1
|
Din FU, Kim DS, Kim JS, Cheon S, Park S, Woo S, Woo MR, Ali Z, Kim JO, Jin SG, Choi HG. Comparative analysis of novel modified drug delivery systems for improving the oral bioavailability of water-insoluble tadalafil using copovidone, TPGS and hydroxypropyl-β-cyclodextrin. Biomed Pharmacother 2025; 186:118039. [PMID: 40194333 DOI: 10.1016/j.biopha.2025.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
This study aims to develop novel modified drug delivery systems (MDDS) including solid dispersions, solid self-nanoemulsifying drug delivery system (S-SNEDDS) and inclusion compound (IC) of poorly water-soluble tadalafil using various biological macromolecules and compare their ability to improve solubility, dissolution and bioavailability. Ingredients of MDDS were extensively screened using SEM, DSC, and XRD. The MDDS were testified for improved solubilization, dissolution, and bioavailability and were compared with tadalafil powder and commercial product (Cialis tablets 20 mg). All MDDS demonstrated excellent physicochemical properties, improved solubility and dissolution of tadalafil. The sequence of highest solubilization and dissolution was found to be SE-solid dispersion, S-SNEDDS, SA-solid dispersion, and IC. SE-solid dispersion and IC showed spherical morphology and comparatively small particle size. In SA-solid dispersion, the hydrophilic carriers were found attached with the drug surface. Similarly, S-SNEDDS demonstrated the absorbance of L-SNEDDS inside the pores and surface of calcium silicate. All MDDS showed improved oral bioavailability (P < 0.05) in the order of SE-solid dispersion ≥ S-SNEDDS > SA-solid dispersion > commercial product > IC, when compared with tadalafil powder in rats. Thus, the SE-solid dispersion with highest solubility (660-folds) and oral bioavailability (10-folds) of tadalafil may be recommended as the most suitable candidate for the development of oral pharmaceutical products.
Collapse
Affiliation(s)
- Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea; Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Zakir Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
2
|
Rivera P, Torres A, Pacheco M, Romero J, Arrieta MP, Rodríguez-Mercado F, Bruna J. Integration of Complexed Caffeic Acid into Poly(Lactic Acid)-Based Biopolymer Blends by Supercritical CO 2-Assisted Impregnation and Foaming: Processing, Structural and Thermal Characterization. Polymers (Basel) 2025; 17:803. [PMID: 40292679 DOI: 10.3390/polym17060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon dioxide (scCO2) for the formation of polymeric foam and the incorporation of active ingredients, in conjunction with the encapsulation of inclusion complexes (ICs), to ensure physical stability and augmented bioactivity. The objective of this study was to assess the impact of IC impregnation and subsequent foam formation on PLA films and PLA/PBAT blends that had been previously impregnated. The study's methodology encompassed the formation and characterization of ICs with caffeic acid (CA) and β-cyclodextrin (β-CD), along with the thermal, structural, and morphological properties of the resulting materials. Higher incorporation of impregnated IC into the PLA(42)/PBAT(58) blend was observed at 12 MPa pressure and a depressurization rate of 1 MPa/min. The presence of IC, in addition to a lower rate of expansion, contributed to the formation of homogeneous cells with a size range of 4-44 um. On the other hand, the incorporation of IC caused a decrease in the crystallinity of the PLA fraction due to the interaction of the complex with the polymer. This study makes a significant contribution to the advancement of knowledge on the incorporation of compounds encapsulated in β-CD by scCO2, as well as to the development of active materials with potential applications in food packaging.
Collapse
Affiliation(s)
- Patricia Rivera
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Miguel Pacheco
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile
| | - Marina P Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación, Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Julio Bruna
- Packaging Innovation Center (LABEN), Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
3
|
Wu Y, Wang L, Hu C, Tian R. mPEG-PCL modified Caffeic acid eye drops for endotoxin-induced uveitis treatment. Sci Rep 2025; 15:9018. [PMID: 40089591 PMCID: PMC11910657 DOI: 10.1038/s41598-025-94296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
The modulation of inflammatory mediators has emerged as a critical therapeutic strategy in uveitis management. Current nonsteroidal anti-inflammatory therapies face limitations due to systemic side effects. Caffeic acid (CA), a natural polyphenol with anti-inflammatory properties, holds therapeutic potential but suffers from poor solubility and ocular irritation. This study aimed to develop mPEG-PCL-modified CA-loaded nanoparticles (NanoCA) as a non-invasive eye drop formulation to enhance CA's solubility, bioavailability, and efficacy in treating endotoxin-induced uveitis (EIU). NanoCA was synthesized via the thin-film hydration method, characterized for size, zeta potential, drug loading, and release profile. Cytotoxicity was assessed in human corneal epithelial and RAW264.7 cells. Ocular tolerance was tested via slit-lamp and histopathological examinations. In vivo efficacy was evaluated in an EIU rat model using clinical scoring, histopathology, and immunofluorescence. NanoCA formed uniform nanospheres (42.40 ± 0.22 nm, -0.97 mV) with high encapsulation efficiency (99.17%). It exhibited sustained release over 12 h and reduced cytotoxicity compared to free CA. In EIU rats, NanoCA significantly suppressed inflammation, downregulated CD68 expression, and preserved aqueous barrier integrity. Histopathology confirmed minimal inflammatory infiltrates in NanoCA-treated eyes. The formulation demonstrated excellent ocular biocompatibility without corneal damage. NanoCA eye drops offer a safe, non-invasive therapeutic strategy for EIU, combining enhanced anti-inflammatory efficacy with high ocular tolerance. This nanoformulation presents a promising alternative to conventional CA delivery methods.
Collapse
Affiliation(s)
- Yiping Wu
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Lixu Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Chengda Hu
- The Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruikang Tian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000.
