1
|
Nath P, Dey A, Kundu T, Pathak T, Chatterjee M, Roy P, Satapathi S. Highly fluorescent nitrogen doped carbon dots as analytical probe for sensitive detection of curcumin through smartphone integrated 3D-printed platform: A new horizon in food safety. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125260. [PMID: 39401471 DOI: 10.1016/j.saa.2024.125260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024]
Abstract
COVID-19 pandemic has significantly influenced the dietary habits of humans, emphasizing the incorporation of natural ingredients to enhance immunity towards viral and bacterial infections. Curcumin (Cur), a widely used traditional medicine in various Asian countries and a natural coloring agent, has gained popularity, leading to surge in its usage specially in post COVID-19 era. This surge has led to increased scrutiny of the potential side effects of excessive Cur use, with recent reports suggesting it may result in inactivation of DNA and reduce adenosine triphosphate levels, leading to health risks. In this work, we synthesized highly fluorescent nitrogen-doped carbon dots with a photoluminescence quantum yield of 72.9 % for the sensitive and selective detection of Cur. The developed fluorescent probe exhibits excellent sensory response towards Cur within a concentration range of 0.081-51.45 µM, achieving an ultra-low detection limit of 15.91 nM. The sensor was successfully tested on real food samples like ginger powder, turmeric powder, and curry powder, demonstrating good recovery rates. To assess the practicality of the sensor system, we developed a 3D-printed smartphone-integrated device platform for curcumin detection through fluorescence image analysis. This developed platform exhibited promising results, achieving a limit of detection (LoD) of 132.28 nM across a curcumin concentration range of 0.13-54.00 µM. This device platform holds significant potential for the development of efficient sensors for real-time detection of Cur in food samples.
Collapse
Affiliation(s)
- Prathul Nath
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Ankan Dey
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Tathagata Kundu
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Tiyasa Pathak
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Manisha Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Partha Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
3
|
Wu S, Wang Y, Han S, Hui G, Teng Y, Liu W, Zhao Y. Smartphone-assisted ratiometric fluorescent sensor to quantitatively detect curcumin in traditional Chinese medicine based on Förster resonance energy transfer. Mikrochim Acta 2024; 191:629. [PMID: 39331185 DOI: 10.1007/s00604-024-06670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
A ratiometric fluorescence sensor (Fe-MIL-88-NH2/curcumin) based on luminescent metal-organic frameworks (LMOFs) for the determination of curcumin was constructed. Upon the addition of curcumin, the 535-nm emission of curcumin was enhanced, while the fluorescence emission at 438 nm was quenched, under 367-nm excitation. This sensor demonstrated a broad linear range from 1.5 to 40 μM, a low detection limit of 35 nM, and a fast response time of at most 30 s. We verified the Förster resonance energy transfer (FRET) mechanism between donor (Fe-MIL-88-NH2) and acceptor (curcumin), which further proved the selectivity of the approach. The sensing system enabled the detection of curcumin in the traditional Chinese medicine (TCM) Turmeric. A smartphone-assisted sensing platform was prepared to visually detect curcumin in a portable manner. This study represents the first attempt to fabricate LMOFs for ratiometric fluorescence detection of curcumin, which has promising potential for application in TCM.
Collapse
Affiliation(s)
- Shuang Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Yunhan Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Shikai Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Ge Hui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Ye Teng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Wei Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China.
| |
Collapse
|
4
|
Nair A, Chandrashekhar H R, Day CM, Garg S, Nayak Y, Shenoy PA, Nayak UY. Polymeric functionalization of mesoporous silica nanoparticles: Biomedical insights. Int J Pharm 2024; 660:124314. [PMID: 38862066 DOI: 10.1016/j.ijpharm.2024.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.
Collapse
Affiliation(s)
- Akhil Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekhar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Candace M Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Liu F, Zhu C, Wang Y, Zhang Y. Nitrogen and Chlorine Co-doped Carbon Dots as a Highly Selective and Sensitive Fluorescent Probe for Sensing of PH, Tetracycline Detection and Cell Imaging. J Fluoresc 2024; 34:1183-1192. [PMID: 37498365 DOI: 10.1007/s10895-023-03360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Carbon dots have been widely focused on the field of sensing and detection due to their excellent optical property. Herein, novel orange fluorescent nitrogen and chlorine co-doped carbon dots (N,Cl-CDs) are obtained by one-pot hydrothermal method using o-phenylenediamine and neutral red. Based on the inner filter effect, the prepared N,Cl-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for sensitive determination of tetracycline. The proposed sensor was utilized to realize the determination of tetracycline in Rirver water samples/milk samples (λex = 390 nm, λem = 606 nm) with satisfactory recoveries and relative standard deviations. The linear range of are 0.05 to 45 μM and 45 to135 μM, and detection limit is 3.9 nM (3σ/m). Meanwhile, the luminescent intensity of N,Cl-CDs was reduced gradually when pH changed continuously from 12 to 2, showing a pH-responsive fluorescence property with two linear ranges of pH 3-7 and pH 7-10. In addition, due to the characteristics of low toxicity and excellent biocompatibility, the N, Cl-CDs were also used in the imaging of oocystis cells, which is hopeful to realize the detection of tetracycline in living cells.
