1
|
Bhiri N, Masquelez N, Nasri M, Nasri R, Hajji M, Li S. Synthesis, Characterization, and Stability Study of Selenium Nanoparticles Coated with Purified Polysaccharides from Ononis natrix. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:435. [PMID: 40137608 PMCID: PMC11946226 DOI: 10.3390/nano15060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Selenium nanoparticles (SeNPs) attract considerable attention for their promising applications in the biomedical field, driven by their unique properties and antioxidant activities. However, their practical use is often hindered by issues such as instability and aggregation. In this study, a polysaccharide, P2, extracted from Ononis natrix, was used to stabilize SeNPs to address these limitations. P2-SeNPs were prepared through a green synthesis method involving sodium selenite, P2, and ascorbic acid, and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). P2-SeNPs exhibited a smaller particle size and enhanced stability compared to unmodified SeNPs. UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) demonstrated the presence of Se-O bonds, suggesting effective stabilization by covalent bonding between SeNPs and P2. Stability tests revealed that P2-SeNPs maintained good dispersion under various conditions, with optimal stability observed at refrigerated temperatures and neutral pH. Moreover, P2-SeNPs exhibited better antioxidant activities than unmodified SeNPs, as evidenced by higher DPPH radical scavenging, ABTS radical scavenging, and metal chelation ratios. This difference is attributed to both the reduced aggregation and smaller size of P2-SeNPs. Therefore, it is concluded that P2-SeNPs exhibit significant potential as an effective antioxidant agent for biomedical applications.
Collapse
Affiliation(s)
- Nour Bhiri
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Nathalie Masquelez
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Suming Li
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
| |
Collapse
|
2
|
Zhang Y, Qi W, Cong X, Huang D, Yu R, Chen S, Zhu S. Digestive characteristics of Se-enriched proteins with different Se species and its effects on gut microbiota during in vitro APP/PS1 mice colonic fermentation. Food Res Int 2025; 204:115949. [PMID: 39986791 DOI: 10.1016/j.foodres.2025.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Cardamine violifolia, cabbage, and soybeans have a strong ability to accumulate selenium (Se), primarily in the forms of SeCys2, Se (VI), and SeMet, respectively. This study aims to investigate the digestive characteristics of Se-enriched proteins with different Se species, and its effects on gut microbiota during in vitro APP/PS1 mice colonic fermentation. The results showed that SeCys2 had the highest bioaccessibility (90.65 %) in Se-enriched C. violifolia protein (H-CVP), followed by SeMet at 84.53 %. In Se-enriched soybean protein (H-SBP), SeMet displayed the highest bioaccessibility at 82.98 %. Conversely, the bioaccessibility of Se (VI) in Se-enriched cabbage protein (H-CBP) was below 20 %, likely due to its conversion to Se (IV). Previous research indicated that, although the bioaccessibility of these Se species was relatively high, their bioavailability remained low. Unabsorbed Se may undergo fermentation in the colon. Consequently, we performed in vitro fermentation using feces from APP/PS1 mice to assess its effects on the gut microbiota of Alzheimer's disease (AD) mice. The results showed that H-CVP had a prebiotic effect on Bacteroidetes strain, while H-SBP significantly increased the abundance of Firmicutes and Lactobacillaceae in family level. H-CBP had weaker effects on gut microbiota health with the abundance of Enterobacteriaceae. Functional gene prediction of 16S rDNA sequencing data inferred that H-CVP may regulate intestinal health through the metabolism of cofactors and vitamins, while H-SBP could enhance carbohydrate metabolism. Overall, these findings emphasized the role of H-CVP and H-SBP in maintaining gut health in APP/PS1 mice, and demonstrated their potential to alleviate cognitive impairment.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 4122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wendong Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 4122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, Hubei 445000, China; National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Ruipeng Yu
- Analysis & Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shangwei Chen
- Analysis & Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 4122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Hosny S, Elshobary ME, El-Sheekh MM. Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35885-8. [PMID: 39920498 DOI: 10.1007/s11356-025-35885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
This study explores the remarkable potential of algae in addressing global sustainability challenges. Microalgae, in particular, emerge as sustainability champions. Their applications span an impressive array of industries and processes, including food and feed production, biofuels, cosmetics, pharmaceuticals, and environmental remediation. This versatility positions algae as key players in achieving over 50% of UN Sustainable Development Goals (SDGs) simultaneously, addressing issues such as climate action, clean water and sanitation, affordable and clean energy, and zero hunger. From sequestering carbon, purifying wastewater, and producing clean energy to combating malnutrition, algae demonstrates unparalleled potential. Their ability to flourish in extreme conditions and their rapid growth rates further enhance their appeal for large-scale cultivation. As research advances, innovative applications continue to emerge, such as algae-based bioplastics and dye-sensitized solar cells, promising novel solutions to pressing global issues. This study illuminates how harnessing the power of algae can drive us towards a more resilient, sustainable world. By leveraging algae's multifaceted capabilities, we can tackle climate change, resource scarcity, and economic development concurrently. The research highlights the critical role of algae in promoting circular economy principles and achieving a harmonious balance between human needs and environmental preservation, paving the way for a greener, more sustainable future.