| |
Collapse
|
4
|
Zhou S, Yu Z, Yao W, Wang M, Yang Y, Qin J, Wu X, Guo C. Pectin/caffeic acid nanoparticles in a poloxamer thermosensitive gel for the treatment of ulcerative colitis by inhibiting cGAS-STING pathway. Colloids Surf B Biointerfaces 2025; 247:114419. [PMID: 39626611 DOI: 10.1016/j.colsurfb.2024.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025]
Abstract
Ulcerative colitis is a recurring condition that causes inflammation and sores in the digestive system. Current clinical treatments for ulcerative colitis have limitations due to side effects and poor patient compliance. This study investigates the therapeutic potential of a novel drug delivery system, CA-Gel, which comprises caffeic acid (CA) stabilized by pectin nanoparticles within a poloxamer thermosensitive gel for rectal administration. The system aims to provide controlled and sustained release of CA directly to the colon. In vitro studies demonstrated that CA-Gel exhibited excellent biocompatibility, cytoprotective effects, and reduced oxidative stress and cellular apoptosis. In vivo studies using a dextran sulfate sodium (DSS)-induced colitis mouse model showed that CA-Gel significantly alleviated colitis symptoms, as evidenced by improvements in body weight, disease activity index (DAI), colon length, and histopathological assessments. Additionally, CA-Gel modulated the Cyclic GMP AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, reduced mitochondrial DNA (mtDNA) release, and inhibited inflammatory cytokines, thereby demonstrating its therapeutic potential in ulcerative colitis. The study concludes that CA-Gel is a promising rectal treatment for ulcerative colitis, offering a safe and effective alternative to existing pharmacological therapies.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhenxin Yu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenqing Yao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengdi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongqiang Yang
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Yanxin Road 330, Wuxi 214174, China
| | - Jien Qin
- Graphene Source technology Wuxi Co. Ltd. 801-1, Building A Tsinghua Entrepreneurship Building, No. 3 Qingyan Road, Huishan District, Wuxi City, Jiangsu Province, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
6
|
Ding J, Li X, Jin Z, Hachem MA, Bai Y. Efficient glycosylation of polyphenols via dynamic complexation of cyclodextrin and synchronous coupling reaction with cyclodextrin glycosyltransferase in water. Int J Biol Macromol 2024; 280:136065. [PMID: 39353521 DOI: 10.1016/j.ijbiomac.2024.136065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Glycosylation is an effective way to promote the total intake of polyphenols in humans by increasing the solubility of polyphenols. In this study, an efficient glycosylation system was built via the dynamic complexation of CD with polyphenols and synchronous coupling reaction with cyclodextrin glycosyltransferase (CGTase) in water. The glycosylation efficiencies of quercetin, naringenin, rutin, resveratrol and caffeic acid were 20.9, 3.6, 2.7, 3.4 and 1.5 times higher than the non-complexed system. To quantify conversion rate and determine the rate-limiting step, the mixed product was treated with amyloglucosidase to obtain α-glucosyl rutin, which was identified as rutin 4"-O-α-D-glucopyranoside with purity of 93.6 % and yield of 34.8 % from NMR, MS and HPLC analysis. The results of half-reaction kinetics showed that the catalytic efficiencies of ring-opening of γ-CD (k1) and glycosylation reaction of rutin (k2) were 621.92 and 9.43 mM-1·s-1. The rate-limiting step was clarified for the first time, showing that the ring-opening ability of CGTase to CD was much higher than its glycosylation ability to polyphenols. It is speculated that the rapid ring-opening reaction of CD affected its dynamic complexation, releasing many polyphenols which were not utilized by CGTase in time. Therefore, adjusting the ratio and concentration of CD resulted in an optimal glycosylation molar yield of 84.1 % for rutin, which was the highest yield reported so far in water. This study established a universal system and clarified the rate-limiting step in the enzymatic glycosylation, providing theoretical guidance for efficient production of polyphenol glycosylation.
Collapse
Affiliation(s)
- Jiaqi Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Wei Z, Zhang W, Du M, Zhong H, Fang X. Widely targeted metabolomic and KEGG analyses of natural deep eutectic solvent-based saponins extraction from Camellia oleifera Abel.: Effects on composition. Food Chem 2024; 450:139333. [PMID: 38636384 DOI: 10.1016/j.foodchem.2024.139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Camellia saponins are important by-products of Camellia Oleifer Abel. processing. In this study, an eco-friendly method based on natural deep eutectic solvents (NaDESs, proline and glycerol at a molar ratio of 2:5) was established to extract saponins from C.oleifera cakes. The content of saponin (702.22 ± 1.28 mg/g) obtained using NaDES was higher than those extracted using water or methanol. UPLC-Q-TOF MS analysis of chemical structure showed that the difference in the extraction technique alter individual saponins. A widely targeted metabolomic approach and KEGG metabolic pathway analysis showed that the upregulated metabolites in the NaDES-based extract mainly included flavonoids, alkaloids, and phenolic acids; and they were involved in arginine and proline metabolism, metabolic pathways, phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, and flavonoid biosynthesis. The present study proposes a selective substitute for use in the extraction of camellia saponins with composition analysis.
Collapse
Affiliation(s)
- Zhenqian Wei
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China
| | - Weiyan Zhang
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China; Food Science and Technology College, Central South University of Forestry & Technology, Changsha City, Hunan Province 410004, China
| | - Menghao Du
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China
| | - Haiyan Zhong
- Food Science and Technology College, Central South University of Forestry & Technology, Changsha City, Hunan Province 410004, China
| | - Xuezhi Fang
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China.
| |
Collapse
|
8
|
Xiao Z, Yu P, Sun P, Kang Y, Niu Y, She Y, Zhao D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr Polym 2024; 333:121977. [PMID: 38494230 DOI: 10.1016/j.carbpol.2024.121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
9
|
Peng X, Wu Y, Chen L, Ma X. Responses of Vallisneria natans and Pistia stratiotes to Cu 2+ and Mn 2+ stress: Occurrence of caffeic acid and its degradation kinetics during chlorination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116209. [PMID: 38492482 DOI: 10.1016/j.ecoenv.2024.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Macrophytes are crucial in maintaining the equilibrium of aquatic ecosystems. However, the pattern of macrophyte-derived caffeic acid (CA) release under heavy metal stress is yet to be fully understood. More importantly, due to its functional groups, CA may be a precursor to the formation of disinfection by-products, posing threats to water ecology and even safety of human drinking water. This study analyzed the responses of CA released by Vallisneria natans (V. natans) and Pistia stratiotes (P. Stratiotes) when exposed to Cu2+ and Mn2+ stress. Additionally, the CA levels in two constructed wetland ponds were detected and the degradation kinetics of CA during chlorination were investigated. Results indicated that CA occurred in two constructed wetland ponds with the concentrations of 44.727 μg/L (planted with V. natans) and 61.607 μg/L (planted with P. Stratiotes). Notably, heavy metal stress could significantly affect CA release from V. natans and P. Stratiotes. In general, under Cu2+ stress, V. natans secreted far more CA than under Mn2+ stress, the level could reach up to 435.303 μg/L. However, compared to V. natans, P. Stratiotes was less affected by Cu2+ and Mn2+ stress, releasing a maximum CA content of 55.582 μg/L under 5 mg/L Mn2+ stress. Aquatic macrophytes secreted more CA in response to heavy metal stresses and protected macrophytes from harmful heavy metals. CA degradation followed the pseudo first-order kinetics model, and the chlorination of CA conformed to a second-order reaction. The reaction rate significantly accelerated as NaClO, pH, temperature and Br- concentration increased. A new pathway for CA degradation and a new DBP 2, 2, 3, 3-tetrachloropropanal were observed. These findings pointed at a new direction into the adverse effect of CA, potentially paving the way for new strategies to solve drinking water safety problems.