Collapse
Affiliation(s)
- Fang Liu
- Department of Modern Chemical Engineering, Shanxi Engineering Vocational College, Taiyuan, 030009, Shanxi, China
| | - Changjian Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
6
|
Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon Dots-Types, Obtaining and Application in Biotechnology and Food Technology. Int J Mol Sci 2023; 24:14984. [PMID: 37834430 PMCID: PMC10573487 DOI: 10.3390/ijms241914984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Materials with a "nano" structure are increasingly used in medicine and biotechnology as drug delivery systems, bioimaging agents or biosensors in the monitoring of toxic substances, heavy metals and environmental variations. Furthermore, in the food industry, they have found applications as detectors of food adulteration, microbial contamination and even in packaging for monitoring product freshness. Carbon dots (CDs) as materials with broad as well as unprecedented possibilities could revolutionize the economy, if only their synthesis was based on low-cost natural sources. So far, a number of studies point to the positive possibilities of obtaining CDs from natural sources. This review describes the types of carbon dots and the most important methods of obtaining them. It also focuses on presenting the potential application of carbon dots in biotechnology and food technology.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| |
Collapse
|
7
|
Liu Y, Gao R, Liu X, Zheng J, Wu X. High-efficiency fluorescent coordination polymer nanoparticles co-doped with Ce 3+/Tb 3+ ions for curcumin detection. Mikrochim Acta 2023; 190:354. [PMID: 37587349 DOI: 10.1007/s00604-023-05933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Curcumin (Cur) possesses diverse biological and pharmacologic effects. It is widely used as a food additive and therapeutic medicine. A study to determine a sensitive detection method for Cur is necessary and meaningful. In this work, double rare earth ions co-doped fluorescent coordination polymer nanoparticles (CPNPs) were developed for the Cur detection. The CPNPs were synthesized by using adenosine monophosphate (AMP) as bridge ligands via coordination self-assembly with Ce3+ and Tb3+. The AMP-Ce/Tb CPNPs exhibited the characteristic green fluorescence of Tb3+ and had high luminescence efficiency. Under the optimal conditions, the fluorescence intensity of AMP-Ce/Tb CPNPs could be significantly quenched by Cur. The fluorescence quenching extent at λex/λem of 300 nm/544 nm showed a good linear relationship with the Cur concentration in the range of 10 to 1000 nM. The detection limit was as low as 8.0 nM (S/N = 3). This method was successfully applied to the determination of Cur in real samples with satisfactory results. The luminescence mechanism of AMP-Ce/Tb CPNPs and the fluorescence quenching mechanism of the CPNPs by Cur were both examined.
Collapse
Affiliation(s)
- Yujie Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Ran Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Xingcen Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jinhua Zheng
- Tai'an Center for Disease Control and Prevention, Tai'an, 271000, People's Republic of China
| | - Xia Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
8
|
Xiao X, Shen Y, Zhou X, Sun B, Wang Y, Cao J. Innovative nanotechnology-driven fluorescence assays for reporting hydrogen sulfide in food-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Wang YQ, Li L, Yin J, Yu X, Wu X, Xu L. Turn on fluorescence detection of curcumin in food matrices by the novel fluorescence sensitizer. Anal Chim Acta 2023; 1254:341094. [PMID: 37005020 DOI: 10.1016/j.aca.2023.341094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
In this study, silane reagents were for the first time explored as the fluorescence sensitizer. They were demonstrated to have fluorescence sensitization effect on curcumin and 3-glycidoxypropyltrimethoxysilane (GPTMS) possessed the strongest effect. Thus, GPTMS was adopted as the novel fluorescence sensitizer to turn on the fluorescence of curcumin by more than two orders of magnitude for detection. In this way, curcumin could be determined with a linear range of 0.2-2000 ng/mL and an LOD of 0.067 ng/mL. The method was applicable to determine curcumin in several actual food samples, which had the good consistency with the high performance liquid chromatographic method, demonstrating the high accuracy of the proposed method. In addition, the curcumins sensitized by GPTMS could be cured under certain conditions and held the potential for solid fluorescence application. This study expanded the scope of fluorescence sensitizer to silane reagents, and provided the novel approach for fluorescence detection of curcumin and further to generate new solid fluorescence system.
