 3.88 mg·g-1 after optimisation by one-factor test and response surface methodology. 23 compounds were identified in the solution of total flavonoids from the Chinese herb tulip, including 18 flavonoids such as Hyperoside, Quercetin, Astilbin, etc., and the effects of total flavonoids of the Chinese herb tulip (TFT) on ABTS+ radicals, DPPH radicals, and superoxide anion with a good scavenging rate, good total reducing power, and total antioxidant capacity. Secondly, TFT showed good inhibition of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2).
Collapse
Affiliation(s)
- Jiafeng Ye
- Engineering Research Center for Pharmaceutical Engineering and Process Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiamin Cao
- Engineering Research Center for Pharmaceutical Engineering and Process Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xian Chen
- Eneplus Biotech Co., Ltd, Guangzhou, China
| | - Jingjing Ma
- Engineering Research Center for Pharmaceutical Engineering and Process Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yangchen Li
- Engineering Research Center for Pharmaceutical Engineering and Process Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xia Gao
- Engineering Research Center for Pharmaceutical Engineering and Process Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yurui Zhang
- Engineering Research Center for Pharmaceutical Engineering and Process Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chunli Wang
- Engineering Research Center for Pharmaceutical Engineering and Process Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Gǎlbǎu CŞ, Irimie M, Neculau AE, Dima L, Pogačnik da Silva L, Vârciu M, Badea M. The Potential of Plant Extracts Used in Cosmetic Product Applications-Antioxidants Delivery and Mechanism of Actions. Antioxidants (Basel) 2024; 13:1425. [PMID: 39594566 PMCID: PMC11591253 DOI: 10.3390/antiox13111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Natural ingredients have been used in skincare products for thousands of years. The current focus is on novel natural bioactivities that shield the skin from UV rays and free radicals, among other damaging elements, while enhancing skin health. Free radicals significantly contribute to skin damage and hasten ageing by interfering with defence and restorative processes. Plants contain natural chemicals that can scavenge free radicals and have antioxidant capabilities. Plant materials are becoming increasingly popular as natural antioxidants related to the expanding interest in plant chemistry. This review focuses on the significance of medicinal plants in skin health and ageing and their potential as a source of antioxidant substances such as vitamins, polyphenols, stilbenes, flavonoids, and methylxanthines.
Collapse
Affiliation(s)
- Cristina-Ştefania Gǎlbǎu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Andrea Elena Neculau
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lorena Dima
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lea Pogačnik da Silva
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Mihai Vârciu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Mihaela Badea
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| |
Collapse
|
14
|
Liu H, Wang S, Qiu K, Zheng C, Tan H. Preparation, structural characterization, and biological activities of lotus polysaccharides: A review. Int J Biol Macromol 2024; 279:135191. [PMID: 39216588 DOI: 10.1016/j.ijbiomac.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lotus (Nelumbo nucifera), belonging to the family of Nelumbonaceae, is a beautiful aquatic perennial plant. It has been used as an ancient horticulture plant and famous agricultural crop for thousands of years. Modern phytochemical and pharmacological experiments have proved that polysaccharide is one of the most pivotal bioactive constituents of lotus. Hence, the systematic review covering the fundamental research advances and developing prospects of N. nucifera polysaccharides (NNPs) is an urgent demand to provide theoretical basis for their further research and application. The present review summarizes current emerging research progresses on the polysaccharides isolated from lotus, and it focuses on advanced extraction and purification methods, unique structural features, engaging biological activities, potential molecular mechanisms, as well as the relationship of structure and activity of NNPs. This review sheds light on the potential values of NNPs in affording functionally bioactive agents in food industry or therapeutically effective medicines for health care. In addition, this review will provide valuable insights for further commercial product development and promising industrial application of NNPs in both of the fundamental research communities and food or pharmaceutical industries in future.
Collapse
Affiliation(s)
- Hongxin Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Kaidi Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haibo Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Park MY, Kim HH, Jeong SH, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Park KI, Kim GS. Antioxidant and Anti-Inflammatory Properties of Conceivable Compounds from Glehnia littoralis Leaf Extract on RAW264.7 Cells. Nutrients 2024; 16:3656. [PMID: 39519489 PMCID: PMC11547663 DOI: 10.3390/nu16213656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Glehnia littoralis is a medicinal plant, but the scientific basis is still unclear. This study thoroughly investigated phenols from Glehnia littoralis extract (GLE) to determine their potential as anti-inflammatory and antioxidant agents. METHODS High-performance liquid chromatography (HPLC) and mass spectrometry (MS) were used to analyze the compounds in GLE. In addition, we performed GLE in vitro in macrophages after lipopolysaccharide (LPS)-induced inflammation. RESULTS The extract contained eight peaks representing phenolic compounds and one peak representing riboflavin, with the corresponding mass spectrometry data documented. These biologically active compounds were purified by ultrafiltration using LC to determine their ability to target cyclooxygenase-2 (COX-2) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The results showed that significant compounds were identified, demonstrating a binding affinity for both COX-2 and DPPH. This suggests that the compounds showing excellent binding affinity for COX-2 and DPPH may be the main active ingredients. Vital inflammatory cytokines, including COX-2, inducible nitric oxide synthase (iNOS), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), were found to be down-regulated during the treatment. In addition, we revealed that the selected drugs exhibited potent binding capacity to inflammatory factors through molecular docking studies. In addition, we confirmed the presence of phenolic components in GLE extract and verified their possible anti-inflammatory and antioxidant properties. CONCLUSIONS This study provided evidence for an efficient strategy to identify critical active ingredients from various medicinal plants. These data may serve as a baseline for further investigations of applying GLE in the pharmaceutical industry.
Collapse
Affiliation(s)
- Min Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Se Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea;
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Kwang Il Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| |
Collapse
|
16
|
Fan M, Guo M, Chen G, Rakotondrabe TF, Muema FW, Hu G. Exploring potential inhibitors of acetylcholinesterase, lactate dehydrogenases, and glutathione reductase from Hagenia abyssinica (Bruce) J.F. Gmel. based on multi-target ultrafiltration-liquid chromatography-mass spectrometry and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118356. [PMID: 38763372 DOI: 10.1016/j.jep.2024.118356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Wambua Muema
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| |
Collapse
|
17
|
Mahmoud Shokhba AS, El-Deen A Omran MA, Abdel-Rahman MA, El-Shenawy NS. Effect of Egyptian spitting cobra Naja nubiae crude venom on immunogenic activity of rats. Toxicon 2024; 247:107834. [PMID: 38950737 DOI: 10.1016/j.toxicon.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Snakes show defensive activities, often counting visual or auditory displays against an aggressor. The study observed what happens to rats administered subcutaneously sub-lethal doses of crude venom Naja nubiae. The pro-inflammatory cytokines, such as tumor necrosis alpha (TNF-α) and interleukin-6 (IL-6), as well as the anti-inflammatory cytokines such as interleukin-10 (IL-10), and inflammatory mediator's prostaglandin E-2 (PG-E2), were evaluated. Vascular permeability (VP) was employed to assess how leaky or permeable blood vessels are in various tissues and organs, including the rat peritoneal cavity and lymphoid organs. Lymphoid organs' histological alterations brought on by Nubiae venom. The study found that the two venom doses-1/4 and 1/2 LD50-induced high levels of inflammatory activity as evidenced by the production of inflammatory cytokines. These findings demonstrated that venom enhanced innate immunity through specifically increased T helper cells, IL-6, TNF-α, IL-10, and PG-E2. The results reveal whether the venom has an immunomodulatory effect and promotes inflammation. The data have a substantial impact on the development of new drugs and treatments for inflammatory conditions.