Collapse
Affiliation(s)
- Shimaa Hosny
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, Bremerhaven, 27570, Germany.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Wang H, Shi D, Chen Y, Wang Z, Yuan Y, Yue T. Dietary supplementation with novel selenium-enriched Pichia kudriavzevii regulates gut microbiota and host metabolism in mice. Food Funct 2024; 15:10896-10912. [PMID: 39417221 DOI: 10.1039/d4fo03633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Insufficient selenium intake can lead to serious health problems. However, most research on the functional properties of selenium-enriched probiotics has focused on sub-health conditions or disease models, with limited studies involving healthy subjects. Additionally, previous research has primarily explored the direct effects of selenium itself, neglecting its influence on gut microbiota and metabolism. This study aimed to explore whether long-term intake of Pichia kudriavzevii enriched with selenium affected gut microbiota and host metabolism in mice and to identify microbiota and metabolites related to beneficial outcomes. Results demonstrated that selenium-enriched P. kudriavzevii (SeY) exhibited non-toxic properties, did not cause colon or liver damage, enhanced antioxidant capacity, and reduced inflammation in a selenium dose-dependent manner. Additionally, SeY supplementation significantly altered the gut microbiota. High-dose SeY (HSeY) elevated the abundance of beneficial bacteria such as Lactobacillus and suppressed harmful bacteria such as Eubacterium nodatum group, Prevotellaceae_NK3B31_group, and unclassified_f__Lachnospiraceae. Low-dose SeY (LSeY) increased the abundance of Faecalibaculum. The strain without enriched selenium exhibited higher levels of Akkermansia compared to selenium-enriched strains. Both strains, with or without enriched selenium, stimulated the production of short-chain fatty acids. Non-targeted metabolomics analysis revealed that HSeY treatment regulated various metabolic pathways, such as tryptophan metabolism, tyrosine metabolism, and arginine biosynthesis. LSeY treatment modulated tyrosine metabolism, secondary bile acid metabolism, bile secretion, and primary bile acid metabolism. P. kudriavzevii regulated the metabolism of purine, arginine, proline, and tryptophan. Our study highlights the promise of SeY supplementation in regulating host metabolism and the gut microbiota, offering insights into its implications for promoting health.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Dan Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yue Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
5
|
Zheng X, Chen L, Yin L, Rao H, Zheng H, Xun C, Hao J. Application and prospect of microbial food Chlorella. Heliyon 2024; 10:e37025. [PMID: 39309778 PMCID: PMC11415651 DOI: 10.1016/j.heliyon.2024.e37025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Modern food is evolving in the direction of green, healthy, and convenient products, and developing natural products with health benefits is an important direction for the food industry. Chlorella is rich in nutrients, such as carotene and fatty acids, which provide it with a variety of health benefits, and therefore widely used in the food industry as a health or functional food. This study reviews the research progress and specific applications of Chlorella in health, functional, and other foods, and expounds on the bottlenecks faced in the use of Chlorella in food industry. This review provides a theoretical basis for the research, utilisation, and production of new food materials involving Chlorella.
Collapse
Affiliation(s)
- Xuechao Zheng
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Lin Chen
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Lei Yin
- Hebei Academy of Product Quality Supervision & Inspection, 050000, Shijiazhuang, China
| | - Huan Rao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Haowang Zheng
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Chetian Xun
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
6
|
Hyrslova I, Kana A, Nesporova V, Mrvikova I, Doulgeraki AI, Lampova B, Doskocil I, Musilova S, Kieliszek M, Krausova G. In vitro digestion and characterization of selenized Saccharomyces cerevisiae, Pichia fermentans and probiotic Saccharomyces boulardii. J Trace Elem Med Biol 2024; 83:127402. [PMID: 38310829 DOI: 10.1016/j.jtemb.2024.127402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND AND OBJECTIVE Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.