Collapse
|
10
|
Haq N, Shakeel F, Ghoneim MM, Asdaq SMB, Alam P, Alanazi SA, Alshehri S. Greener Stability-Indicating HPLC Approach for the Determination of Curcumin in In-House Developed Nanoemulsion and Curcuma longa L. Extract. SEPARATIONS 2023; 10:98. [DOI: 10.3390/separations10020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite the fact that several analytical methodologies have been reported for the determination of curcumin (CCM) in a wide range of sample matrices, the greener liquid chromatographic approaches to determine CCM are scarce in the literature. Therefore, this research is designed to develop and validate a greener stability-indicating “high-performance liquid chromatography (HPLC)” methodology to determine CCM in an in-house developed nanoemulsion, Curcuma longa L. extract, and commercial tablets. CCM was measured on a Nucleodur (150 mm × 4.6 mm) RP C18 column with 5 µm-sized particles. Ethanol and ethyl acetate (83:17 v/v) made up the greener eluent system, which was pumped at a flow speed of 1.0 mL/min. At a wavelength of 425 nm, CCM was detected. The greener HPLC methodology was linear in the 1–100 µg/mL range, with a determination coefficient of 0.9983. The greener HPLC methodology for CCM estimation was also rapid (Rt = 3.57 min), accurate (%recoveries = 98.90–101.85), precise (%CV = 0.90–1.11), and sensitive (LOD = 0.39 µg/mL and LOQ = 1.17 µg/mL). The AGREE approach predicted the AGREE score of 0.81 for the established HPLC technique, indicating an outstanding greenness profile. The utility of the greener HPLC methodology was demonstrated by determining CCM in the in-house developed nanoemulsion, Curcuma longa extract, and commercial tablets. The % amount of CCM in the in-house developed nanoemulsion, Curcuma longa extract, and commercial tablets was found to be 101.24%, 81.15%, and 78.41%, respectively. The greener HPLC methodology was able to detect its degradation product under various stress conditions, suggesting its stability-indication characteristics. These results suggested that CCM in developed nanoemulsion, plant extract samples, and commercial tablets may be routinely determined using the greener HPLC methodology.
Collapse
Affiliation(s)
- Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | | | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Saleh A. Alanazi
- King Abdullah International Medical Research Center, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| |
Collapse
|
11
|
Qi H, Qiu L, Zhang X, Yi T, Jing J, Sami R, Alanazi SF, Alqahtani Z, Aljabri MD, Rahman MM. Novel N-doped carbon dots derived from citric acid and urea: fluorescent sensing for determination of metronidazole and cytotoxicity studies. RSC Adv 2023; 13:2663-2671. [PMID: 36741170 PMCID: PMC9846458 DOI: 10.1039/d2ra07150a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Blue emitting nitrogen-doped carbon dots were synthesized using citric acid and urea through the hydrothermal method, and the fluorescence quantum yield was 35.08%. We discovered that N-CDs featured excellent robust fluorescence stability and chemical resistance. For metronidazole detection, our N-CDs exhibited quick response time, high selectivity and sensitivity, and low cytotoxicity. Specifically, our N-CDs could detect metronidazole in the linear range of 0-179 μM, and the LOD was 0.25 μM. Furthermore, metronidazole efficaciously quenches the fluorescence of N-CDs, possibly owing to the inner filter effect. Lastly, we have employed our N-CDs to detect metronidazole in commercial metronidazole tablets with high accuracy. Overall, the newly prepared fluorescence sensor, N-CDs, demonstrated a huge potential to detect metronidazole in a simple, efficient, sensitive, and rapid manner.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar UniversityQiqiharHeilongjiang Province161006China,Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar UniversityQiqihar 161006China
| | - Lixin Qiu
- College of Chemistry and Chemical Engineering, Qiqihar UniversityQiqiharHeilongjiang Province161006China
| | - Xiaohong Zhang
- College of Chemistry and Chemical Engineering, Qiqihar UniversityQiqiharHeilongjiang Province161006China
| | - Tonghui Yi
- Laboratory of Molecular Biology, Health Inspection Center of Qiqihar Medical UniversityQiqihar 161006HeilongjiangChina
| | - Jing Jing
- School of Medicine and Health, Harbin Institute of TechnologyNo.92, West Dazhi StreetHarbin150000China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif UniversityP.O. 11099Taif 21944Saudi Arabia
| | - Sitah F. Alanazi