Collapse
Affiliation(s)
- Xiaoyu Peng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Institute of Applied Ecology, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Lixia Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Ma
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Liu X, Zhang Y, Sun S. Lipophilic alkyl caffeate synthesis using a novel green binuclear ionic liquid 1,1-bis(2-pyrrolidinone) sulfate ([C 3(Hnhp) 2][HSO 4] 2) catalyst. Food Chem 2024; 434:137500. [PMID: 37751672 DOI: 10.1016/j.foodchem.2023.137500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Caffeic acid (CA), as a potential green antioxidant, plays an important role in food processing. However, the low liposolubility of CA limits its applications. To overcome this issue, CA is normally modified by introducing a lipophilic group, such as alkyl alcohols, resulting in the formation of alkyl caffeate, which can significantly enhance the liposolubility of CA. In this study, a binuclear ionic liquid, 1,1-bis(2-pyrrolidinone) sulfate ([C3(Hnhp)2][HSO4]2), is successfully synthesized and characterized by FT-IR and 1H NMR. The physico-chemical properties of [C3(Hnhp)2][HSO4]2, including the density, viscosity, thermal stability and Brønsted acidity, were analyzed. As a novel catalyst for the esterification of CA with model dodecanol, its catalytic performance was investigated and optimized by response surface methodology. Under the optimal conditions, a 95.42 ± 1.01% yield of dodecanol caffeate was achieved. Moreover, the [C3(Hnhp)2][HSO4]2 exhibits excellent stability and reusability, making it a highly promising catalyst for the synthesis of various lipophilic alkyl caffeates.
Collapse
Affiliation(s)
- Xuejing Liu
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Yaoyao Zhang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Shangde Sun
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
11
|
Arab N, Fotouhi L, Shokouhi M, A Mehrgardi M, Salis A. A multichannel closed bipolar platform to visual electrochemiluminescence sensing of caffeic acid as a model: Potential for multiplex detection. Anal Chim Acta 2024; 1287:342087. [PMID: 38182342 DOI: 10.1016/j.aca.2023.342087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
In this study, a fully-featured electrochemiluminescence (ECL) sensing platform based on a multichannel closed bipolar system (closed-BP, C-BP) for the determination of caffeic acid (CA) was successfully developed. The system comprises three individual reservoirs connected to each other by two pairs of gold rods as bipolar electrodes. Moreover, a single pair of gold rods functions as the driving electrodes. Due to configuration consisting of three channels and double-bipolar electrodes, the detection of CA was accomplished in two oxidation and reduction pathways within a single device. Firstly, through close observation of the reactions occurring within the device and utilizing a universal pH indicator and bipolar electrodes, a precise mechanism for the current bipolar systems was initially proposed. Then, the concentration of CA was monitored in the reporting chamber through the following ECL intensities resulting from luminol oxidation and H2O2. The monitoring process was performed using both a photomultiplier tube (PMT) and a digital camera. In the process of analyte oxidation, the PMT and visual (camera)-based detection exhibited a linear response from 5 μmol L-1 to 700 μmol L-1 (limit of detection (LOD) 1.2 μmol L-1) and 50 μmol L-1 to 600 μmol L-1 (LOD 14.8 μmol L-1), respectively. In the analyte reduction pathway, the respective values were 30 μmol L-1 to 450 μmol L-1 (LOD 8.6 μmol L-1) and 55 μmol L-1 to 400 μmol L-1 (LOD 21.2 μmol L-1), for the PMT and visual-based detection, respectively. Our experiments have demonstrated the practical application of the sensor array for efficient and high-performance analysis. This innovative design holds significant potential for diverse fields and paves the way for the development of a user-friendly device.
Collapse
Affiliation(s)
- Nastaran Arab
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Lida Fotouhi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran; Analytical and Bioanalytical Research Centre (ABRC), Alzahra University, Tehran, Iran.
| | - Maryam Shokouhi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, CSGI & CNBS, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy
| |
Collapse
|
12
|
Prelac M, Palčić I, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Major N. Biochar from Grapevine Pruning Residues as an Efficient Adsorbent of Polyphenolic Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4716. [PMID: 37445031 DOI: 10.3390/ma16134716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Agricultural waste, which is produced in large quantities annually, can be a threat to the environment. Biochar (BC) production represents a potential solution for reducing the amount of grapevine pruning residues and, accordingly, the impact on the environment and climate change. Biochar produced by the process of pyrolysis from grapevine pruning residues was investigated and characterized to be applied as an adsorbent of polyphenolic compounds with the aim of using the waste from viticultural production to obtain a quality product with adsorption and recovery potential. Standards of caffeic acid (CA), gallic acid (GA), and oleuropein (OLP) were used as polyphenolic representatives. The obtained data were fitted with the Langmuir and Freundlich isotherms models to describe the adsorption process. The best KL (0.39) and R2 (0.9934) were found for OLP using the Langmuir model. Furthermore, the adsorption dynamics and recovery potential of BC were investigated using an adapted BC column and performed on an HPLC instrument. The adsorption dynamics of biochar resulted in the adsorption of 5.73 mg CA g-1 of BC, 3.90 mg GA g-1 of BC, and 3.17 mg OLP g-1 of BC in a 24 h contact. The online solid phase extraction of the compounds performed on an HPLC instrument yielded a recovery of 41.5 ± 1.71% for CA, 61.8 ± 1.16% for GA, and 91.4 ± 2.10% for OLP. The investigated biochar has shown a higher affinity for low-polar compound adsorption and, consequently, a higher polar compound recovery suggesting its potential as an efficient polyphenolic compound adsorbent.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Igor Palčić
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Danko Cvitan
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dominik Anđelini
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Maja Repajić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | | | | | - Zoran Užila
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dean Ban
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Institute of Agriculture and Turism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|
13
|
Triolo A, Lo Celso F, Fourmentin S, Russina O. Liquid Structure Scenario of the Archetypal Supramolecular Deep Eutectic Solvent: Heptakis(2,6-di- O-methyl)-β-cyclodextrin/levulinic Acid. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9103-9110. [PMID: 37351462 PMCID: PMC10283020 DOI: 10.1021/acssuschemeng.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Indexed: 06/24/2023]
Abstract
The concept of supramolecular solvents has been recently introduced, and the extended liquid-state window accessible for mixtures of functionalized cyclodextrins (CDs) with hydrogen bond (HB) donor species, e.g., levulinic acid, led to the debut of supramolecular deep eutectic solvents (SUPRA-DES). These solvents retain CD's inclusion ability and complement it with enhanced solvation effectiveness due to an extended HB network. However, so far, these promising features were not rationalized in terms of a microscopic description, thus hindering a more complete capitalization. This is the first joint experimental and computational study on the archetypal SUPRA-DES: heptakis(2,6-di-O-methyl)-β-CD/levulinic acid (1:27). We used X-ray scattering to probe CD's aggregation level and molecular dynamics simulation to determine the nature of interactions between SUPRA-DES components. We discover that CDs are homogeneously distributed in bulk and that HB interactions, together with the electrostatic ones, play a major role in determining mutual interaction between components. However, dispersive forces act in synergy with HB to accomplish a fundamental task in hindering hydrophobic interactions between neighbor CDs and maintaining the system homogeneity. The mechanism of mutual solvation of CD and levulinic acid is fully described, providing fundamental indications on how to extend the spectrum of SUPRA-DES combinations. Overall, this study provides the key to interpreting structural organization and solvation tunability in SUPRA-DES to extend the range of sustainable applications for these new, unique solvents.