Collapse
Affiliation(s)
- Ivana Hyrslova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic; Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic.
| | - Antonin Kana
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Vera Nesporova
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Iva Mrvikova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic; Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Agapi I Doulgeraki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Barbora Lampova
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Ivo Doskocil
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Sarka Musilova
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Gabriela Krausova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic
| |
Collapse
|
7
|
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules 2023; 29:136. [PMID: 38202719 PMCID: PMC10779588 DOI: 10.3390/molecules29010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. The existing form of Se includes inorganic and organic. In contrast to the inorganic Se, which has low bioavailability and high cytotoxicity, organic Se exhibits higher bioavailability, lower toxicity, and has a more diverse composition and structure. This review presents the nutritional benefits of Se by listing and linking selenoprotein (SeP) functions to evidence of health benefits. The research status of SeP from foods in recent years is introduced systematically, particularly the sources, biochemical transformation and speciation, and the bioactivities. These aspects are elaborated with references for further research and utilization of organic Se compounds in the field of health.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
8
|
Sun N, Dang H, Zhang Y, Yang M, Zhang W, Zhao Y, Zhang H, Ji H, Zhang B. Inorganic Selenium Transformation into Organic Selenium by Monascus purpureus. Foods 2023; 12:3375. [PMID: 37761084 PMCID: PMC10529015 DOI: 10.3390/foods12183375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Selenium (Se) is a trace element that plays a crucial role in metabolism; a lack of selenium reduces the body's resistance and immunity, as well as causes other physiological problems. In this study, we aim to identify favorable conditions for improving organic selenium production. The functional microbe Monascus purpureus, which is widely used in food production, was employed to optimize selenium-enriched culture conditions, and its growth mode and selenium-enriched features were investigated. Spectrophotometry, inductively coupled plasma optical emission spectrometry (ICP-OES), and HPLC (High-Performance Liquid Chromatography) were used to determine the effects of various doses of sodium selenite on the selenium content, growth, and metabolism of M. purpureus, as well as the conversion rate of organic selenium. The best culture parameters for selenium-rich M. purpureus included 7.5 mg/100 mL of selenium content in the culture medium, a pH value of 6.8, a culture temperature of 30 °C, and a rotation speed of 180 rpm. Under ideal circumstances, the mycelia had a maximum selenium concentration of approximately 239.17 mg/kg, with organic selenium accounting for 93.45%, monacoline K production reaching 70.264 mg/L, and a secondary utilization rate of external selenium of 22.99%. This study revealed a novel biological route-selenium-rich M. purpureus fermentation-for converting inorganic selenium into organic selenium.
Collapse
Affiliation(s)
- Nan Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yuyao Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Mengjie Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Haisheng Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hua Ji
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Baoshan Zhang
- Research Center of Fruit and Vegetable Deep-Processing Technology, Xi’an 710119, China
| |
Collapse
|
9
|
He P, Zhang M, Zhang Y, Wu H, Zhang X. Effects of Selenium Enrichment on Dough Fermentation Characteristics of Baker's Yeast. Foods 2023; 12:2343. [PMID: 37372553 DOI: 10.3390/foods12122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