- Imam Mohammad Ibn Saud Islamic University, College of Science, Department of PhysicsRiyadh11642Saudi Arabia
| | - Zahrah Alqahtani
- Department of Physics, Faculty of Science, Taif UniversityP.O. 11099Taif 21944Saudi Arabia
| | - Mahmood D. Aljabri
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura UniversityMakkah21955Saudi Arabia
| | - Mohammed M. Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityJeddah 2158980203Saudi Arabia
| |
Collapse
|
12
|
Cui Y, Yang ZQ, Xiao L, Yang M, Gong X, Liu L, Han J, Hu Q. Bright orange-emissive carbon quantum dots as an ultrasensitive nanoprobe for new coccine determination in food samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang W, Li S, Yin P, Li J, Tang Y, Yang M. Response surface methodology optimization for the synthesis of N, S-codoped carbon dots and its application for tetracyclines detection. CHEMOSPHERE 2022; 303:135145. [PMID: 35640693 DOI: 10.1016/j.chemosphere.2022.135145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, using a convenient one-pot microwave-assisted method, we rapidly fabricated a N, S-codoped fluorescent carbon dots (NSCDs) through using citric acid (CA) and d-penicillamine (DPA) for the detection of tetracyclines (TC). To rapidly and efficiently optimize the various synthesis parameters and significantly decrease the number of experimental runs, the effect of the synthesis factors on quantum yield (QY) by NSCDs was implemented through means of response surface methodology (RSM). The as-synthesized NSCDs presented superior photoluminescence stability with a strong quantum yield (QY) of 91.55% under optimal conditions, which was consistent with the predicted value using RSM. The fluorescence intensity of the NSCDs could be quenched effectively after adding TC by the inner filter effect (IEE) and photoinduced electron transfer (PET). Thus, the determination of TC by using NSCDs as a facile fluorescent probe was constructed in the range of 0.2-70 μM with a limit detection of 0.072 μM. Moreover, this detection approach has been utilized to detect TC in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Wei Wang
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, 650500, PR China
| | - Shaoqing Li
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China
| | - Pengyuan Yin
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China
| | - Jiaxiong Li
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China
| | - Yi Tang
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Min Yang
- Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| |
Collapse
|
14
|
Hu Q, Wang W, Yang ZQ, Xiao L, Gong X, Liu L, Han J. An ultrasensitive sensing platform based on fluorescence carbon dots for chlorogenic acid determination in food samples. Food Chem 2022; 404:134395. [DOI: 10.1016/j.foodchem.2022.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
|
15
|
A novel platform based on MnO2 nanoparticles and carboxylated multi-walled carbon nanotubes composite for accurate and rapid determination of curcumin in commercial food products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Ultrasensitive determination of allura red in food samples based on green-emissive carbon nanodots. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Chen S, Ouyang W, Zhu Y, He L, Zou L, Ao X, Liu S, Yang Y, Li J. Facile Synthesis of N, S-Doped Carbon Quantum Dots from Food Waste as Fluorescent Probe for Sensitive Detection of Thiamphenicol and Its Analogues in Real Food Samples along with an Application in Bioimaging. Foods 2022; 11:foods11162414. [PMID: 36010413 PMCID: PMC9407342 DOI: 10.3390/foods11162414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, N, S co-doped carbon quantum dots (N, S-CDs) with high absolute quantitative yield (Abs-QY) of 50.2% were produced by hydrothermal treatment of food residue crayfish shells. A new detection method of thiamphenicol (TAP) and its analogues was established by discovering the obvious fluorescence response between TAP and N, S-CDs, which achieved a wide linear range of 20–300 μg·L−1 with a detection limit (LOD) of 11.12 μg·L−1. This novel probe exhibited strong sensitivity and shows rapid response in complex food matrices (overall detection time is less than 45 min) mainly induced by static quenching. Spiked food sample recovery ranged from 97.3 to 99.34%. Further, the cell experiments of N, S-CDs were conducted, and the cell viability remained 91.76% under high concentration of N, S-CDs due to the environmentally friendly materials. The low cytotoxicity and good cytocompatibility make these N, S-CDs compatible for cell bioimaging and intracellular detection of TAP.