Collapse
Affiliation(s)
- Alessandro Triolo
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
| | - Fabrizio Lo Celso
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Physics and Chemistry, Università
di Palermo, Palermo 90133, Italy
| | - Sophie Fourmentin
- Unité
de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR
4492), Université du Littoral Côte
d’Opale (ULCO), 59140 Dunkerque, France
| | - Olga Russina
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
14
|
Santos WBR, Pina LTS, de Oliveira MA, Santos LABO, Batista MVA, Trindade GGG, Duarte MC, Almeida JRGS, Quintans-Júnior LJ, Quintans JSS, Serafini MR, Coutinho HDM, Kowalska G, Baj T, Kowalski R, Guimarães AG. Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study. Molecules 2023; 28:molecules28114465. [PMID: 37298941 DOI: 10.3390/molecules28114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Pain is one of the most prevalent and difficult to manage symptoms in cancer patients, and conventional drugs present a range of adverse reactions. The development of β-cyclodextrins (β-CD) complexes has been used to avoid physicochemical and pharmacological limitations due to the lipophilicity of compounds such as p-Cymene (PC), a monoterpene with antinociceptive effects. Our aim was to obtain, characterize, and measure the effect of the complex of p-cymene and β-cyclodextrin (PC/β-CD) in a cancer pain model. Initially, molecular docking was performed to predict the viability of complex formation. Afterward, PC/β-CD was obtained by slurry complexation, characterized by HPLC and NMR. Finally, PC/β-CD was tested in a Sarcoma 180 (S180)-induced pain model. Molecular docking indicated that the occurrence of interaction between PC and β-CD is favorable. PC/β-CD showed complexation efficiency of 82.61%, and NMR demonstrated PC complexation in the β-CD cavity. In the S180 cancer pain model, PC/β-CD significantly reduced the mechanical hyperalgesia, spontaneous nociception, and nociception induced by non-noxious palpation at the doses tested (p < 0.05) when compared to vehicle differently from free PC (p > 0.05). Therefore, the complexation of PC in β-CD was shown to improve the pharmacological effect of the drug as well as reducing the required dose.
Collapse
Affiliation(s)
- Wagner B R Santos
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Lícia T S Pina
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marlange A de Oliveira
- Departament of Physiology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Lucas A B O Santos
- Departament of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marcus V A Batista
- Departament of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Gabriela G G Trindade
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marcelo C Duarte
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Jackson R G S Almeida
- Department of Pharmacy, Federal University of Vale do São Francisco, Juazeiro 48902-300, BA, Brazil
| | | | - Jullyana S S Quintans
- Departament of Physiology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Mairim R Serafini
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry (DBQ), Regional University of Cariri (URCA), Pimenta, Crato 63105-000, CE, Brazil
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Adriana G Guimarães
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| |
Collapse
|
15
|
Stasiłowicz-Krzemień A, Rosiak N, Miklaszewski A, Cielecka-Piontek J. Screening of the Anti-Neurodegenerative Activity of Caffeic Acid after Introduction into Inorganic Metal Delivery Systems to Increase Its Solubility as the Result of a Mechanosynthetic Approach. Int J Mol Sci 2023; 24:9218. [PMID: 37298169 PMCID: PMC10252749 DOI: 10.3390/ijms24119218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The proven anti-neurodegenerative properties of caffeic acid in vivo are limited due to its poor solubility, which limits bioavailability. Therefore, caffeic acid delivery systems have been developed to improve caffeic acid solubility. Solid dispersions of caffeic acid and magnesium aluminometasilicate (Neusilin US2-Neu) were prepared using the ball milling and freeze-drying techniques. The solid dispersions of caffeic acid:Neu obtained by ball milling in a 1:1 mass ratio turned out to be the most effective. The identity of the studied system in comparison to the physical mixture was confirmed using the X-Ray Powder Diffractionand Fourier-transform infrared spectroscopy techniques. For caffeic acid with improved solubility, screening tests were carried out to assess its anti-neurodegenerative effect. The obtained results on the inhibition of acetylcholinesterase, butyrylcholinesterase, tyrosinase, and antioxidant potential provide evidence for improvement of caffeic acid's anti-neurodegenerative activity. As a result of in silico studies, we estimated which caffeic acid domains were involved in interactions with enzymes showing expression relevant to the neuroprotective activity. Importantly, the confirmed improvement in permeability of the soluble version of caffeic acid through membranes simulating the walls of the gastrointestinal tract and blood-brain barrier further strengthen the credibility of the results of in vivo anti-neurodegenerative screening tests.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
16
|
Stanciauskaite M, Poskute M, Kurapkiene V, Marksa M, Jakstas V, Ivanauskas L, Kersiene M, Leskauskaite D, Ramanauskiene K. Optimization of Delivery and Bioavailability of Encapsulated Caffeic Acid. Foods 2023; 12:foods12101993. [PMID: 37238812 DOI: 10.3390/foods12101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Caffeic acid is a widely distributed phenolic acid. It is described in the scientific literature that caffeic acid has poor solubility. The aim of this study was to improve the solubility of caffeic acid for better dissolution kinetics when administered orally. During the study, oral capsules of different compositions were modeled. The results of the disintegration test revealed that the excipients affected the disintegration time of the capsules. The excipient hypromellose prolonged the disintegration time and dissolution time of caffeic acid. The dissolution kinetics of caffeic acid from capsules depend on the chosen excipients. P407 was more effective compared to other excipients and positively affected the dissolution kinetics of caffeic acid compared to other excipients. When the capsule contained 25 mg of β-cyclodextrin, 85% of the caffeic acid was released after 60 min. When the capsule contained 25-50 mg poloxamer 407, more than 85.0% of the caffeic acid was released from capsules after 30 min. The research results showed that in order to improve the dissolution kinetics of caffeic acid, one of the important steps is to improve its solubility.
Collapse
Affiliation(s)
- Monika Stanciauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Monika Poskute
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Vaida Kurapkiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Milda Kersiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Daiva Leskauskaite
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Kristina Ramanauskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
17
|
Saffarionpour S, Diosady LL. Preparation and characterization of an iron-β-cyclodextrin inclusion complex: factors influencing the host-guest interaction. Food Funct 2023. [PMID: 37161593 DOI: 10.1039/d3fo00090g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cyclodextrins have received attention recently due to their superior binding with countless hydrophobic molecules. The host-guest interaction between the cyclodextrin cavity and the hydrophobic component not only facilitates the formation of a strong inclusion complex (IC), but also improves its stability against thermal degradation. The functionality of cyclodextrins for the delivery of hydrophilic components is less explored in comparison. This study discusses the application of β-cyclodextrin (βCD) for the delivery of highly bioavailable and hydrophilic iron, ferric sodium EDTA, which exhibits great functionality in the presence of polyphenols and phytates with potential application in food fortification. The formation of IC was dependent on the cyclodextrin amount and alcoholic co-solvent and was influenced by the stirring duration. For ferric sodium EDTA, the highest inclusion rate (IR) of ∼77% was obtained after 72 hours of mixing in 25.4% (v/v) alcohol at a ratio of iron : βCD of 1 : 6. A higher IR (∼96%) was obtained after 6 hours of stirring with less soluble ferrous ammonium phosphate in comparison. The melting temperature (Tm) of the ferrous ammonium phosphate complex increased from ∼172 to ∼294 °C. The high IR and enhanced thermal resistance of the complex make βCDs potential carriers for ferrous ammonium phosphate delivery and fortification of foods processed at high temperatures.