Collapse
|
18
|
Yu Q, Yang M, Yang L, Li M, Yang Y. Optimization and Spectrum-Effect Analysis of Ultrasonically Extracted Antioxidant Flavonoids from Persicae Ramulus. Molecules 2024; 29:3860. [PMID: 39202938 PMCID: PMC11356933 DOI: 10.3390/molecules29163860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The objectives of this study were to optimize the ultrasonic-assisted flavonoid extraction process from PR and to establish fingerprints in order to analyze the spectrum-effect relationship of antioxidant activity. The ultrasonic-assisted flavonoid extraction process from PR was optimized using RSM, and the fingerprints of twenty-eight batches of flavonoids from PR were established using UHPLC. Meanwhile, the in vitro antioxidant activity of PR was evaluated in DPPH and ABTS free radical-scavenging experiments. Then, the peaks of the effective antioxidant components were screened using the spectrum-effect relationships. The results show that the optimal extraction yield of flavonoids from PR was 3.24 ± 0.01 mg/g when using 53% ethanol, a 1:26 (g/mL) solid-liquid ratio, and 60 min of ultrasonic extraction. Additionally, the clearance of two antioxidant indices by the flavonoids extracted from PR had different degrees of correlation and showed concentration dependence. Simultaneously, the similarity of the UHPLC fingerprints of twenty-eight batches of PR samples ranged from 0.801 to 0.949, and four characteristic peaks, namely peaks 4, 12, 21, and 24, were screened as the peaks of the components responsible for the antioxidant effect of PR using a GRA, a Pearson correlation analysis, and a PLS-DA. In this study, characteristic peaks of the antioxidant effects of PR were screened in an investigation of the spectrum-effect relationship to provide a scientific basis for the study of pharmacodynamic substances and the elucidation of the mechanism of action of the antioxidant effect of PR.
Collapse
Affiliation(s)
- Qihua Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mingyu Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liyong Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
| | - Mengyu Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ye Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Dong Qing Nan Road, Guiyang 550025, China; (Q.Y.); (M.Y.); (L.Y.)
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
19
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Lee SJ, Heo JD, Kim HW, Seong JK, Kim DI, Park KI, Kim GS. Binding affinity screening of polyphenolic compounds in Stachys affinis extract (SAE) for their potential antioxidant and anti-inflammatory effects. Sci Rep 2024; 14:18095. [PMID: 39103443 PMCID: PMC11300793 DOI: 10.1038/s41598-024-68880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Free radical is a marker in various inflammatory diseases. The antioxidant effect protects us from this damage, which also plays an essential role in preventing inflammation. Inflammation protects the body from biological stimuli, and pro-inflammatory mediators are negatively affected in the immune system. Inflammation caused by LPS is an endotoxin found in the outer membrane of Gram-negative bacteria, which induces immune cells to produce inflammatory cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase. Based on this, the antioxidant and anti-inflammatory effects of plant extracts were investigated. First, the main phenolic compounds for the five peaks obtained from Stachys affinis extract (SAE) were identified. The antioxidant effect of each phenolic compound was confirmed through HPLC analysis before and after the competitive binding reaction between DPPH and the extract. Afterward, the anti-inflammatory effect of each phenolic compound was confirmed through competitive binding between COX2 and the extract in HPLC analysis. Lastly, the anti-inflammatory effect of SAE was confirmed through in vitro experiments and also confirmed in terms of structural binding through molecular docking. This study confirmed that phenolic compounds in SAE extract have potential antioxidant and anti-inflammatory effects, and may provide information for primary screening of medicinal plants.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju, 52834, Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju, 52834, Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience and Intergrated Biotechnology, Jinju, 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Il Kim
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae, Gyeongsangnam-do, 52430, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
20
|
Lin C, Lyu J, Feng Z. Intake of dietary flavonoids in relation to overactive bladder among U.S. adults: a nutritional strategy for improving urinary health. Front Nutr 2024; 11:1437923. [PMID: 39114124 PMCID: PMC11303291 DOI: 10.3389/fnut.2024.1437923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background The increasing influence of overactive bladder (OAB) on physical as well as mental health of individuals is becoming more pronounced annually, as evidenced by the urge urinary incontinence and nocturia. Symptoms in OAB patients may be influenced by inflammation and oxidative stress. Flavonoids are recognized as significant anti-inflammatory and antioxidant agents, which are commonly available in fruits, tea, vegetables, etc. Previous research has demonstrated the therapeutic potential of flavonoids and their subclasses in treating inflammation, and oxidative stress. Despite this, there remains a paucity of research exploring the potential correlation between flavonoid consumption, specifically within distinct subclasses, and OAB. Thus, our study aims to investigate the relationship between flavonoid intake and OAB to identify possible dietary interventions for OAB management. Methods We utilized the survey data from the National Health and Nutrition Examination Survey (NHANES) and the USDA Food and Nutrient Database for Dietary Studies (FNDDS) to investigate the relationship between dietary intake of total and subclass flavonoids and the risk of OAB based on 13,063 qualified American adults. The dietary flavonoid intake was estimated from two 24-h dietary recalls. Weighted multivariate logistic regression model, quantile-based g-computation, restricted cubic spline model, and stratified analysis were used to explore the association between flavonoid intake and OAB, respectively. Results The participants diagnosed with OAB exhibited a higher percentage of being female, older, Non-Hispanic Black, unmarried, former drinkers, having a lower annual household income, lower poverty to income ratio, lower educational attainment, and a higher likelihood of being obese and smokers. Upon adjusting for confounding factors, the weighted logistic regression models revealed that the third quartile of consumption of anthocyanidin and the second quartile of consumption of flavone were significantly associated with the reduced odds of OAB, while total flavonoid consumption did not show a significant correlation with the risk of OAB. The quantile-based g-computation model indicated that flavone, anthocyanidin and flavonol were the primary contributors to the observed negative correlation. Furthermore, the restricted cubic spline models demonstrated a J-shaped non-linear exposure-response association between anthocyanidin intake and the risk of OAB (P nonlinear = 0.00164). The stratified and interaction analyses revealed that the relationship between anthocyanidin intake and the risk of OAB was significantly influenced by age (P interaction = 0.01) and education level (P interaction = 0.01), while the relationship between flavone intake and the risk of OAB was found to vary by race (P interaction = 0.02) and duration of physical activity (P interaction = 0.05). Conclusion Our research suggests that consuming a diet rich in flavonoid subclass anthocyanidin and flavone is associated with a reduced risk of OAB, potentially offering clinical significance in the prevention of OAB development. This underscores the importance of dietary adjustments in the management of OAB symptoms.
Collapse
Affiliation(s)
- Chaohuan Lin
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
| | - Jie Lyu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Zhen Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- College of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Maia CMDA, Vasconcelos PGS, Pasetto S, Godwin WC, Silva JPRE, Tavares JF, Pardi V, Costa EMMDB, Murata RM. Anadenanthera colubrina regulated LPS-induced inflammation by suppressing NF-κB and p38-MAPK signaling pathways. Sci Rep 2024; 14:16028. [PMID: 38992070 PMCID: PMC11239917 DOI: 10.1038/s41598-024-66590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
We aimed to determine the chemical profile and unveil Anadenanthera colubrina (Vell.) Brenan standardized extract effects on inflammatory cytokines expression and key proteins from immunoregulating signaling pathways on LPS-induced THP-1 monocyte. Using the RT-PCR and Luminex Assays, we planned to show the gene expression and the levels of IL-8, IL-1β, and IL-10 inflammatory cytokines. Key proteins of NF-κB and MAPK transduction signaling pathways (NF-κB, p-38, p-NF-κB, and p-p38) were detected by Simple Western. Using HPLC-ESI-MSn (High-Performance Liquid-Chromatography) and HPLC-HRESIMS, we showed the profile of the extract that includes an opus of flavonoids, including the catechins, quercetin, kaempferol, and the proanthocyanidins. Cell viability was unaffected up to 250 µg/mL of the extract (LD50 = 978.7 µg/mL). Thereafter, the extract's impact on the cytokine became clear. Upon LPS stimuli, in the presence of the extract, gene expression of IL-1β and IL-10 were downregulated and the cytokines expression of IL-1β and IL-10 were down an upregulated respectively. The extract is involved in TLR-4-related NF-κB/MAPK pathways; it ignited phosphorylation of p38 and NF-κB, orchestrating a reduced signal intensity. Therefore, Anadenanthera colubrina's showed low cytotoxicity and profound influence as a protector against the inflammation, modulating IL-1β and IL-10 inflammatory cytokines gene expression and secretion by regulating intracellular NF-κB and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | | | - Silvana Pasetto
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Walton Colby Godwin
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Joanda Paolla Raimundo E Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Edja Maria Melo de Brito Costa
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraiba, Brazil.
| | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
22
|
Chen LX, Yang FQ. Applications of magnetic solid-phase extraction in the sample preparation of natural product analysis (2020-2023). J Sep Sci 2024; 47:e2400082. [PMID: 38819785 DOI: 10.1002/jssc.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Sample preparation, including extraction, separation, and purification, is a vital process for natural product analysis. As an attractive sample pretreatment method, magnetic solid-phase extraction (MSPE) has gained plenty of attention, mainly due to its simpler operation, less consumption of organic solvents, and shorter processing time than traditional SPE. This updated review is devoted to summarizing the applications of MSPE based on different magnetic nanomaterials in the analysis of various natural products in complex matrixes, such as biological samples, plants, and Chinese herbal preparations in the past four years (2020-2023). The preparation and fabrication of different materials are briefly introduced. Furthermore, the extraction mechanism and interaction forces between adsorbent and analytes are elaborated, and the advantages and disadvantages of different adsorbents coupled with various analytical methods for MSPE of different natural products are summarized. Moreover, the future trends and opportunities for MSPE in the natural product analysis are discussed. It is expected that this work can provide updated information for future research on the applications of MSPE in such fields.