Collapse
Affiliation(s)
- Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence: ; Tel.: +86-0835-2882311
| | - Wanlin Ouyang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
- Yi’yang Agricultural Products Quality Inspection and Testing Center, Yi’yang 413000, China
| | - Yiting Zhu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
18
|
Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis - A mechanistic approach. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Liu L, Qian M, Sun H, Yang ZQ, Xiao L, Gong X, Hu Q. A highly sensitive fluorescence probe for methyl parathion detection in vegetable and fruit samples based on N and S co-doped carbon dots. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Singh R, Sharma R, Chauhan M, Sharma D. Structurally identified curcumin-Ag/ZnO nanocomposite having antibacterial effect: an investigation. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Guo Y, Yang C, Zhang Y, Tao T. Nanomaterials for fluorescent detection of curcumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120359. [PMID: 34530202 DOI: 10.1016/j.saa.2021.120359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Owing to the attractive biological and pharmacological activities, sensitive and selective detection of curcumin is of great significance. Nanomaterials possessing unique optical properties exhibit potential applications in the fluorescent detection of curcumin. This review first discussed the detection strategies of fluorescent nanosensors. In the subsequent section, we highlighted the recent advances of different nanomaterials for fluorescent detection of curcumin, including semiconductor QDs, lanthanide upconversion nanoparticles, fluorescent metal nanoclusters, and carbon quantum dots. And we further provided the merits of fluorescent nanosensors for curcumin. Lastly, the challenges and further directions were presented.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chao Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yijia Zhang
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
22
|
Hu Q, Cui Y, Zhang L, Qian M, Xiao L, Yang M, Yang ZQ, Rao S, Gong X, Han J. An ultrasensitive analytical strategy for malachite green determination in fish samples based on bright orange-emissive carbon dots. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Li QY, Wang YQ, Jiang M, Cui Y, Yu X, Xu L. Hydrophilic silicon nanoparticles as a turn-off and colorimetric fluorescent probe for curcuminoids detection in food samples and cell imaging. Food Chem 2021; 366:130629. [PMID: 34314933 DOI: 10.1016/j.foodchem.2021.130629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
Hydrophilic fluorescent silicon nanoparticles (SiNPs) with good pH stability, salt-tolerance and anti-photobleaching were for the first time prepared from hydrophobic 3-glycidoxypropyltrimethoxysilane. Employing SiNPs as the fluorescence probe, selective quantification of curcuminoids based on the quenching effect was realized with a linearity of 0.046-7.4 μg/mL and a limit of detection of 17.6 ng/mL. Moreover, in light of fluorescence redshift of SiNPs corresponding to the elevated concentration of curcuminoids, a fluorescence colorimetric method was established based on only one extra probe, i.e. herein SiNPs. Thus, semi-quantification of curcuminoids (0-14.7 μg/mL) was visualized from blue to yellow color. Both the developed quantitative and semi-quantitative probe were successfully applied to determine curcuminoids in various actual food samples. Furthermore, SiNPs possessed low cytotoxicity and succeeded in intracellular curcuminoids imaging. The proposed SiNPs could be a promising fluorescence probe for multiple applications.
Collapse
Affiliation(s)
- Qin-Ying Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ya-Qian Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuanyuan Cui
- Shimazu China Co. LTD., Shanghai 200233, PR China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
24
|
Yan Y, Li L, Zhang H, Du F, Meng Y, Shuang S, Wang R, Song S, Dong C. Carbon dots for ratiometric fluorescence detection of morin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119751. [PMID: 33819765 DOI: 10.1016/j.saa.2021.119751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The B,N dual-doped carbon dots (B,N-CDs) for ratiometric fluorescence detection the morin were prepared from sodium tetraborate and polyethyleneimine through the single-step hydrothermal method. The B,N-CDs exhibited the optimum excitation and emission wavelength at 340 nm and 467 nm, respectively. Interestingly, the intensities of emission peak at 467 nm of B,N-CDs reduced meanwhile a new peak emerged at 560 nm with the continuous addition of morin, which revealed the ratio fluorescence characteristic between F560nm/F467nm and morin concentration with the linearity range and detection limit of 14.5-32.5 μmol/L and 0.3 μmol/L (S/N = 3), respectively. The interference of common antibiotics and remedies could be ignored when the concentration of morin was detected by the B,N-CDs, which demonstrating the outstanding selectivity. Furthermore, the proposed fluorescence method is used to detect morin in urine with recoveries are 99.8-104.5%. The results of this research indicate the feasibility and practicality of B,N-CDs as an effective fluorescent probe for the determination of morin.