Collapse
Affiliation(s)
- Shima Saffarionpour
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, Ontario, Canada.
| | - Levente L Diosady
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Kato LS, Lelis CA, da Silva BD, Galvan D, Conte-Junior CA. Micro- and nanoencapsulation of natural phytochemicals: Challenges and recent perspectives for the food and nutraceuticals industry applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:77-137. [PMID: 37236735 DOI: 10.1016/bs.afnr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Worldwide, there has been growing interest in the research, development, and commercialization of functional bioactive components and nutraceuticals. As a result of consumer awareness of the relationship between diet, health, and disease, the consumption of plant-derived bioactive components has recently increased in the past two decades. Phytochemicals are bioactive nutrient plant chemicals in fruits, vegetables, grains, and other plant foods that may provide desirable health benefits beyond essential nutrition. They may reduce the risk of major chronic diseases, cardiovascular diseases, cancer, osteoporosis, diabetes, high blood pressure, and psychotic diseases and have antioxidant, antimicrobial, and antifungal properties, cholesterol-lowering, antithrombotic, or anti-inflammatory effects. Phytochemicals have been recently studied and explored for various purposes, such as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents, biopesticides, and food additives. These compounds are known as secondary metabolites and are commonly classified as polyphenols, terpenoids (terpenes), tocotrienols and tocopherols, carotenoids, alkaloids and other nitrogen-containing metabolites, stilbenes and lignans, phenolic acids, and glucosinates. Thus, this chapter aims to define the general chemistry, classification, and essential sources of phytochemicals, as well as describe the potential application of phytochemicals in the food and nutraceuticals industry, explaining the main properties of interest of the different compounds. Finally, the leading technologies involving micro and nanoencapsulation of phytochemicals are extensively detailed to protect them against degradation and enhance their solubility, bioavailability, and better applicability in the pharmaceutical, food, and nutraceutical industry. The main challenges and perspectives are detailed.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bruno Dutra da Silva
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil; Residue Analysis Laboratory (LAB RES), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
20
|
Nakhle L, Kfoury M, Greige-Gerges H, Landy D. Retention of a plethora of essential oils and aromas in deep eutectic solvent:water:cyclodextrin mixtures. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Oral Pharmacokinetics of Hydroxycinnamic Acids: An Updated Review. Pharmaceutics 2022; 14:pharmaceutics14122663. [PMID: 36559157 PMCID: PMC9784852 DOI: 10.3390/pharmaceutics14122663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) such as caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA) and rosmarinic acid (RA) are natural phenolic acids with widespread distribution in vegetal foods and well-documented pharmacological activities. However, the low bioavailability of HCAs impairs their administration by the oral route. The present review addresses new findings and important factors/obstacles for their oral administration, which were unexplored in the reviews published a decade ago concerning the bioavailability of phenolic acids. Based on this, the article aims to perform an updated review of the water solubility and gastrointestinal stability of HCAs, as well as describe their oral absorption, distribution, metabolism and excretion (ADME) processes by in vitro, ex vivo, in situ and in vivo methods.
Collapse
|
22
|
Veras KS, Fachel FNS, Bassani VL, Teixeira HF, Koester LS. Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability-A Review. Pharmaceutics 2022; 14:pharmaceutics14112530. [PMID: 36432720 PMCID: PMC9699215 DOI: 10.3390/pharmaceutics14112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) are a subclass of phenolic acids presenting caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA), and rosmarinic acid (RA) as the major representants, being broadly distributed into vegetal species and showing a range of biological potentials. Due to the low oral bioavailability of the HCAs, the development of delivery systems to promote better administration by the oral route is demanding. Among the systems, cyclodextrin (CD)-based delivery systems emerge as an important technology to solve this issue. Regarding these aspects, in this review, CD-based delivery systems containing HCAs are displayed, described, and discussed concerning the degree of interaction and their effects on crucial parameters that affect the oral bioavailability of HCAs.
Collapse
|
23
|
Wang L, Zhang Y, Agbaka Johnpaul I, Hong K, Gao H, Song Y, Lv C, Ma C. Protein Z-based promising carriers for enhancing solubility and bioaccessibility of Xanthohumol. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Cyclodextrin polymers in combination with water and deep eutectic solvent for the retention of Eucalyptus citriodora essential oil. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Wdowiak K, Rosiak N, Tykarska E, Żarowski M, Płazińska A, Płaziński W, Cielecka-Piontek J. Amorphous Inclusion Complexes: Molecular Interactions of Hesperidin and Hesperetin with HP-Β-CD and Their Biological Effects. Int J Mol Sci 2022; 23:ijms23074000. [PMID: 35409360 PMCID: PMC9000012 DOI: 10.3390/ijms23074000] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed at obtaining hesperidin (Hed) and hesperetin (Het) systems with HP-β-CD by means of the solvent evaporation method. The produced systems were identified using infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC). Moreover, in silico docking and molecular dynamics studies were performed to assess the most preferable site of interactions between tested compounds and HP-β-CD. The changes of physicochemical properties (solubility, dissolution rate, and permeability) were determined chromatographically. The impact of modification on biological activity was tested in an antioxidant study as well as with regards to inhibition of enzymes important in pathogenesis of neurodegenerative diseases. The results indicated improvement in solubility over 1000 and 2000 times for Hed and Het, respectively. Permeability studies revealed that Hed has difficulties in crossing biological membranes, in contrast with Het, which can be considered to be well absorbed. The improved physicochemical properties influenced the biological activity in a positive manner by the increase in inhibitory activity on the DPPH radical and cholinoesterases. To conclude the use of HP-β-CD as a carrier in the formation of an amorphous inclusion complex seems to be a promising approach to improve the biological activity and bioavailability of Hed and Het.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Anita Płazińska
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (N.R.)
- Correspondence:
| |
Collapse
|
26
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022; 13:845871. [PMID: 35355732 PMCID: PMC8959753 DOI: 10.3389/fphar.2022.845871] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kayenat Sheikh
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar Mohali, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia.,Centre for International Collaboration and Research, Reva University, Bangalore, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Li B, Hu Y, Wu T, Feng Y, Jiang C, Du H, Lu S. Apigenin-oxymatrine binary co-amorphous mixture: Enhanced solubility, bioavailability, and anti-inflammatory effect. Food Chem 2022; 373:131485. [PMID: 34740050 DOI: 10.1016/j.foodchem.2021.131485] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Apigenin (APG) is a functional ingredient in many foods, but its poor water solubility results in low bioavailability. This study aimed at delivering APG and improving bioavailability by a food-friendly co-amorphous formulation of APG with oxymatrine (OMT). After preparation of co-amorphous mixture (CM), characterized by powder x-ray diffraction and thermal analysis. Then, the presence of hydrogen bonds was confirmed by vibrational spectroscopy and molecular dynamics simulation. Furthermore, phase solubility and solubility studies, as well as dissolution test indicated that complexation occurred between APG and OMT in solution, which significantly improved the solubility and dissolution of APG-OMT CM. Additionally, pharmacokinetics and biological activity indicated that APG-OMT CM exhibited higher oral bioavailability and anti-inflammatory effect than pure APG. These results suggest that APG-OMT CM may be great potential for application in functional food. Importantly, the study provides a promising delivery system to improve the bioavailability of hydrophobic food ingredients.