Collapse
Affiliation(s)
- Ling-Xiao Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Feng-Qing Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
23
|
Huang C, Xiong X, Zhang D, Ruan Q, Jiang J, Wang F, Chen G, Cheng L. Targeted screening of multiple anti-inflammatory components from Chrysanthemi indici Flos by ligand fishing with affinity UF-LC/MS. Front Pharmacol 2024; 15:1272087. [PMID: 38694923 PMCID: PMC11062130 DOI: 10.3389/fphar.2024.1272087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Chrysanthemi indic Flos (CIF) has been commonly consumed for the treatment of inflammation and related skin diseases. However, the potential bioactive components responsible for its anti-inflammatory and sensitive skin (SS) improvement activities, and the correlated mechanisms of action still remain unknown. In this work, it was firstly found that the CIF extract (CIFE) displayed arrestive free radical scavenging activity on DPPH and ABTS radicals, with no significant difference with positive control Trolox (p > 0.05). Then, compared to the negative group, CIFE markedly decreased the productions of the pro-inflammatory cytokines (IL-1β, IL-6, PEG2, TNF-α, IFN-γ, NO) in LPS induced RAW264.7 cells in a dose-dependent manner (p < 0.01). Besides, CIFE strongly inhibited the COX-2 and hyaluronidase (HAase) with the IC50 values of 1.06 ± 0.01 μg/mL and 12.22 ± 0.39 μg/mL, indicating higher inhibitory effect than positive control of aspirin of 6.33 ± 0.05 μg/mL (p < 0.01), and comparable inhibitory effect with indometacin of 0.60 ± 0.03 μg/mL, and ascorbic acid of 11.03 ± 0.41 μg/mL (p > 0.05), respectively. Furthermore, kinetic assays with Lineweaver-Burk plot (Michaelis Menten equation) suggested that CIFE reversibly inhibited the COX-2 and HAase, with a mixed characteristics of competitive and non-competitive inhibition. Thereafter, multi-target affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC/MS) method was employed to fast fish out the potential COX-2 and HAase in CIFE. Herein, 13 components showed various affinity binding degrees to the COX-2 and HAase, while those components with relative binding affinity (RBA) value higher than 3.0, such as linarin and chlorogenic acid isomers, were deemed to be the most bioactive components for the anti-inflammatory and SS improvement activities of CIFE. Finally, the interaction mechanism, including binding energy, inhibition constant, docking sites, and the key amino acids involved in hydrogen bonds between the potential ligands and COX-2/HAase were simulated and confirmed with the molecule docking analysis. In summary, this study showcased the prominent anti-inflammatory and SS improvement activities of CIF, which would provide further insights on this functional medicinal plant to be a natural anti-SS remedy.
Collapse
Affiliation(s)
- Chuanqi Huang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Xin Xiong
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Dan Zhang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Qingfeng Ruan
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Jie Jiang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lu Cheng
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
24
|
Yilmaz G, Neselioglu S, Aydogdu FE, Erel O, Uzunlar O, Moraloglu Tekin O. The effect of slow-release vaginal dinoprostone on maternal and fetal oxidative stress in term pregnancies complicated by oligohydramnios: Prospective cohort study. J Chin Med Assoc 2024; 87:410-413. [PMID: 38376193 DOI: 10.1097/jcma.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND To evaluate changes in oxidant status using thiol/disulfide homeostasis in mothers and fetuses after induction of labor with slow-release vaginal dinoprostone inserts. METHODS A total of 70 pregnant women were divided into two groups. Thirty-five women in whom labor was induced with slow-release vaginal dinoprostone inserts (10 mg of prostaglandin E2, group A) were compared before and after the administration. The other 35 women, who were followed up spontaneously during labor (group B), were included as a control group. Both groups were diagnosed with isolated oligohydramnios without signs of placental insufficiency. The thiol/disulfide homeostasis parameters were calculated before medical induction and after removal of the insert at the beginning of the active phase of labor. Maternal and cord blood values were measured in both groups. RESULTS Although the balance shifted to the antioxidant side after the slow-release vaginal dinoprostone insert was applied, there was no significant difference in maternal oxidative load compared to the pre-application status (5.32 ± 014/5.16 ± 0.15, p = 0.491). Despite the shift toward the antioxidant side, maternal antioxidants were still significantly lower in the group that received slow-release vaginal dinoprostone at the beginning of the active phase of labor than in the control group (295.98 ± 13.03/346.47 ± 12.04, respectively, p = 0.009). There was no statistically significant difference in terms of oxidative balance or newborn Apgar score ( p > 0.05). CONCLUSION Induction of labor with slow-release vaginal dinoprostone inserts in pregnancies with isolated oligohydramnios does not cause further oxidative stress and is safe for both mothers and neonates in terms of oxidant load by thiol/disulfide homeostasis.
Collapse
Affiliation(s)
- Gamze Yilmaz
- Department of Obstetrics and Gynecology, Republic of Turkey Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Salim Neselioglu
- Department of Medical Biochemistry, University of Health Sciences, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Fatma Ece Aydogdu
- Department of Obstetrics and Gynecology, Republic of Turkey Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Ozcan Erel
- Department of Medical Biochemistry, University of Health Sciences, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Ozlem Uzunlar
- Department of Obstetrics and Gynecology, Republic of Turkey Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Ozlem Moraloglu Tekin
- Department of Obstetrics and Gynecology, Republic of Turkey Ministry of Health Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
25
|
Chen W, Zhang Y, Qiang Q, Zou L, Zou P, Xu Y. Pinobanksin from peony seed husk: A flavonoid with the potential to inhibit the proliferation of SH-SY5Y. Food Sci Nutr 2024; 12:815-829. [PMID: 38370064 PMCID: PMC10867468 DOI: 10.1002/fsn3.3786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 02/20/2024] Open
Abstract
Pinobanksin, as one of the flavonoids, has powerful biological activities but has been under-recognized. In this study, we optimized the extraction method of phragmites from peony seed shells by using organic solvent extraction. The yield of PSMS was 10.54 ± 0.13% under the conditions of ethanol volume fraction 70%, extraction temperature 70°C, material-liquid ratio 1:25 g/mL, and extraction time 60 min; the optimized PSMS could be effectively separated in S-8 macroporous resin coupled with C18. The relative content of PSMS was increased from 0.42% in PSMS to 92.53% after C18 purification; the antioxidant activity test revealed that pinobanksin could exert antioxidant ability by binding catalase (CAT) enzyme. Second, it was found that pinobanksin could effectively inhibit the proliferation of SH-SY5Y cells, mainly by binding to BCL2-associated X (BAX), B-cell lymphoma-2 (BCL-2), and cyclin-dependent Kinase 4/6 (CDK4/6) to produce more hydrogen bonds to inhibit their activities. This study confirms the medicinal potential of pinobanksin and provides the basis for the proper understanding of pinobanksin and the development of related products.