Collapse
Affiliation(s)
- Yanan Yan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Lin Li
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Huilin Zhang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Fangfang Du
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yating Meng
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, PR China
| | - Shengmei Song
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
25
|
Liu Y, Su X, Chen L, Liu H, Zhang C, Liu J, Hao J, Shangguan Y, Zhu G. Green preparation of carbon dots from Momordica charantia L. for rapid and effective sensing of p-aminoazobenzene in environmental samples. ENVIRONMENTAL RESEARCH 2021; 198:111279. [PMID: 33961826 DOI: 10.1016/j.envres.2021.111279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
p-Aminoazobenzene (pAAB) is a hazardous azo dye that causes considerable harm to human health and the environment. The development of novel and sensitive sensors for the rapid detection of pAAB is in high demand. In this study, a simple fluorescent sensor for pAAB detection is designed based on carbon dots (CDs) which are prepared using green carbon source of Momordica charantia L. via a facile hydrothermal approach. The fluorescence spectra of CDs exhibit considerable overlap with the absorption band of pAAB, and the fluorescence is specifically suppressed in the presence of pAAB ascribed to the inner filter effect. Good and wide linearity is observed in the pAAB concentration range of 0.01-12.5 μg mL-1 with a lower detection limit of 3.9 ng mL-1. The established method achieves good results with a rapid analysis of pAAB in different practical water and soil samples. The as-constructed fluorescent sensor provides a simple, rapid, economical and eco-friendly platform and possesses prospective applications for the effective, selective and sensitive detection of pAAB in the environmental field.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Letian Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Huanjia Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chunyuan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jiali Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jiayi Hao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Shangguan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
26
|
Tang X, Yu H, Bui B, Wang L, Xing C, Wang S, Chen M, Hu Z, Chen W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact Mater 2021; 6:1541-1554. [PMID: 33294732 PMCID: PMC7691164 DOI: 10.1016/j.bioactmat.2020.11.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Iodine ion is one of the most indispensable anions in living organisms, particularly being an important substance for the synthesis of thyroid hormones. Curcumin is a yellow-orange polyphenol compound derived from the rhizome of Curcuma longa L., which has been commonly used as a spice and natural coloring agent, food additives, cosmetics as well as Chinese medicine. However, excess curcumin may cause DNA inactivation, lead to a decrease in intracellular ATP levels, and trigger the tissue necrosis. Therefore, quantitative detection of iodine and curcumin is of great significance in the fields of food and life sciences. Herein, we develop nitrogen-doped fluorescent carbon dots (NCDs) as a multi-mechanism detection for iodide and curcumin in actual complex biological and food samples, which was prepared by a one-step solid-phase synthesis using tartaric acid and urea as precursors without adding any other reagents. An assembled NCDs-Hg2+ fluorescence-enhanced sensor for the quantitative detection of I- was established based on a fluorescence "turn-off-on" mechanism in a linear range of 0.3-15 μM with a detection limit of 69.4 nM and successfully quantified trace amounts of I- in water samples and urine sample. Meanwhile, the as-synthesized NCDs also can be used as a fluorescent quenched sensor for curcumin detection based on the synergistic internal filtration effect (IFE) and static quenching, achieving a good linear range of 0.1-20 μM with a satisfactory detection limit of 29.8 nM. These results indicate that carbon dots are potential sensing materials for iodine and curcumin detection for the good of our health.
Collapse
Affiliation(s)
- Xiaodan Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Lingyun Wang
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Christina Xing
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Shaoyan Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang, 110819, China
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| |
Collapse
|
27
|
Guo X, Liu Y, Dong W, Hu Q, Li Y, Shuang S, Dong C, Cai L, Gong X. Azithromycin detection in cells and tablets by N,S co-doped carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119506. [PMID: 33561684 DOI: 10.1016/j.saa.2021.119506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Azithromycin (AZM)1 is one of the most widely used antibiotics. AZM abuse is easy to cause great harm to human body, so developing a rapid and sensitive method to detect AZM is of great importance. Herein, 3-aminothiophenol as only reaction precursor, nitrogen and sulfur co-doped carbon quantum dots (N,S-CQDs)2 were fabricated by one-step hydrothermal carbonization method. All characteristics demonstrate that N,S-CQDs possess good water solubility, high fluorescence stability and low cytotoxicity. Without being disturbed by amino acids and drugs, the most interesting finding is that AZM can efficiently quench the fluorescence of N,S-CQDs by a synergistic effect of electrostatic interaction and static quenching. A fluorescent probe for the detection of AZM was constructed with high selectivity and good sensitivity, achieving two linear ranges of 2.5-32.3 μM and 37.2-110 μM and a limit of detection of 0.76 µM. The proposed fluorescent method was used for the detection of AZM in cells with fulfilling results. More importantly, the fluorescent probe was successfully used to the detection of AZM in tablets and human urine with recovery rate and relative standard deviations of 98.2-104.8% and 0.04-3.46%, respectively, which was confirmed by the standard method of HPLC-UV. This finding illustrates the usefulness and feasibility of N,S-CQDs as an effective fluorescent probe for the detection of AZM in tablets and human urine, which is helpful for supervising and guiding pharmacy.