Collapse
Affiliation(s)
- Bin Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yi Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Ting Wu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Ying Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China.
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
28
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.845871
expr 835330423 + 878857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis onin vitro and in vivostudies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
|
29
|
Enhanced Antioxidant Activity of Fresh Fruits through Salicylic Acid/β-CD Hydroalcoholic Gels. Gels 2022; 8:gels8010061. [PMID: 35049596 PMCID: PMC8775047 DOI: 10.3390/gels8010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidation is an important cause of fruit spoilage, and therefore improving the antioxidant capacity of fresh fruits is beneficial to their preservation. Herein, fresh-cut bananas were used as a type of fresh fruit and soaked in 75% hydroalcoholic gels containing salicylic acid (SA) or SA/β-CD inclusion complex (SA/β-CD). After treatment, they were placed in an atmosphere at 85% relative humidity at 20 °C for 12 days. A significant reduction in spoilage in bananas treated with the hydroalcoholic gels in the presence of SA/β-CD was observed, compared with those treated with gels in the presence or absence of SA. The free-radical-scavenging performances of SA and its complex were investigated using the DPPH (1,1-diphenyl-2-picryl-hydrazil) method. Based on the results, the significant increase in antioxidant activity was attributed to the fact that the inclusion complex could break the intramolecular hydrogen bonding of SA, thus efficiently eliminating ROS in the fruits. The formation of the inclusion complex was confirmed by experiments and theoretical calculations. Our findings indicate that treatment with SA/β-CD can provide an efficient method of maintaining postharvest quality and extending the shelf life of bananas.
Collapse
|
30
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
31
|
Velázquez-Contreras F, Zamora-Ledezma C, López-González I, Meseguer-Olmo L, Núñez-Delicado E, Gabaldón JA. Cyclodextrins in Polymer-Based Active Food Packaging: A Fresh Look at Nontoxic, Biodegradable, and Sustainable Technology Trends. Polymers (Basel) 2021; 14:polym14010104. [PMID: 35012127 PMCID: PMC8747138 DOI: 10.3390/polym14010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
Using cyclodextrins (CDs) in packaging technologies helps volatile or bioactive molecules improve their solubility, to guarantee the homogeneous distribution of the complexed molecules, protecting them from volatilization, oxidation, and temperature fluctuations when they are associated with polymeric matrices. This technology is also suitable for the controlled release of active substances and allows the exploration of their association with biodegradable polymer targeting to reduce the negative environmental impacts of food packaging. Here, we present a fresh look at the current status of and future prospects regarding the different strategies used to associate cyclodextrins and their derivatives with polymeric matrices to fabricate sustainable and biodegradable active food packaging (AFP). Particular attention is paid to the materials and the fabrication technologies available to date. In addition, the use of cutting-edge strategies, including the trend of nanotechnologies in active food packaging, is emphasized. Furthermore, a critical view on the risks to human health and the associated updated legislation is provided. Some of the more representative patents and commercial products that currently use AFP are also listed. Finally, the current and future research challenges which must be addressed are discussed.
Collapse
Affiliation(s)
- Friné Velázquez-Contreras
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Escuela de Administración de Instituciones (ESDAI), Universidad Panamericana, Álvaro del Portillo 49, Ciudad Granja, Zapopan 45010, Mexico
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Iván López-González
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Estrella Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Correspondence: ; Tel.: +34-968-278-622
| |
Collapse
|
32
|
Mude H, Maroju PA, Balapure A, Ganesan R, Ray Dutta J. Water-soluble caffeic acid-dopamine acid-base complex exhibits enhanced bactericidal, antioxidant, and anticancer properties. Food Chem 2021; 374:131830. [PMID: 34906806 DOI: 10.1016/j.foodchem.2021.131830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Despite the highly potent biological characteristics, the poor water-solubility of caffeic acid (CA) limits its applications in various domains. Here, we present a facile approach, wherein CA has been treated with dopamine hydrochloride (Dopa.HCl) to obtain a water-soluble acid-base complex, which does not possess any covalent bond between the individual components and thus retains their nativity. Simple mixing of CA and Dopa.HCl did not provide water solubility to CA, but the complex became readily soluble in water when the mineral acid was scavenged using sodium bicarbonate. The obtained CA-Dopa complex had been characterized using FT-IR, 1H NMR, 13C NMR, 2D 1H-1H NOESY NMR, XPS, and DSC techniques. The complex was found to exhibit excellent bactericidal, antibiofilm, antioxidant, and anticancer properties in the physiologically relevant pH range of 5.5 to 7.5. The results have revealed the high potential of the simple acid-base complex of CA in diverse domains.
Collapse
Affiliation(s)
- Hemanjali Mude
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Pranay Amruth Maroju
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Aniket Balapure
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| |
Collapse
|
33
|
Sengupta P, Bose A, Sen K. Liposomal Encapsulation of Phenolic Compounds for Augmentation of Bio‐Efficacy: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Priti Sengupta
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Adity Bose
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Kamalika Sen
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
| |
Collapse
|
34
|
Chemical Composition, Antioxidant and Anti-Inflammatory Activities of Clary Sage and Coriander Essential Oils Produced on Polluted and Amended Soils-Phytomanagement Approach. Molecules 2021; 26:molecules26175321. [PMID: 34500751 PMCID: PMC8434190 DOI: 10.3390/molecules26175321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
The potential of essential oils (EO), distilled from two aromatic plants—clary sage (Salvia sclarea L.) and coriander (Coriandrum sativum L.)—in view of applications as natural therapeutic agents was evaluated in vitro. These two were cultivated on a trace element (TE)-polluted soil, as part of a phytomanagement approach, with the addition of a mycorrhizal inoculant, evaluated for its contribution regarding plant establishment, growth, and biomass production. The evaluation of EO as an antioxidant and anti-inflammatory, with considerations regarding the potential influence of the TE-pollution and of the mycorrhizal inoculation on the EO chemical compositions, were the key focuses. Besides, to overcome EO bioavailability and target accession issues, the encapsulation of EO in β-cyclodextrin (β-CD) was also assessed. Firstly, clary sage EO was characterized by high proportions of linalyl acetate (51–63%) and linalool (10–17%), coriander seeds EO by a high proportion of linalool (75–83%) and lesser relative amounts of γ-terpinene (6–9%) and α-pinene (3–5%) and coriander aerial parts EO by 2-decenal (38–51%) and linalool (22–39%). EO chemical compositions were unaffected by both soil pollution and mycorrhizal inoculation. Of the three tested EO, the one from aerial parts of coriander displayed the most significant biological effects, especially regarding anti-inflammatory potential. Furthermore, all tested EO exerted promising antioxidant effects (IC50 values ranging from 9 to 38 g L−1). However, EO encapsulation in β-CD did not show a significant improvement of EO biological properties in these experimental conditions. These findings suggest that marginal lands polluted by TE could be used for the production of EO displaying faithful chemical compositions and valuable biological activities, with a non-food perspective.