In this research, the effect of selenium (Se) enrichment on dough fermentation characteristics of yeast and the possible mechanisms was investigated. Then, the Se-enriched yeast was used as starter to make Se-enriched bread, and the difference between Se-enriched bread and common bread was investigated. It was found Se enrichment increased CO2 production and sugar consumption rate of Saccharomyces cerevisiae (S. cerevisiae) in dough fermentation, and had positive impacts on final volume and rheological index of dough. The mechanism is possibly related to higher activity and protein expression of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), isocitrate dehydrogenase (ICD), and α-ketoglutarate dehydrogenase (α-KGDHC) in Se-enriched yeast. Moreover, Se-enriched bread (Se content: 11.29 μg/g) prepared by using Se-enriched yeast as starter exhibited higher overall acceptability on sensory, cell density in stomatal morphology, and better elasticity and cohesiveness on texture properties than common bread, which may be due to effect of higher CO2 production on dough quality. These results indicate Se-enriched yeast could be used as both Se-supplements and starter in baked-foods making.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yizhe Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xiaoyuan Zhang
- Industrial Technology Research Institute, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
10
|
Hoyos BS, Hernandez-Tenorio F, Miranda AM, Villanueva-Mejía DF, Sáez AA. Systematic Analysis of Genes Related to Selenium Bioaccumulation in Microalgae: A Review. BIOLOGY 2023; 12:biology12050703. [PMID: 37237517 DOI: 10.3390/biology12050703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Se is one of the essential nutrients for human health and animal growth; it participates in various physiological functions, such as antioxidant and immune response and metabolism. Se deficiency is related in the animal industry to poor production performance and the appearance of health problems in humans. Therefore, interest has arisen in producing fortified foods, nutritional supplements, and animal feed products enriched with Se. A sustainable strategy for bio-based products enriched with Se is microalgae. These are characterized by the ability to bioaccumulate inorganic Se and metabolize it into organic Se for product formulations of industrial interest. Although there are some reports on Se bioaccumulation, further exploration is needed to understand the effects of Se bioaccumulation in microalgae. Therefore, this article presents a systematic review of the genes or groups of genes that trigger biological responses associated with the metabolization of Se in microalgae. A total of 54,541 genes related to Se metabolization distributed in 160 different classes were found. Similarly, trends were identified through bibliometric networks on strains of greatest interest, bioproducts, and scientific production.
Collapse
Affiliation(s)
- Brenda S Hoyos
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Alejandra M Miranda
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Diego F Villanueva-Mejía
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Alex A Sáez
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| |
Collapse
|
11
|
Preparation and anti-tumor activity of selenium nanoparticles based on a polysaccharide from Paeonia lactiflora. Int J Biol Macromol 2023; 232:123261. [PMID: 36649870 DOI: 10.1016/j.ijbiomac.2023.123261] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The combination of selenium and polysaccharides is one of the significant ways to ameliorate the anti-cancer effects of polysaccharides. PLP50-1, a homogeneous polysaccharide purified from the aqueous extract of Paeonia lactiflora, had a molecular weight of 1.52 × 104 Da and consisted of α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and →6)-β-D-Fruf-(2→. PLP50-1 showed weak anti-tumor effects against A549 cells. To ameliorate the activity of PLP50-1, the complex nanoparticles combining P. lactiflora polysaccharide with selenium were constructed successfully. Structural properties of the polysaccharide-based selenium nanoparticles (PLP-SeNPs) were clarified using various means. The results displayed that a kind of monodisperse spherical nanoparticles containing high selenium content (39.1 %) with controllable size was constructed and showed satisfactory stability. The cellular anti-tumor assay indicated that PLP-SeNPs had stronger antiproliferative activity against A549 cells than PLP50-1. Additionally, the zebrafish experiments displayed that PLP-SeNPs inhibited the proliferation and migration of A549 cells significantly and blocked the angiogenesis.
Collapse
|
12
|
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEDA, Wang J, Ding Y. Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer's disease. Crit Rev Food Sci Nutr 2023; 64:6672-6685. [PMID: 36728929 DOI: 10.1080/10408398.2023.2172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aβ) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.