Collapse
Affiliation(s)
- Wen‐Tao Chen
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Ying‐Yang Zhang
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Qiang Qiang
- Changzhou Wujin No. 3 People's HospitalChangzhouJiangsuChina
| | - Lin‐Ling Zou
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Ping Zou
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| | - Ying Xu
- School of Biological and Food EngineeringChangzhou UniversityChangzhouJiangsuChina
| |
Collapse
|
26
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Kim DI, Lee SJ, Park KI, Kim GS. Potential Antioxidant and Anti-Inflammatory Properties of Polyphenolic Compounds from Cirsium japonicum Extract. Int J Mol Sci 2024; 25:785. [PMID: 38255858 PMCID: PMC10815310 DOI: 10.3390/ijms25020785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cirsium japonicum is a medicinal plant that has been used due to its beneficial properties. However, extensive information regarding its therapeutic potential is scarce in the scientific literature. The antioxidant and anti-inflammatory potential of polyphenols derived from the Cirsium japonicum extracts (CJE) was systematically analyzed. High-performance liquid chromatography (HPLC) with mass spectrometry (MS) was used to examine the compounds in CJE. A total of six peaks of polyphenol compounds were identified in the extract, and their MS data were also confirmed. These bioactive compounds were subjected to ultrafiltration with LC analysis to assess their potential for targeting cyclooxygenase-2 (COX2) and DPPH. The outcomes showed which primary compounds had the highest affinity for binding both COX2 and DPPH. This suggests that components that showed excellent binding ability to DPPH and COX2 can be considered significant active substances. Additionally, in vitro analysis of CJE was carried out in macrophage cells after inducing inflammation with lipopolysaccharide (LPS). As a result, it downregulated the expression of two critical pro-inflammatory cytokines, COX2 and inducible nitric oxide synthase (iNOS). In addition, we found a solid binding ability through the molecular docking analysis of the selected compounds with inflammatory mediators. In conclusion, we identified polyphenolic compounds in CJE extract and confirmed their potential antioxidant and anti-inflammatory effects. These results may provide primary data for the application of CJE in the food and pharmaceutical industries with further analysis.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Dong Il Kim
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae 52430, Republic of Korea;
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea;
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| |
Collapse
|
27
|
Buzdağlı Y, Eyipınar CD, Kacı FN, Tekin A. Effects of hesperidin on anti-inflammatory and antioxidant response in healthy people: a meta-analysis and meta-regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1390-1405. [PMID: 35762134 DOI: 10.1080/09603123.2022.2093841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Hesperidin is a prominent flavanone found in citrus fruits that has a broad range of biological effects, including anti-inflammatory and antioxidant capabilities. The study's objective was to evaluate the effects of hesperidin supplementation on anti-inflammatory and antioxidant parameters such as MDA, TAC, GSH, SOD, and CAT; CRP, TNF-α, IL-6, and IL-4 levels respectively, by analyzing human intervention trials. Google Scholar, PubMed, grey literature databases, and the ClinicalTrials website were scanned to identify eligible studies. For the meta-analysis, eighteen studies were chosen. Hesperidin supplementation had significant lowering effect on not only CRP, IL-6, and IL-4 levels but also MDA level (Meta-regression analysis revealed a non-significant direct relationship between hesperidin dosage and chance in CRP, IL-6, and MDA levels. As a result, it can be said that hesperidin supplementation contributes to the inflammatory and antioxidant response, but this contribution is independent of dosage.
Collapse
Affiliation(s)
- Yusuf Buzdağlı
- Department of Coaching Education, Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Cemre Didem Eyipınar
- Department of Physical Education and Sports, Faculty of Sports Sciences, Gaziantep University, Gaziantep, Turkey
| | - Fatma Necmiye Kacı
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
- Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, UK
| | - Aslıhan Tekin
- Department of Physical Education and Sport, Faculty of Sport Sciences, İbrahim Çeçen University, Ağrı, Turkey
| |
Collapse
|
28
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Ahn M, Park KI, Kim GS. Antioxidant effects of phenolic compounds in through the distillation of Lonicera japonica & Chenpi extract and anti-inflammation on skin keratinocyte. Sci Rep 2023; 13:20883. [PMID: 38016995 PMCID: PMC10684860 DOI: 10.1038/s41598-023-48170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
The phenolic compounds in Lonicera japonica & Chenpi distillation extract (LCDE) were thoroughly examined for their antioxidant and anti-inflammatory properties. Phenolic compounds in LCDE were analyzed for five peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS) and determined. Five phenolic compounds were identified from the samples and MS data. Ultrafiltration with LC analysis was used to investigate the ability of bioactive compounds to target DPPH. As a result, it was confirmed that the major compounds exhibited a high binding affinity to DPPH and could be regarded as antioxidant-active compounds. In addition, the anti-inflammatory effect of LCDE was confirmed in vitro, and signal inhibition of anti-inflammation cytokines, MAPK and NF-kB pathways was confirmed. Finally, Molecular docking analysis supplements the anti-inflammatory effect through the binding affinity of selected compounds and inflammatory factors. In conclusion, the phenolic compounds of the LCDE were identified and potential active compounds for antioxidant and anti-inflammatory activities were identified. Additionally, this study will be utilized to provide basic information for the application of LCDE in the pharmaceutical and pharmaceutical cosmetics industries along with information on efficient screening techniques for other medicinal plants.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju, 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, 26339, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
29
|
Chen YC, Liu YY, Chen L, Tang DM, Zhao Y, Luo XD. Antimelanogenic Effect of Isoquinoline Alkaloids from Plumula Nelumbinis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16090-16101. [PMID: 37856847 DOI: 10.1021/acs.jafc.3c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Plumula Nelumbinis, the green embryo of a lotus seed, is widely consumed in China as a well-known food with medicinal effects. In this study, 14 alkaloids, including 4 new and 10 known alkaloids, were isolated from it, which were elucidated by comprehensive spectroscopic analysis, and were investigated for their antimelanogenic effects in vitro and in vivo. As a result, melanogenesis in α-MSH-stimulated B16F10 cells was reduced significantly by a new compound 4 and known compound 12 at a concentration of 0.5 μg/mL, and the tyrosinase (TYR) activities were inhibited by 78.7 and 82.0% at 4 μg/mL, prior to α-arbutin (41.3%). Additionally, compounds 4 and 12 also exhibited superior antimelanogenic effects compared to α-arbutin on a zebrafish assay model at equivalent concentrations. Mechanistically, our preliminary findings suggested that compounds 4 and 12 exerted antimelanogenesis effect probably by inhibiting key proteins involved in melanin production such as microphthalmia-associated transcription factor, TYR, TRP-1, and TRP-2. The findings highlight the potential use of Plumula Nelumbinis containing compounds 4 and 12 as functional foods for treating hyperpigmentation.
Collapse
Affiliation(s)
- Yi-Chi Chen
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Yang-Yang Liu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Liqiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, PR. China
| | - Dong-Mei Tang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - YunLi Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR. China
| |
Collapse
|
30
|
Silva MC, Cunha G, Firmino P, Sallum LO, Menezes A, Dutra J, de Araujo-Neto J, Batista AA, Ellena J, Napolitano HB. Structural and Anticancer Studies of Methoxyflavone Derivative from Strychnos pseudoquina A.St.-Hil. (Loganiaceae) from Brazilian Cerrado. ACS OMEGA 2023; 8:40764-40774. [PMID: 37929093 PMCID: PMC10621014 DOI: 10.1021/acsomega.3c05841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
The Cerrado biome is the world's largest and most diversified tropical savanna. Despite its diversity, there remains a paucity of scientific discussion and evidence about the medicinal use of Cerrado plants. One of the greatest challenges is the complexity of secondary metabolites, such as flavonoids, present in those plants and their extraction, purification, and characterization, which involves a wide range of approaches, tools, and techniques. Notwithstanding these difficulties, the search for accurately proven medicinal plants against cancer, a leading cause of death worldwide, has contributed to this growing area of research. This study set out to extract, purify, and characterize 3-O-methylquercetin isolated from the plant Strychnos pseudoquina A.St.-Hil. (Loganiaceae) and to test it for antiproliferative activity and selectivity against different tumor and nontumor human cell lines. A combined-method approach was employed using 1H and 13C nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, Hirshfeld surface analysis, and theoretical calculations to extensively characterize this bioflavonoid. 3-O-methylquercetin melts around 275 °C and crystallizes in a nonplanar conformation with an angle of 18.02° between the pyran ring (C) and the phenyl ring (B), unlike quercetin and luteolin, which are planar. Finally, the in vitro cytotoxicity of 3-O-methylquercetin was compared with data from quercetin, luteolin, and cisplatin, showing that structural differences influenced the antiproliferative activity and the selectivity against different tumor cell lines.