Collapse
|
35
|
Periasamy R. Cyclodextrin-based molecules as hosts in the formation of supramolecular complexes and their practical applications—A review. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1967970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R. Periasamy
- Department of Chemistry, Annamalai University, Annamalainagar, India
| |
Collapse
|
36
|
Yekefallah M, Raofie F. Preparation of stable nanosuspensions from Asplenium scolopendrium leaves via rapid expansion of supercritical solution into aqueous solutions (RESSAS). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Boskov IA, Savic Gajic IM, Savic IM, Spalovic BR, Strbac ND. Black locust flowers: antioxidant extraction kinetics, reducing capacity, mineral composition, and antioxidant activity. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1949304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ivana A. Boskov
- Faculty of Technology in Leskovac, University of Nis, Leskovac, Republic of Serbia
| | - Ivana M. Savic Gajic
- Faculty of Technology in Leskovac, University of Nis, Leskovac, Republic of Serbia
| | - Ivan M. Savic
- Faculty of Technology in Leskovac, University of Nis, Leskovac, Republic of Serbia
| | - Boban R. Spalovic
- Technical Faculty in Bor, University of Belgrade, Bor, Republic of Serbia
| | - Nada D. Strbac
- Technical Faculty in Bor, University of Belgrade, Bor, Republic of Serbia
| |
Collapse
|
38
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
39
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Qin J, Yang M, Wang Y, Wa W, Zheng J. Interaction between caffeic acid/caffeic acid phenethyl ester and micellar casein. Food Chem 2021; 349:129154. [PMID: 33556721 DOI: 10.1016/j.foodchem.2021.129154] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023]
Abstract
Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) are bioactive molecules with poor solubility. We investigated the interaction between CA/CAPE and micellar casein (MC), and the physico-chemical and antioxidant properties of the complexes. Fluorescence spectroscopy analysis showed that both CA and CAPE formed complexes with MC via hydrophobic interactions. The binding constant was higher for CAPE than for CA at each temperature. The complexes were confirmed by FTIR and XRD. The secondary structure of MC was not affected by CAPE, but its morphology changed. CA/CAPE did not induce the dissociation of casein micelles. CA and CAPE increased and decreased, respectively, the bulk and tapped densities of MC. The complexes had higher thermal stability and DPPH radical scavenging capacity than free MC or CA/CAPE.
Collapse
Affiliation(s)
- Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; Institute of Agricultural Resources Chemistry and Application, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yucheng Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenqiang Wa
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Zheng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
41
|
Mangrulkar S, Shah P, Navnage S, Mazumdar P, Chaple D. Phytophospholipid Complex of Caffeic Acid: Development, In vitro Characterization, and In Vivo Investigation of Antihyperlipidemic and Hepatoprotective Action in Rats. AAPS PharmSciTech 2021; 22:28. [PMID: 33404939 DOI: 10.1208/s12249-020-01887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Caffeic acid (CA), a hydroxycinnamic acid possessing a variety of pharmacological activities, has caused a growing interest for the treatment of hyperlipidemia and associated conditions. This work endeavored to develop a novel formulation of CA-Phospholipon® 90H complex (CA-PC) using a solvent evaporation method. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectrophotometry (FTIR), and powder X-ray powder diffraction (PXRD) was carried to confirm the formation of CA-PC. The CA-PC was functionally evaluated in terms of solubility, in vitro and ex vivo drug release, and in vivo bioavailability and efficacy studies. SEM, DSC, FTIR, and XRD studies indicated the physical interaction of CA with Phospholipon® 90H to form a complex. Dynamic light scattering (DLS) studies described particle size of 168 ± 3.9 nm with a monodisperse distribution (PDI 0.17) and a negative zeta-potential of - 16.6 ± 2.1 mV. The phospholipid complex significantly improved (4.2-fold) the solubility of CA. In vitro and ex vivo dissolution studies of the formulated CA-PC revealed a significantly higher release compared with the pure CA. The pharmacokinetic study of CA-PC in rats demonstrated a significant increase (4.79-fold) in oral bioavailability when compared with pure CA as well. Additionally, a significant improvement in serum lipid profile, serum liver biomarker enzyme levels and, restoration of hepatic tissue architecture to normal, in high-fat diet (HFD) induced hyperlipidemic model was obtained upon CA-PC administration when compared with pure CA. These findings indicated that CA-PC would serve as an effective and promising formulation for CA delivery with improved antihyperlipidemic and hepatoprotective activity.Graphical abstract.
Collapse
|
42
|
Lescano CH, Freitas de Lima F, Cardoso CAL, Vieira SCH, Mónica FZ, Pires de Oliveira I. Rutin present in Alibertia edulis extract acts on human platelet aggregation through inhibition of cyclooxygenase/thromboxane. Food Funct 2021; 12:802-814. [PMID: 33393955 DOI: 10.1039/d0fo02276d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alibertia edulis leaf extract is commonly used in folk medicine, with rutin caffeic and vanillic acids being its major compounds. The Alibertia edulis leaf extract was investigated for its pharmacological effects via platelet aggregation, calcium mobilization, cyclic nucleotides levels, vasodilator-stimulated phosphoprotein Ser157 and Ser239 and protein kinase Cβ2 phosphorylation, thromboxane B2, cyclooxygenases 1 and 2, docking and molecular dynamics. Alibertia edulis leaf extract significantly inhibited (100-1000 μg mL-1) platelet aggregation induced by different agonists. Arachidonic acid increased levels of calcium and thromboxane B2, phosphorylation of vasodilator-stimulated phosphoprotein Ser157 and Ser239, and protein kinase Cβ, which were significantly reduced by Alibertia edulis leaf extract, rutin, and caffeic acid as well mixtures of rutin/caffeic acid. Cyclooxygenase 1 activity was inhibited for Alibertia edulis leaf extract, rutin and caffeic acid. These inhibitions were firsrtly explored by specific stabilization of rutin and caffeic acid compared to diclofenac at the catalytic site from docking score and free-energy dissociation profiles. Then, simulations detailed the rutin interactions close to the heme group and Tyr385, responsible for catalyzing the conversion of arachidonic acid to its products. Our results reveal the antiplatelet aggregation properties of Alibertia edulis leaf extract, rutin and caffeic acid providing pharmacological information about its origin from cyclooxygenase 1 inhibition and its downstream pathway.