Collapse
Affiliation(s)
- Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - AoHuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Ferreira de Oliveira AP, Bragotto APA. Microalgae-based products: Food and public health. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Lakatos GE, Ranglová K, Bárcenas-Pérez D, Grivalský T, Manoel JC, Mylenko M, Cheel J, Nyári J, Wirth R, Kovács KL, Kopecký J, Nedbalová L, Masojídek J. Cold-adapted culturing of the microalga Monoraphidium sp. in thin-layer raceway pond for biomass production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Se-enrichment of Chlorella vulgaris grown under different trophic states for food supplementation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Zhang L, Zhang Y, Li S, Li C, Hu X, Li Z, Yue T, Hu Z. Effect of the selenized yeast added in feed on selenium-containing proteins of albumins in egg yolk. Food Chem 2022; 402:134435. [DOI: 10.1016/j.foodchem.2022.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
17
|
Jiang W, He S, Su D, Ye M, Zeng Q, Yuan Y. Synthesis, characterization of tuna polypeptide selenium nanoparticle, and its immunomodulatory and antioxidant effects in vivo. Food Chem 2022; 383:132405. [DOI: 10.1016/j.foodchem.2022.132405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
|
18
|
Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. CHEMOSPHERE 2022; 291:132932. [PMID: 34798100 DOI: 10.1016/j.chemosphere.2021.132932] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Microalgae is an autotrophic organism with fast growth, short reproduction cycle, and strong environmental adaptability. In recent years, microalgae and the bioactive ingredients extracted from microalgae are regarded as potential substitutes for raw materials in the pharmaceutical and the cosmetics industry. In this review, the characteristics and efficacy of the high-value components of microalgae are discussed in detail, along with the sources and extraction technologies of algae used to obtain high-value ingredients are reviewed. Moreover, the latest trends in biotherapy based on high-value algae extracts as materials are discussed. The excellent antioxidant properties of microalgae derivatives are regarded as an attractive replacement for safe and environmentally friendly cosmetics formulation and production. Through further studies, the mechanism of microalgae bioactive compounds can be understood better and reasonable clinical trials conducted can safely conclude the compliance of microalgae-derived drugs or cosmetics to be necessary standards to be marketed.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University. No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Kit Wayne Chew
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China; School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Li J, Otero-Gonzalez L, Michiels J, Lens PNL, Du Laing G, Ferrer I. Production of selenium-enriched microalgae as potential feed supplement in high-rate algae ponds treating domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 333:125239. [PMID: 33940503 DOI: 10.1016/j.biortech.2021.125239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
This study assessed the selenium (Se) removal efficiency of two pilot-scale high-rate algae ponds (HRAPs) treating domestic wastewater and investigated the production of Se-enriched microalgae as potential feed supplement. The HRAP-Se had an average Se, NH4+-N, total phosphorus and COD removal efficiency of, respectively, 43%, 93%, 77%, and 70%. Inorganic Se taken up by the microalgae was mainly (91%) transformed to selenoamino acids, and 49-63% of Se in the Se-enriched microalgae was bioaccessible for animals. The crude protein content (48%) of the microalgae was higher than that of soybeans, whereas the essential amino acid content was comparable. Selenium may induce the production of the polyunsaturated fatty acids omega-3 and omega-6 in microalgae. Overall, the production of Se-enriched microalgae in HRAPs may offer a promising alternative for upgrading low-value resources into high-value feed supplements, supporting the drive to a circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601 DA Delft, the Netherlands
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivet Ferrer
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain
| |
Collapse
|
21
|
Czauderna M, Białek M, Białek A, Karpińska M. Diet supplemented with lycopene and selenized yeast change contents of fatty acids in the liver and femoral muscles of rabbits. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Yang J, Yang H. Recent development in Se-enriched yeast, lactic acid bacteria and bifidobacteria. Crit Rev Food Sci Nutr 2021; 63:411-425. [PMID: 34278845 DOI: 10.1080/10408398.2021.1948818] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endemic selenium (Se) deficiency is a major worldwide nutritional challenge. Organic Se can be synthesized through physical and chemical methods that are conducive to human absorption, but its high production cost and low output cannot meet the actual demand for Se supplementation. Some microbes are known to convert inorganic Se into organic forms of high nutritional value and Se-enriched probiotics are the main representatives. The aim of the present review is to describe the characteristics of Se-enriched yeast, lactic acid bacteria, bifidobacteria and discuss their Se enrichment mechanisms. Se products metabolized by Se-enriched probiotics have been classified, such as Se nanoparticles (SeNPs) and selenoprotein, and their bioactivities have been assessed. The factors affecting the Se enrichment capacity of probiotics and their application in animal feed, food additives, and functional food production have been summarized. Moreover, a brief summary and the development of Se-enriched probiotics, particularly their potential applications in the field of biomedicine have been provided. In conclusion, Se-enriched probiotics not just have a wide range of applications in the food industry but also have great potential for application in the field of biomedicine in the future.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Lamarche J, Ronga L, Szpunar J, Lobinski R. Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126283. [PMID: 34208081 PMCID: PMC8230778 DOI: 10.3390/ijms22126283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Collapse
Affiliation(s)
- Jérémy Lamarche
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- Correspondence:
| | - Luisa Ronga
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
24
|
Liu G, Yang X, Zhang J, Liang L, Miao F, Ji T, Ye Z, Chu M, Ren J, Xu X. Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. Int J Biol Macromol 2021; 179:418-428. [PMID: 33676981 DOI: 10.1016/j.ijbiomac.2021.03.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
Lycium barbarum polysaccharides (LBP) with different molecular weights (LBP1, LBP2 and LBP3) of 92,441 Da, 7714 Da, and 3188 Da were used as stabilizers and capping agents to prepare uniformly dispersed selenium nanoparticles (SeNPs), and determined the storage stability. In addition, the anti-fatigue activity of LBP-decorated SeNPs with the best stability (LBP1-SeNPs) was estimated by using forced swimming test. The results showed that LBP1-SeNPs exhibited smaller particle size and more excellent stability than those of LBP2-SeNPs and LBP3-SeNPs when the storage time was extended to 30 days, and the average particle size was maintained at about 105.4 nm. The exhaustion swimming time of all tested dose groups of LBP1-SeNPs was significantly longer than the control group (p < 0.05), and the high-dose group among them was even obviously longer than the positive group (p < 0.05). The results of glycogen, blood urea nitrogen (BUN), blood lactic acid (BLA), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were further confirmed that LBP1-SeNPs could relieve fatigue by increasing the reserve of glycogen, enhancing antioxidant enzyme levels and regulating metabolic mechanism. These results demonstrated that LBP1-SeNPs could be developed as a potential anti-fatigue nutritional supplement.