Collapse
Affiliation(s)
- Marianna C. Silva
- Laboratório
de Novos Materiais, Universidade Evangélica
de Goiás, 75083-515 Anápolis, GO, Brazil
| | - Gracielle Cunha
- Laboratório
de Produtos Naturais, Universidade Estadual
de Goiás, 75132-903 Anápolis, GO, Brazil
| | - Pollyana Firmino
- Laboratório
Multiusuário de Cristalografia Estrutural, Instituto de Física
de São Carlos, Universidade de São
Paulo, 13566-590 São Carlos, SP, Brazil
| | - Loide O. Sallum
- Laboratório
de Novos Materiais, Universidade Evangélica
de Goiás, 75083-515 Anápolis, GO, Brazil
| | - Antônio Menezes
- Laboratório
de Produtos Naturais, Universidade Estadual
de Goiás, 75132-903 Anápolis, GO, Brazil
| | - Jocely Dutra
- Laboratório
de Estrutura e Reatividade de Compostos Inorgânicos, Departamento
de Química, Universidade Federal
de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - João de Araujo-Neto
- Laboratório
de Bioinorgânica, Catálise e Farmacologia, Instituto
de Química, Universidade de São
Paulo, 05508-000 São Paulo, SP, Brazil
| | - Alzir A. Batista
- Laboratório
de Estrutura e Reatividade de Compostos Inorgânicos, Departamento
de Química, Universidade Federal
de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Javier Ellena
- Laboratório
Multiusuário de Cristalografia Estrutural, Instituto de Física
de São Carlos, Universidade de São
Paulo, 13566-590 São Carlos, SP, Brazil
| | - Hamilton B. Napolitano
- Grupo
de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brazil
| |
Collapse
|
31
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
32
|
Bian Y, Zhang Y, Liu T, Zhang F, Gao HY. Room-temperature synthesis of imine-linked magnetic covalent organic polymers in deep eutectic solvents for the extraction of flavonoids and their determination with HPLC-MS/MS. Mikrochim Acta 2023; 190:424. [PMID: 37776373 DOI: 10.1007/s00604-023-05976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 10/02/2023]
Abstract
A novel imine-linked magnetic covalent organic polymer, Fe3O4@TAB-TFPT, was synthesized using environmentally friendly deep eutectic solvents as the reaction medium instead of conventional organic solvents. The materials were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), FT-IR, N2 adsorption-desorption isotherms, energy dispersive spectrometer (EDS), X-ray photoelectron spectra (XPS), and thermo gravimetric analysis (TGA). Subsequently, the materials were employed as an adsorbent for magnetic solid-phase extraction (MSPE) of flavonoids, including Kurarinone, Norkurarinone, Xanthohumol, and Isoxanthohumol, prior to their determination by HPLC-MS/MS. The validation results demonstrate good linearity within the concentration range 0.1-1000 ng∙mL-1 (R2 ≥ 0.9963), high enrichment factors ranging from 18.9 to 30.7, and low LODs (0.01-0.05 ng∙mL-1) and LOQs (0.05-0.1 ng∙mL-1). Furthermore, recoveries between 80.60% and 108.40% with relative standard deviations ≤ 8.49% were achieved. The proposed MSPE-HPLC-MS/MS method was successfully applied to the determination of flavonoids in Sophora flavescens Aition sample.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China.
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
33
|
Zhu N, Lin S, Yu H, Huang W, Cao C. Association of Dietary Flavonoid Intake with Serum Cotinine Levels in the General Adult Population. Nutrients 2023; 15:4126. [PMID: 37836410 PMCID: PMC10574452 DOI: 10.3390/nu15194126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cotinine, the primary metabolite of nicotine, can be utilized as a marker for active smoking and as an indicator of exposure to secondhand smoke. However, the direct relationship between dietary flavonoid intake and serum cotinine levels remains a subject of ongoing investigation. In this study, we utilized data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 and 2017-2018 to assess the association between dietary flavonoid intake and serum cotinine levels in adults through multiple linear regression analysis. A weighted quantile sum (WQS) regression model was used to assess the association of the mixture of six dietary flavonoids with serum cotinine levels in adults, which could represent the overall effect of the mixture of six dietary flavonoids. We also conducted stratified analyses by smoke status to explore multiple linear regression associations between different flavonoid intake and serum cotinine levels. A total of 14,962 adults were included in the study. Compared to the group with the lowest dietary flavonoid intake, total flavonoid intake in the second (β = -0.29 [-0.44, -0.14]), third (β = -0.41 [-0.58, -0.24]), and highest groups (β = -0.32 [-0.49, -0.16]) was inversely related to the levels of serum cotinine after adjusting the full model. An RCS model showed that when the total dietary flavonoid intake was less than 99.61 mg/day, there was a negative linear association between dietary flavonoid intake and the serum cotinine. The WQS regression model also showed that the intake of a mixture of six dietary flavonoids was significantly negatively correlated with serum cotinine levels (β = -0.54 [-0.61, -0.46], p <0.01), with anthocyanins having the greatest effect (weights = 32.30%). Our findings imply a significant correlation between dietary flavonoid intake and serum cotinine levels among adults. The consumption of a combination of six dietary flavonoids was consistently linked to lower serum cotinine levels, with anthocyanins displaying the most pronounced impact.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| | - Shanhong Lin
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China;
| | - Hang Yu
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| | - Weina Huang
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| | - Chao Cao
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| |
Collapse
|
34
|
Wan H, Huang X, Xu Y, Liu M, Wang J, Xiao M, He Z, Song J, Xiao X, Ou J, Tang Z. Threshold effects and inflection points of flavonoid intake in dietary anti-inflammatory effects: Evidence from the NHANES. Medicine (Baltimore) 2023; 102:e34665. [PMID: 37682186 PMCID: PMC10489350 DOI: 10.1097/md.0000000000034665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023] Open
Abstract
Flavonoids have been shown to be beneficial in a variety of inflammatory and metabolic diseases because of their anti-inflammatory and antioxidant properties. However, previous epidemiological studies have only demonstrated a negative correlation between flavonoid intake on inflammatory markers, and the optimal intake of dietary flavonoids and subclasses in terms of dietary anti-inflammatory efficacy remains undetermined. This study was based on 3 cycles (2007-2010, 2017-2018) of the National Health and Nutrition Examination Survey and the corresponding expanded flavonoid database. Weighted multiple linear regression was used to assess linear relationships between flavonoid intake and Dietary inflammation index (DII). Smoothed curve fit and a generalized additive model were used to investigate the nonlinear relationships and threshold effects, the 2-tailed linear regression model was used to find potential inflection points. A total of 12,724 adults were included in the study. After adjusting for potential confounders, flavonoid intake was significantly associated with DII, with the strongest negative association effect for flavonols (-0.40 [-0.45, -0.35]). In subgroup analyses stratified by sex, race, age, body mass index, education levels, and diabetes, flavonol intake maintained a significant negative linear correlation with DII. In addition, we found significant nonlinear relationships (L-shaped relationships) and threshold effects between total flavonoids, flavan-3-ols, and flavanols and DII, with inflection points of 437.65 mg/days, 157.79 mg/days, and 46.36 mg/days, respectively. Our results suggest a threshold for the dietary anti-inflammatory capacity of flavonoid intake in U.S. adults.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Nephrology and Rheumatology, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiongjie Huang
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Yunhua Xu
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Mingjiang Liu
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Jiusong Wang
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Meimei Xiao
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Zhixiang He
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Jiangang Song
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Xiangjun Xiao
- Department of Microsurgery, University of South China, Hengyang Affiliated Nanhua Hospital, Hengyang, China
| | - Jun Ou
- Department of Spine Surgery, University of South China Affiliated Nanhua Hospital, Hengyang, China
| | - Zetao Tang
- Department of Spine Surgery, University of South China Affiliated Nanhua Hospital, Hengyang, China
| |
Collapse
|
35
|
Jeong SH, Park MY, Bhosale PB, Abusaliya A, Won CK, Park KI, Kim E, Heo JD, Kim HW, Ahn M, Seong JK, Kim HH, Kim GS. Potential Antioxidant and Anti-Inflammatory Effects of Lonicera japonica and Citri Reticulatae Pericarpium Polyphenolic Extract (LCPE). Antioxidants (Basel) 2023; 12:1582. [PMID: 37627577 PMCID: PMC10451293 DOI: 10.3390/antiox12081582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Dermatitis is an inflammatory condition of the outer layer of the skin that causes itching, blisters, redness, swelling, and often exudation, scabs, and peeling. Among them, purulent inflammation is a symptom that often occurs on the skin and appears in the form of boils and acne. Various studies are being conducted to treat these inflammatory diseases. Accordingly, Lonicera japonica and Citri Reticulatae Pericarpium Polyphenolic Extract (LCPE), which uses herbal preparations such as Lonicera japonica, Citri Reticulatae Pericarpium, and Glycyrrhiza uralensis, has been used to suppress inflammation since ancient times, and its anti-inflammatory effect can be observed in skin keratinocytes after inducing inflammation. In this study, the major polyphenolic compounds in LCPE were quantitatively determined by analyzing the data through peak values using high-performance chromatography (HPLC-MS/MS) coupled with mass spectrometry. Additionally, bioactive compounds targeting 2,2-diphenyl-1-picrylhydrazyl (DPPH) were analyzed by ultrafiltration integrated with LC. Several compounds with the most significant effects were selected (chlorogenic acid, narirutin, and isorhamnetin). Skin keratinocytes induced by lipopolysaccharide (LPS) were treated with LCPE to show its anti-inflammatory effects. After LCPE treatment, inflammation-mediating cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were decreased. In addition, nuclear factor kappa (NF-кB) and mitogen-activated protein kinase (MAPK) were inhibited in important pathways related to inflammation. Lastly, molecular modeling was performed to determine binding scores with inflammation-related proteins using molecular docking for the selected compounds. According to these results, LCPE is effective in treating keratinocytes induced by LPS and reducing inflammation and has potential antioxidant effects, and the polyphenol components have been identified.