Collapse
|
43
|
Bounegru AV, Apetrei C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. Int J Mol Sci 2020; 21:E9275. [PMID: 33291758 PMCID: PMC7730703 DOI: 10.3390/ijms21239275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid is one of the most important hydroxycinnamic acids found in various foods and plant products. It has multiple beneficial effects in the human body such as antioxidant, antibacterial, anti-inflammatory, and antineoplastic. Since overdoses of caffeic acid may have negative effects, the quality and quantity of this acid in foods, pharmaceuticals, food supplements, etc., needs to be accurately determined. The present paper analyzes the most representative scientific papers published mostly in the last 10 years which describe the development and characterization of voltamperometric sensors or biosensors based on carbon nanomaterials and/or enzyme commonly used for detecting caffeic acid and a series of methods which may improve the performance characteristics of such sensors.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
44
|
Radić K, Vinković Vrček I, Pavičić I, Čepo DV. Cellular Antioxidant Activity of Olive Pomace Extracts: Impact of Gastrointestinal Digestion and Cyclodextrin Encapsulation. Molecules 2020; 25:molecules25215027. [PMID: 33138271 PMCID: PMC7663658 DOI: 10.3390/molecules25215027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Olive pomace is a valuable secondary raw material rich in polyphenols, left behind after the production of olive oil. The present study investigated the protective effect of a polyphenolic extract from olive pomace (OPE) on cell viability and antioxidant defense of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tBOOH). The investigation considered possible matrix effects, impact of gastrointestinal digestion and cyclodextrin (CD) encapsulation. Pre-treatment of cells with OPE prevented cell damage and increased intracellular glutathione but did not affect the activity of glutathione peroxidase and superoxide dismutase. OPE matrix significantly enhanced cell protective effects of major antioxidants, such as hydroxytyrosol (HTS), while cyclodextrin encapsulation enhanced activity of OPE against intracellular reactive oxygen species (ROS) accumulation. The obtained results show that OPE is more potent antioxidant in comparison to equivalent dose of main polyphenols (HTS and TS) and that increasing solubility of OPE polyphenols by CD encapsulation or digestion enhances their potential to act as intracellular antioxidants. Antioxidative protection of cells by OPE was primarily achieved through direct radical-scavenging/reducing actions rather than activation of endogenous defense systems in the cell.
Collapse
Affiliation(s)
- Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia; (I.V.V.); (I.P.)
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia; (I.V.V.); (I.P.)
| | - Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-6394-771
| |
Collapse
|
45
|
Wu W, Xue W. Evaluation of anticancer activity of honokiol by complexation with hydroxypropyl-β-cyclodextrin. Colloids Surf B Biointerfaces 2020; 196:111298. [PMID: 32798987 DOI: 10.1016/j.colsurfb.2020.111298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Honokiol (HK), an active compound derived from Magnolia officinalis Rehd. et Wils, possesses many beneficial biological activities for human beings. However, its poor solubility and low bioavailability severely limits its application. In this way, to improve the pharmaceutical properties, the HK was complexed in hydroxypropyl-β-cyclodextrin (HP-β-CD) and its oral bioavailability and antitumor effects were evaluated. The HK/HP-β-CD inclusion complex (1:1) was prepared by saturated aqueous solution method. The inclusion complex (HK-HP-β-CD) obtained had a higher solubility, about 1497 times that of the free HK. The dissolution rate and the oral bioavailability of HK was also significantly higher from inclusion complex than from free HK. Furthermore, the HK-HP-β-CD exhibited higher antitumor activity against Human Hepatoma Cell Line (HepG2) than free HK. More cells were arrested in the sub-G1 phase of the cell cycle and were induced to undergo late apoptosis when treated with the HK-HP-β-CD than when treated with free HK.
Collapse
Affiliation(s)
- Weiwei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China; Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
46
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem 2020; 338:127535. [PMID: 32798817 DOI: 10.1016/j.foodchem.2020.127535] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Polyphenols are compounds naturally present in fruits and vegetables that are gaining more and more attention due to their therapeutic effects and their potential technological applications. In this review, we intend to demonstrate the importance of some phenolic compounds, addressing their biological effects and potential for applications in various industrial fields. The intake of these compounds in appropriate concentrations can present promising effects in the prevention of diseases such as diabetes, obesity, Parkinson's, Alzheimer's, and others. They can also be used to improve the physicochemical properties of starch, in the preservation of foods, as natural dyes, prebiotic ingredients, hydrogels and nanocomplexes. In addition, these compounds have potential for innovation in the most diverse technological fields, including organic fine chemistry, basic materials chemistry, pharmaceuticals, food chemistry, chemical engineering, etc.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
47
|
Nakhle L, Kfoury M, Greige-Gerges H, Fourmentin S. Effect of dimethylsulfoxide, ethanol, α- and β-cyclodextrins and their association on the solubility of natural bioactive compounds. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Pang K, Zhao H, Hu J. Hydrolysis of Amisulbrom in Buffer Solutions and Natural Water Samples: Kinetics and Products Identification. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:689-700. [PMID: 32303813 DOI: 10.1007/s00128-020-02838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, the hydrolysis of amisulbrom in buffer solutions and natural water samples were investigated. Effects of pH and temperature were tested in buffer solutions. Amisulbrom was stable in acidic and neutral aqueous solutions at 25°C, while quickly hydrolyzed with a half-life of 4.5 days (25°C) at pH 9.0. The kinetics rate equation was determined as k = 1.0234 × 1010 exp (-61.3760/R·T) (R2 = 0.9642) for hydrolysis of amisulbrom at pH 9.0. The pH, ionic strength, and solubility were important factors influencing the hydrolysis of amisulbrom in natural water samples. Furthermore, three hydrolysis products were separated and identified in buffer solution (pH 9.0) and natural water samples. A tentative transformation mechanism of amisulbrom was proposed to rationalize the formation of HPs (hydrolysis products) based on their structural identification, DFT (density functional theory), and hydrolysis profiles. Toxicity prediction using the quantitative structure-activity relationship model revealed that the HP-I, and HP-II were more toxic than the parent amisulbrom. This investigation was the first to evaluate the behavior of amisulbrom hydrolysis in aquatic systems.
Collapse
Affiliation(s)
- Kyongjin Pang
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Honglei Zhao
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Jiye Hu
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
49
|
Permana AD, Utami RN, Courtenay AJ, Manggau MA, Donnelly RF, Rahman L. Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111846. [DOI: 10.1016/j.jphotobiol.2020.111846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
50
|
Tian B, Xiao D, Hei T, Ping R, Hua S, Liu J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: a review. POLYM INT 2020. [DOI: 10.1002/pi.5992] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical EngineeringXinjiang University Urumchi China
| | - Dong Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing China
| | - Tingting Hei
- School of PharmacyNingxia Medical University Yinchuan China
| | - Rui Ping
- School of Clinical MedicineNingxia Medical University Yinchuan China
| | - Shiyao Hua
- School of PharmacyNingxia Medical University Yinchuan China
| | - Jiayue Liu
- School of PharmacyNingxia Medical University Yinchuan China
| |
Collapse
|