Collapse
Affiliation(s)
- Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xue Yang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Feng Miao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Tao Ji
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Zhiqiang Ye
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meng Chu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510540, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
25
|
Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris. BIOSENSORS-BASEL 2021; 11:bios11040115. [PMID: 33920129 PMCID: PMC8069876 DOI: 10.3390/bios11040115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023]
Abstract
Selenium (Se) is an element with many commercial applications as well as an essential micronutrient. Dietary Se has antioxidant properties and it is known to play a role in cancer prevention. However, the general population often suffers from Se deficiency. Green algae, such as Chlorella vulgaris, cultivated in Se-enriched environment may be used as a food supplement to provide adequate levels of Se. We used Raman microspectroscopy (RS) for fast, reliable, and non-destructive measurement of Se concentration in living algal cells. We employed inductively coupled plasma-mass spectrometry as a reference method to RS and we found a substantial correlation between the Raman signal intensity at 252 cm−1 and total Se concentration in the studied cells. We used RS to assess the uptake of Se by living and inactivated algae and demonstrated the necessity of active cellular transport for Se accumulation. Additionally, we observed the intracellular Se being transformed into an insoluble elemental form, which we further supported by the energy-dispersive X-ray spectroscopy imaging.
Collapse
|
26
|
Xie M, Sun X, Li P, Shen X, Fang Y. Selenium in cereals: Insight into species of the element from total amount. Compr Rev Food Sci Food Saf 2021; 20:2914-2940. [PMID: 33836112 DOI: 10.1111/1541-4337.12748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace mineral micronutrient essential for human health. The diet is the main source of Se intake. Se-deficiency is associated with many diseases, and up to 1 billion people suffer from Se-deficiency worldwide. Cereals are considered a good choice for Se intake due to their daily consumption as staple foods. Much attention has been paid to the contents of Se in cereals and other foods. Se-enriched cereals are produced by biofortification. Notably, the gap between the nutritional and toxic levels of Se is fairly narrow. The chemical structures of Se compounds, rather than their total contents, contribute to the bioavailability, bioactivity, and toxicity of Se. Organic Se species show better bioavailability, higher nutritional value, and less toxicity than inorganic species. In this paper, we reviewed the total content of Se in cereals, Se speciation methods, and the biological effects of Se species on human health. Selenomethionine (SeMet) is generally the most prevalent and important Se species in cereal grains. In conclusion, Se species should be considered in addition to the total Se content when evaluating the nutritional and toxic values of foods such as cereals.
Collapse
Affiliation(s)
- Minhao Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China.,Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| |
Collapse
|
27
|
Niu Y, Liu J, Yang R, Zhang J, Shao B. Atmospheric pressure chemical ionization source as an advantageous technique for gas chromatography-tandem mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Pyrzynska K, Sentkowska A. Selenium in plant foods: speciation analysis, bioavailability, and factors affecting composition. Crit Rev Food Sci Nutr 2020; 61:1340-1352. [PMID: 32363893 DOI: 10.1080/10408398.2020.1758027] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interest in selenium has been increasing over the past few decades with growing knowledge of its importance to overall health. The ability of several plants to accumulate and transform inorganic selenium forms into its bioactive organic compounds has important implications for human nutrition and health. In this review, we present the studies carried out during the last decade to characterize selenium species produced by different plant foods. Attention is also paid to the effect of selenium treatment on chemical composition and antioxidant properties of plants.