Collapse
Affiliation(s)
- Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Chung Kil Won
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Eunhye Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju 52725, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| |
Collapse
|
36
|
Han X, Song Y, Huang R, Zhu M, Li M, Requena T, Wang H. Anti-Inflammatory and Gut Microbiota Modulation Potentials of Flavonoids Extracted from Passiflora foetida Fruits. Foods 2023; 12:2889. [PMID: 37569158 PMCID: PMC10417441 DOI: 10.3390/foods12152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to explore the anti-inflammatory and gut microbiota modulation potentials of flavonoid-rich fraction (PFF) extracted from Passiflora foetida fruits. The results showed that PFF markedly reduced the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW 264.7 cells. Meanwhile, PFF treatment also effectively decreased the phosphorylation levels of MAPK, PI3K/Akt, and NF-κB signaling-pathway-related proteins (ERK, JNK, p38, Akt, and p65). Moreover, PFF had an impact on microbial composition and metabolites in a four-stage dynamic simulator of human gut microbiota (BFBL gut model). Specifically, PFF exhibited the growth-promoting ability of several beneficial bacteria, including Bifidobacterium, Enterococcus, Lactobacillus, and Roseburia, and short-chain fatty acid (SCFA) generation ability in gut microbiota. In addition, spectroscopic data revealed that PFF mainly contained five flavonoid compounds, which may be bioactive compounds with anti-inflammatory and gut microbiota modulation potentials. Therefore, PFF could be utilized as a natural anti-inflammatory agent or supplement to health products.
Collapse
Affiliation(s)
- Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Ya Song
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Minqian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Meiying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| | - Teresa Requena
- Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.H.); (Y.S.); (R.H.); (M.Z.); (M.L.)
- Guangdong Laboratory for Lingnan Mordern Agriculture, Guangzhou 510642, China
| |
Collapse
|
37
|
Feng X, Xie B, Han Y, Li Z, Cheng Y, Tian LW. Bisbenzylisoquinoline alkaloids from Plumula Nelumbinis inhibit vascular smooth muscle cells migration and proliferation by regulating the ORAI2/Akt pathway. PHYTOCHEMISTRY 2023; 211:113700. [PMID: 37119920 DOI: 10.1016/j.phytochem.2023.113700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Plumula Nelumbinis, the embryo of the seed of Nelumbo nucifera Gaertn, is commonly used to make tea and nutritional supplements in East Asian countries. A bioassay-guided isolation of Plumula Nelumbinis afforded six previously undescribed bisbenzylisoquinoline alkaloids, as well as seven known alkaloids. Their structures were elucidated by extensive analysis of HRESIMS, NMR, and CD data. Pycnarrhine, neferine-2α,2'β-N,N-dioxides, neferine, linsinine, isolinsinine, and nelumboferine, at 2 μM significantly suppressed the migration of MOVAS cells with inhibition ratio above 50%, more active than that of the positive control cinnamaldehyde (inhibition ratio 26.9 ± 4.92%). Additionally, neferine, linsinine, isolinsinine, and nelumboferine, were also active against the proliferation of MOVAS cells with inhibition ratio greater than 45%. The preliminary structure-activity relationships were discussed. Mechanism studies revealed that nelumboferine inhibited the migration and proliferation of MOVAS cells by regulating ORAI2/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Baoping Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Yuantao Han
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhiying Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Li-Wen Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
38
|
Hedayati N, Yaghoobi A, Salami M, Gholinezhad Y, Aghadavood F, Eshraghi R, Aarabi MH, Homayoonfal M, Asemi Z, Mirzaei H, Hajijafari M, Mafi A, Rezaee M. Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Front Cardiovasc Med 2023; 10:1174816. [PMID: 37293283 PMCID: PMC10244790 DOI: 10.3389/fcvm.2023.1174816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy of the current treatments in preventing cardiac remodeling following cardiovascular diseases, attention has been focused on improving cardiac function with potential alternatives such as polyphenols. The following online databases were searched for relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of Science databases. The search strategy aimed to assess the effects of polyphenols on heart failure and keywords were "heart failure" and "polyphenols" and "cardiac hypertrophy" and "molecular mechanisms". Our results indicated polyphenols are repeatedly indicated to regulate various heart failure-related vital molecules and signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing mitochondrial dysfunction and free radical production, the underlying causes of apoptosis, and also improving lipid profile and cellular metabolism. In the current study, we aimed to review the most recent literature and investigations on the underlying mechanism of actions of different polyphenols subclasses in cardiac hypertrophy and heart failure to provide deep insight into novel mechanistic treatments and direct future studies in this context. Moreover, due to polyphenols' low bioavailability from conventional oral and intravenous administration routes, in this study, we have also investigated the currently accessible nano-drug delivery methods to optimize the treatment outcomes by providing sufficient drug delivery, targeted therapy, and less off-target effects, as desired by precision medicine standards.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Aghadavood
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Abdel-Megeed RM, Kadry MO. Amelioration of autophagy and inflammatory signaling pathways via α-lipoic acid, burdock and bee pollen versus lipopolysaccharide-induced insulin resistance in murine model. Heliyon 2023; 9:e15692. [PMID: 37139293 PMCID: PMC10149403 DOI: 10.1016/j.heliyon.2023.e15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Lipopolysaccharide (LPS) has previously been implicated in insulin resistance by generating an innate immune response and activating inflammatory cascades. Many studies have discovered a relationship between high levels of serum LPS and the advancement of diabetic microvascular problems, indicating that LPS may play a role in the control of critical signaling pathways connected to insulin resistance. The current study focused on signaling pathways linked to insulin resistance and explored probable mechanisms of LPS-induced insulin resistance in a murine model. It next looked at the effects of burdock, bee pollen, and -lipoic acid on LPS-induced inflammation and autoimmune defects in rats. LPS intoxication was induced via ip injection for one week in a dose of 10 mg/kg followed by α-lipoic acid, Burdock and bee pollen in an oral treatment for one month. Following that, biochemical and molecular studies were performed. The RNA expression of the regulating genes STAT5A and PTEN was measured. In addition, ATF-4 and CHOP as autophagy biomarkers were also subjected to mRNA quantification. The results demonstrated a considerable improvement in the -lipoic acid, Burdock, and bee pollen treated groups via modifying oxidative stress indicators as well as molecular ones. Furthermore, glucose concentration in serum and α-amylase were also improved upon treatment with the superiority of α-lipoic acid for modulating all estimated parameters. In conclusion: the results declared in the current study suggested that α-lipoic acid could regulate insulin resistance signaling pathways induced by LPS intoxication.