Collapse
Affiliation(s)
- Xueqing Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Wenjuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Qin Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Yong Li
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Lishuai Cai
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Xiaojuan Gong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
28
|
Meng Y, Jiao Y, Zhang Y, Zhang H, Gong X, Liu Y, Shuang S, Dong C. One-step synthesis of red emission multifunctional carbon dots for label-free detection of berberine and curcumin and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119432. [PMID: 33472136 DOI: 10.1016/j.saa.2021.119432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In this work, the red emission multifunctional carbon dots (R-CDs) were prepared via one-pot hydrothermal strategy of neutral red (NR) and ethylenediamine (EDA) for the label-free detection of berberine and curcumin, cell imaging, and fluorescent flexible film. The as-fabricated R-CDs not only possess good water dispersibility and excellent fluorescence stability, but also were successfully employed as a photoluminescent nanoprobe for label-free monitoring of berberine (BRH) and curcumin (Cur) based on dynamic quenching and internal filter effect (IFE), respectively. More importantly, as-proposed R-CDs displayed outstanding cellular permeability and lower cytotoxicity for cellular applications, which was consistent with the results of confocal fluorescence imaging and cell viability measurement of SMMC7721 cells. Thus, the multifunctional R-CDs may provide a rich tool library for biosensing and cellular imaging reagent applications. Interestingly, R-CDs were also used to manufacture R-CDs/PVA composites as fluorescent flexible films. To the best of our knowledge, this is the first demonstration of a label-free multifunctional fluorescent nanoprobe for berberine and curcumin based on red emission CDs.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Huilin Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
29
|
Cai Z, Wu L, Xi J, Hao E, Qi K. Green and facile synthesis of polyethyleneimine-protected fluorescent silver nanoclusters for the highly specific biosensing of curcumin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213686] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Wang Z, Zhang L, Hao Y, Dong W, Liu Y, Song S, Shuang S, Dong C, Gong X. Ratiometric fluorescent sensors for sequential on-off-on determination of riboflavin, Ag + and l-cysteine based on NPCl-doped carbon quantum dots. Anal Chim Acta 2021; 1144:1-13. [PMID: 33453785 DOI: 10.1016/j.aca.2020.11.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
The fluorescent sensor, especially ratiometric fluorescent sensor, is one of the most important applications for CQDs, which is becoming a research hotspot. Herein, carbon quantum dots co-doped with nitrogen, phosphorus and chlorine (NPCl-CQDs) were synthesized by acid-base neutralization reaction exothermic carbonization method. The as-fabricated NPCl-CQDs could emit blue fluorescence and possess excellent fluorescence properties. Based on the FRET, multifunctional and ratiometric fluorescent sensors for "on-off-on" sequential determination of riboflavin, Ag+, and Cys with good selectivity and high sensitivity were established. The linear range of riboflavin, Ag+, and Cys are 0.50-10.18 μM and 15.89-27.76 μM, 0.66-1.46 mM and 1.50-4.20 mM, and 0.01-0.15 μM and 0.15-0.36 μM with the limit of detection of 3.50 nM, 26.38 μM, and 0.96 nM, respectively. Furthermore, the sensors were successfully used to determine riboflavin, Ag+, and Cys in tablets, river water, and human urine with the recoveries of 95.2-104.0%, 95.6-102.0%, and 94.8-106.4%, respectively. More importantly, the as-constructed "on-off-on" NPCl-CQDs-based ratiometric fluorescent sensors were applied for detecting riboflavin, Ag+, and Cys in HeLa cells with satisfying results. The finding of this study shows the feasibility and effectiveness of the NPCl-CQDs as the available ratiometric fluorescent sensors for the determination of riboflavin, Ag+, and Cys in real samples and living cells.
Collapse
Affiliation(s)
- Zihan Wang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Li Zhang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Yumin Hao
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Wenjuan Dong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Yang Liu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Shengmei Song
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Shaomin Shuang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Xiaojuan Gong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
32
|
Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an “off-on” fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications. Mikrochim Acta 2021; 188:16. [DOI: 10.1007/s00604-020-04618-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
|
33
|
Zuo Z, Tang Y, Lei F, Jin R, Yin P, Li Y, Niu Q. New thiophene hydrazide dual-functional chemosensor: Colorimetric sensor for Cu 2+ & fluorescent sensor for Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118712. [PMID: 32717524 DOI: 10.1016/j.saa.2020.118712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
A new thiophene hydrazide derivative TSB was synthesized and utilized as naked-eye colorimetric sensor for Cu2+ by the color changed from colorless to yellow as well as green fluorescent turn on sensor for Al3+ in DMSO/H2O (1/1, V/V) solution. The dual-functional chemosensor TSB for Cu2+/Al3+ sensing displayed excellent properties of special selectivity, superior sensitivity, outstanding anti-interference performance, instantaneous response, wide pH working range and good reversibility. The detection limits of TSB for Cu2+/Al3+ were determined as low as 46.5 nM and 32.7 nM, respectively. The 1:1 binding mode of TSB with Cu2+/Al3+ was proved by spectrometric titrations, Job's plots, FTIR, 1H NMR and HRMS analysis. Moreover, chemosensor TSB was successfully utilized for detection of Cu2+ and Al3+ in real environmental water and food samples with high reliability, demonstrating its practical applicability.