Collapse
|
29
|
Development and stability of novel selenium colloidal particles complex with peanut meal peptides. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
In vitro selenium bioaccessibility combined with in vivo bioavailability and bioactivity in Se-enriched microalga (Chlorella sorokiniana) to be used as functional food. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Mylenko M, Vu DL, Kuta J, Ranglová K, Kubáč D, Lakatos G, Grivalský T, Caporgno MP, da Câmara Manoel JA, Kopecký J, Masojídek J, Hrouzek P. Selenium Incorporation to Amino Acids in Chlorella Cultures Grown in Phototrophic and Heterotrophic Regimes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1654-1665. [PMID: 31935099 DOI: 10.1021/acs.jafc.9b06196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae accumulate bioavailable selenium-containing amino acids (Se-AAs), and these are useful as a food supplement. While this accumulation has been studied in phototrophic algal cultures, little data exists for heterotrophic cultures. We have determined the Se-AAs content, selenium/sulfur (Se/S) substitution rates, and overall Se accumulation balance in photo- and heterotrophic Chlorella cultures. Laboratory trials revealed that heterotrophic cultures tolerate Se doses ∼8-fold higher compared to phototrophic cultures, resulting in a ∼2-3-fold higher Se-AAs content. In large-scale experiments, both cultivation regimes provided comparable Se-AAs content. Outdoor phototrophic cultures accumulated up to 400 μg g-1 of total Se-AAs and exhibited a high level of Se/S substitution (5-10%) with 30-60% organic/total Se embedded in the biomass. A slightly higher content of Se-AAs and ratio of Se/S substitution was obtained for a heterotrophic culture in pilot-scale fermentors. The data presented here shows that heterotrophic Chlorella cultures provide an alternative for Se-enriched biomass production and provides information on Se-AAs content and speciation in different cultivation regimes.
Collapse
Affiliation(s)
- Mykola Mylenko
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Dai Long Vu
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Jan Kuta
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | - Karolína Ranglová
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Faculty of Agriculture , University of South Bohemia , Branišovská 1160/31 , 370 05 České Budějovice , Czech Republic
| | - David Kubáč
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Gergely Lakatos
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Tomáš Grivalský
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Martin Pablo Caporgno
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - João Artur da Câmara Manoel
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
- Faculty of Science , University of South Bohemia , Branišovská 1760 , 370 05 České Budějovice , Czech Republic
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Centre Algatech , Institute of Microbiology of the Czech Academy of Sciences , Opatovický mlýn, Novohradská 237 , 379 81 Třeboň , Czech Republic
| |
Collapse
|
32
|
Zhu H, Zhou Y, Qi Y, Ji R, Zhang J, Qian Z, Wu C, Tan J, Shao L, Chen D. Preparation and characterization of selenium enriched-Bifidobacterium longum DD98, and its repairing effects on antibiotic-induced intestinal dysbacteriosis in mice. Food Funct 2019; 10:4975-4984. [PMID: 31343650 DOI: 10.1039/c9fo00960d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the characteristics of a novel selenium-enriched Bifidobacterium longum DD98 (Se-B. longum DD98) supplement food and its repairing effects on the intestinal ecology of mammals. We assessed the growth, Se accumulation, and Se biotransformation of B. longum DD98 and its effects on antibiotic-induced intestinal dysbacteriosis in mice. The viable bacterial count at the end of fermentation was not significantly affected by the presence of Se. Bifidobacterium longum DD98 took up inorganic Se from the medium and biotransformed it into Se-containing proteins and selenoamino acids. The dominant Se species was selenomethionine (SeMet), which comprised 87% of the total Se in Se-B. longum DD98. Furthermore, Se-B. longum DD98 showed better regulation of the disrupted intestinal microbiota back to normal levels and repaired damaged colon tissues compared to the natural recovery and B. longum DD98 treatments. These findings suggest that B. longum DD98 efficiently biotransformed inorganic Se into more bioactive organic Se forms and may have therapeutic potential for the restoration of antibiotic-induced intestinal dysbacteriosis.
Collapse
Affiliation(s)
- Hui Zhu
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 201100, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|