Collapse
|
40
|
Mancipe JC, Vargas-Pinto P, Rodríguez OE, Borrego-Muñoz P, Castellanos Londoño I, Ramírez D, Piñeros LG, Mejía MC, Pombo LM. Anti-Inflammatory Effect of Izalpinin Derived from Chromolaena leivensis: λ-Carrageenan-Induced Paw Edema and In Silico Model. Molecules 2023; 28:molecules28093722. [PMID: 37175132 PMCID: PMC10179959 DOI: 10.3390/molecules28093722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The flavonoid izalpinin was isolated from the aerial parts of Chromolaena leivensis. Its structural determination was carried out using MS and NMR spectroscopic techniques (1H, 13C). This compound was evaluated for its anti-inflammatory effect in a rat model on λ-carrageenan-induced plantar edema. Paw inflammation was measured at one-hour intervals for seven hours following the administration of λ-carrageenan. Serum creatine kinase (CK) levels were evaluated, obtaining statistically significant results with the treatments at doses of 10 mg/kg (* p < 0.01) and 20 mg/kg (** p < 0.005). The anti-inflammatory effect of the compound was evaluated by using plethysmography, and the results showed significant differences at the three concentrations (10 mg/kg, 20 mg/kg, 40 mg/kg) in the first and third hours after treatment. * p < 0.05; ** p < 0.001; **** p < 0.0001 vs. the negative control group treated with vehicle (DMSO). Lastly, molecular docking analyses reveal that izalpinin has a strong binding affinity with five target proteins involved in the inflammatory process. The analysis using molecular dynamics allowed demonstrating that the ligand-protein complexes present acceptable stability, with RMSD values within the allowed range.
Collapse
Affiliation(s)
- Juan C Mancipe
- Facultad de Ciencias Agropecuarias, Universidad de la Salle, Bogotá 110141, Colombia
| | - Pedro Vargas-Pinto
- Facultad de Ciencias Agropecuarias, Universidad de la Salle, Bogotá 110141, Colombia
| | - Oscar E Rodríguez
- Facultad de Ingeniería, Universidad del Bosque, Bogotá 110121, Colombia
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
| | | | | | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Luis G Piñeros
- Facultad de Ingeniería, Universidad del Bosque, Bogotá 110121, Colombia
| | | | - Luis M Pombo
- Facultad de Ingeniería, Universidad del Bosque, Bogotá 110121, Colombia
| |
Collapse
|
41
|
Hu DB, Xue R, Zhuang XC, Zhang XS, Shi SL. Ultrasound-assisted extraction optimization of polyphenols from Boletus bicolor and evaluation of its antioxidant activity. Front Nutr 2023; 10:1135712. [PMID: 37063317 PMCID: PMC10090463 DOI: 10.3389/fnut.2023.1135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionBoletus bicolor (B. bicolor) mushrooms are widely consumed as a valuable medicinal and dietary ingredient in China, but the active ingredients of this mushroom and their extraction methods were not extensively studied.MethodsIn this paper, we propose an optimized ultrasound-assisted extraction (UAE) method to detect natural antioxidant substances in B. bicolor. The antioxidants were quantitatively and quantitatively determined using UPLC-MS, the polyphenols were evaluated based on response surface methodology (RSM), and density functional theory (DFT) calculations were performed.ResultsThe results showed that the optimal extraction was obtained under the following conditions: ethanol concentration 42%; solvent to solid ratio 34:1 mL/g; ultrasonic time 41 min; and temperature 40°C. The optimized experimental polyphenol value obtained under these conditions was (13.69 ± 0.13) mg/g, consistent with the predicted value of 13.72 mg/g. Eight phenolic compounds in the extract were identiffed by UPLC-MS: syringic acid, chlorogenic acid, gallic acid, rosmarinic acid, protocatechuic acid, catechin, caffeic acid, and quercetin. Chlorogenic acid exhibits the highest HOMO energy (−0.02744 eV) and the lowest energy difference (−0.23450 eV) among the studied compounds, suggesting that the compound might be the strongest antioxidant molecule. Eight phenolic compounds from the B. bicolor signiffcantly inhibited intracellular reactive oxygen species (ROS) generation, reduced oxidative stress damage in H2O2-induced HepG-2 cells.DiscussionTherefore, it was confirmed that the UAE technique is an efficient, rapid, and simple approach for extracting polyphenols with antioxidant activity from B. bicolor.
Collapse
|
42
|
Li M, Qian M, Jiang Q, Tan B, Yin Y, Han X. Evidence of Flavonoids on Disease Prevention. Antioxidants (Basel) 2023; 12:antiox12020527. [PMID: 36830086 PMCID: PMC9952065 DOI: 10.3390/antiox12020527] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence highlights the properties of flavonoids in natural foods for disease prevention. Due to their antioxidative, anti-inflammatory, and anti-carcinogenic activities, flavonoids have been revealed to benefit skeletal muscle, liver, pancreas, adipocytes, and neural cells. In this review, we introduced the basic classification, natural sources, and biochemical properties of flavonoids, then summarize the experimental results and underlying molecular mechanisms concerning the effects of flavonoid consumption on obesity, cancers, and neurogenerative diseases that greatly threaten public health. Especially, the dosage and duration of flavonoids intervening in these diseases are discussed, which might guide healthy dietary habits for people of different physical status.
Collapse
Affiliation(s)
- Meng Li
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengqi Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982446
| |
Collapse
|
43
|
TNF-α and IL-1β in Diabetes-Induced Liver Damage: The Relationship between Trachyspermum ammi Seeds Methanol Extract and Inflammatory Cytokine Inhibition. J Food Biochem 2023. [DOI: 10.1155/2023/5296711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this study was to determine the effect of Trachyspermum ammi (T. ammi) on the liver of streptozotocin (STZ)-induced diabetic rats. This study began by identifying the methanolic composition of T. ammi. The presence of three compounds was determined using gas chromatography-mass spectrometry (GC-MS), with Thymol (60.705%), ϒ-Terpinene (22.216%), and P-cymene (17.078%) being the most prevalent. Afterwards, diabetic rats were treated with T. ammi (200–500 mg/kg) or losartan (20 mg/kg) daily for 60 days. In the diabetic rats treated with T. ammi, levels of hepatic indicators, lipid peroxidation markers, and proinflammatory mediators decreased significantly. In the liver of T. ammi-treated diabetic rats, glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH) increased significantly. Despite the fact that proinflammatory cytokine levels were significantly increased, interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels decreased in the groups administered the extract. From these results, it can be concluded that T. ammi significantly restored the liver’s antioxidant balance and inflammation caused by hyperglycemia.
Collapse
|
44
|
Wang M, Hu WJ, Wang QH, Yang BY, Kuang HX. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. Int J Biol Macromol 2023; 226:562-579. [PMID: 36521698 DOI: 10.1016/j.ijbiomac.2022.12.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
45
|
He D, Cai M, Liu M, Yang P. TMT-based quantitative proteomic and physiological analyses on lotus plumule of artificially aged seed in long-living sacred lotus Nelumbo nucifera. J Proteomics 2023; 270:104736. [PMID: 36174953 DOI: 10.1016/j.jprot.2022.104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 02/01/2023]
Abstract
Seed longevity is important for the maintenance of seed nutritional quality, vigor, and germination potential during storage. Sacred lotus is known as one of the longest living seeds in the world and their ability to maintain longevity has been widely investigated. In this study, a suitable controlled deterioration treatment (CDT) method was first established to evaluate the vigor loss of lotus plumule (LP), and then the Tandem Mass Tags (TMT)-based proteomic analysis was performed on LP from the CDT-treated seed to quantitatively and qualitatively analyze the protein profile dynamic. In total, 4002 proteins were successfully quantified, of them, 558 differently accumulated proteins (DAPs) were identified. Protein processing and RNA-related proteins were found more easily to be affected by CDT, which may directly result in seed vigor loss. Meanwhile, CDT resulted in remarkable up-regulation of numerous proteins related to antioxidation, photosynthesis, RNA and DNA stability, starch and sucrose mobilization, and cell membrane and wall stability, which potentially played key roles in maintaining the lotus seed vigor under CDT. Histological and physiological analyses were also performed to verify some proteome results. This study provided both fundamental data and new insights to further uncover the secret of lotus seed longevity. SIGNIFICANCE: Seed aging affects the seed quality and can result in direct economic losses. The exceptional longevity of sacred lotus seed has attracted extensive attention. In this study, an optimized CDT method was used to mimic the natural aging process of sacred lotus seed, and based on TMT-based quantitative proteomic analysis on the LP profile of CDT-treated seeds, a series of differentially accumulation of specific proteins (DEPs) were revealed related to CDT resistance. Correspondingly, the physiological state and histological structure of the LP along with the CDT were detected to verify the proteome data. This study provided comprehensive information for the molecular basis of lotus seed aging analysis and facilitate to screen seed longevity related proteins for other plant species.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Mengmeng Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meihui Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
46
|
He D, Rao X, Deng J, Damaris RN, Yang P. Integration of metabolomics and transcriptomics analyses investigates the accumulation of secondary metabolites in maturing seed plumule of sacred lotus (Nelumbo nucifera). Food Res Int 2023; 163:112172. [PMID: 36596118 DOI: 10.1016/j.foodres.2022.112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Lotus seed plumule (LP) is rich in a variety of antioxidant and anti-inflammatory secondary metabolites, making it a traditional food and medicine widely used in China. Physiological and histological evidences indicated that LP mainly accumulated metabolites in 15-24 days after pollination (DAP) during their development. To systematically investigate the dynamic accumulation of major secondary metabolites, the UPLC-HRMS-based widely targeted metabolomics analyses were performed on maturing LP at 15, 18, 21, and 24 DAP. In total, 767 metabolites were identified, including many secondary metabolites, e.g., 27 % flavonoids and 8 % alkaloids. Among them, 591 were identified as differentially accumulated metabolites (DAMs). The majority of secondary metabolites showed great accumulation after 18 DAP even at the late stage of LP maturation, such as hesperidin, neohesperidin, orobol, serotonin, and lotus special O-nornuciferine, endowing mature LP with effective pharmaceutical properties. The paralleled transcriptomic analysis identified 11,019 differentially expressed genes (DEGs). Based on the comprehensive data, several systematical metabolic regulation maps were established for different secondary metabolites, and 18 DAP was found as a switching point for LP maturing from active primary metabolism to massive secondary metabolites deposition. This study provides valuable information for understanding the mechanism of secondary metabolite accumulation in maturing LP and facilitates its pharmaceutical application.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiao Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Rebecca N Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Department of Biological Sciences, Pwani University, 195-80108 Kilifi, Kenya
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
47
|
Extraction and Identification of Antioxidant Ingredients from Cyclocarya paliurus (Batal.) Iljinsk Using UHPLC-Q-Orbitrap-MS/MS-Based Molecular Networking. J CHEM-NY 2022. [DOI: 10.1155/2022/8260379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja (LCP) leaves have been widely employed in food and traditional medicine for treating hyperlipidaemia and its complications, possibly owing to their antioxidant properties. The aim of the present study is to identify the chemical ingredients of antioxidant extracts from LCP by using UHPLC-Q-Orbitrap-MS/MS-based molecular networking, a very recent and useful tool for annotation of chemical constituents in mixtures. The extraction conditions of antioxidant extracts from LCP were optimised by single-factor analysis and response surface methodology (RSM). The optimised conditions were a methanol concentration of 32%, a liquid-to-solid ratio of 0.4 ml/mg, an extraction temperature of 25°C, and an extraction time of 32 min. Under these conditions, the antioxidant yield was 516.20 ± 28.52 μmol TE/ml. The main active ingredients in the antioxidants were identified by UHPLC-Q-Exactive Orbitrap-MS-based molecular networking. In total, 42 compounds were identified, including 20 flavonoids, 16 quinic acid derivatives, 4 caffeoyl derivatives, and 2 coumaroyl derivatives. The findings of the present work suggest that LCP could be a suitable source of natural antioxidant compounds, which might be applicable in the development of potential pharmaceutical drugs targeting diseases related to oxidative stress.
Collapse
|
48
|
Qin X, Xu X, Hou X, Liang R, Chen L, Hao Y, Gao A, Du X, Zhao L, Shi Y, Li Q. The pharmacological properties and corresponding mechanisms of farrerol: a comprehensive review. PHARMACEUTICAL BIOLOGY 2022; 60:9-16. [PMID: 34846222 PMCID: PMC8635655 DOI: 10.1080/13880209.2021.2006723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Farrerol, a typical natural flavanone isolated from the traditional Chinese herb 'Man-shan-hong' [Rhododendron dauricum L. (Ericaceae)] with phlegm-reducing and cough-relieving properties, is widely used in China for treating bronchitis and asthma. OBJECTIVE To present the anti-inflammatory, antioxidant, vasoactive, antitumor, and antimicrobial effects of farrerol and its underlying molecular mechanisms. METHODS The literature was reviewed by searching PubMed, Medline, Web of Knowledge, Scopus, and Google Scholar databases between 2011 and May 2021. The following key words were used: 'farrerol,' 'flavanone,' 'anti-inflammatory,' 'antioxidant,' 'vasoactive,' 'antitumor,' 'antimicrobial,' and 'molecular mechanisms'. RESULTS Farrerol showed anti-inflammatory effects mainly mediated via the inhibition of interleukin (IL)-6/8, IL-1β, tumour necrosis factor(TNF)-α, NF-κB, NO, COX-2, JNK1/2, AKT, PI3K, ERK1/2, p38, Keap-1, and TGF-1β. Farrerol exhibited antioxidant effects by decreasing JNK, MDA, ROS, NOX4, Bax/Bcl-2, caspase-3, p-p38 MAPK, and GSK-3β levels and enhancing Nrf2, GSH, SOD, GSH-Px, HO-1, NQO1, and p-ERK levels. The vasoactive effects of farrerol were also shown by the reduced α-SMA, NAD(P)H, p-ERK, p-Akt, mTOR, Jak2, Stat3, Bcl-2, and p38 levels, but increased OPN, occludin, ZO-1, eNOS, CaM, IP3R, and PLC levels. The antitumor effects of farrerol were evident from the reduced Bcl-2, Slug, Zeb-1, and vimentin levels but increased p27, ERK1/2, p38, caspase-9, Bax, and E-cadherin levels. Farrerol reduced α-toxin levels and increased NO production and NF-κB activity to impart antibacterial activity. CONCLUSIONS This review article provides a theoretical basis for further studies on farrerol, with a view to develop and utilise farrerol for treating of vascular-related diseases in the future.
Collapse
Affiliation(s)
- Xiaojiang Qin
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- CONTACT Xiaojiang Qin School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Shanxi, China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liangjing Chen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuxuan Hao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Anqi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xufeng Du
- Department of Exercise Rehabilitation, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liangyuan Zhao
- Department of Exercise Rehabilitation, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, Shanxi, China
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Chronic Inflammatory Targeted Drugs, School of Materia Medica, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, China
- Qingshan Li School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
49
|
Liu D, Pi J, Zhang B, Zeng H, Li C, Xiao Z, Fang F, Liu M, Deng N, Wang J. Phytosterol of lotus seed core powder alleviates hypercholesterolemia by regulating gut microbiota in high-cholesterol diet-induced C57BL/6J mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
50
|
Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed Pharmacother 2022; 156:113945. [DOI: 10.1016/j.biopha.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
|