Collapse
Affiliation(s)
- Zhenyu Zuo
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China.
| | - Yuping Tang
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Ruyi Jin
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China
| | - Pengcheng Yin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Yang Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| |
Collapse
|
34
|
Liu L, Hu Q, Sun H, Han J, Pan Y, Yang ZQ. An ultra-sensitive analytical platform based on bluish green emitting carbon quantum dots for the detection of curcumin in dietary foods. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Yuan F, Wu X, Zhang H. Luminescence of Eu (III) complex under near-infrared light excitation for curcumin detection. Talanta 2020; 218:121104. [PMID: 32797870 DOI: 10.1016/j.talanta.2020.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
An intrinsic Eu(III) luminescence phenomenon of Eu(III) complex was found under near-infrared light (NIRL) excitation of xenon lamp, and the maximum excitation wavelength is about twice the excitation wavelength of its Stokes fluorescence. The NIRL excitation fluorescence was mainly originated from second order diffracted light (SODL) excitation. The Eu(III) complex was consist of Eu(III), Gd(III), 2-trifluoroacetylacetone (TTA) and cetyltrimethylammonium bromide (CTAB). Curcumin (Cur) could notably quench the luminescence intensity of the Eu(III) complex. Based on this, a sensitive method for Cur detection was developed. Under optimum conditions, the decrease extent in the fluorescence intensity at 611 nm exhibited a good linear relationship with the Cur concentration in the range of 2.0 × 10-9 mol/L - 6.0 × 10-8 mol/L under 746 nm excitation, the limit of detection (LOD, S/N = 3) was 5.2 × 10-10 mol/L. While, the linear relationship and the LOD of Stokes fluorescence method (λex/λem = 360/611 nm) were found to be 1.0 × 10-8 mol/L - 6.0 × 10-8 mol/L and 2.6 × 10-9 mol/L, respectively. The former method is superior to the latter one in Cur detection. Both two methods were successfully applied to determine Cur in real samples. The luminescence mechanism of Eu(III) complex under the NIRL excitation and the quenching mechanism of Cur on the Eu(III) fluorescence was also investigated.
Collapse
Affiliation(s)
- Fangzheng Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shandong University, Jinan, 250100, People's Republic of China
| | - Xia Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shandong University, Jinan, 250100, People's Republic of China.
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
36
|
A Fluorescent “Turn-off” Probe for the Determination of Curcumin Using Upconvert Luminescent Carbon Dots. J Fluoresc 2020; 30:1469-1476. [DOI: 10.1007/s10895-020-02590-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
37
|
Pinilla-Peñalver E, Soriano ML, Durán GM, Llorent-Martínez EJ, Contento AM, Ríos Á. Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe. Mikrochim Acta 2020; 187:446. [PMID: 32676763 DOI: 10.1007/s00604-020-04437-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022]
Abstract
Accurate-controlled sized graphene quantum dots (GQDs) have been used as an analytical nanoprobe for detecting curcumin as a function of the photoluminescent quenching upon increasing concentrations of the analyte. Regarding the importance of curcumin nanoparticles in nutraceutical food, the analytical method described herein was also proven for the discrimination of curcumin remaining in free solution from that encapsulated into water-soluble nanomicelles of ca. 11 nm. This recognition is based on the displacement of GQD emission when interacting with both curcumin species. Maximum emission wavelength of GQDs suffers a gradual quenching as well as a red-shifting upon increasing concentrations of free curcumin (from 458 to 490 nm, exciting at 356 nm). On the other hand, in the presence of nanocurcumin, GQD photoluminescent response only displays a quenching effect (458/356 nm). The sensitivity of the described method in terms of detection limits was 0.3 and 0.1 μg mL-1 for curcumin and nanocurcumin, respectively. The applicability of the photoluminescent probe for the quantification and discrimination between both curcumin environments was demonstrated in nutraceutical formulations namely functional food capsules and fortified beverages such as ginger tea. Graphical abstract.
Collapse
Affiliation(s)
- Esther Pinilla-Peñalver
- Regional Institute for Applied Chemistry Research (IRICA), 13071, Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - M Laura Soriano
- Regional Institute for Applied Chemistry Research (IRICA), 13071, Ciudad Real, Spain
| | - Gema M Durán
- Regional Institute for Applied Chemistry Research (IRICA), 13071, Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Science, University of Jaén, 23071, Jaén, Spain
| | - Ana M Contento
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ángel Ríos
- Regional Institute for Applied Chemistry Research (IRICA), 13071, Ciudad Real, Spain.
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
38
|
Synthesis of carbon quantum dots with iron and nitrogen from Passiflora edulis and their peroxidase-mimicking activity for colorimetric determination of uric acid. Mikrochim Acta 2020; 187:405. [DOI: 10.1007/s00604-020-04391-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
|
39
|
Roy S, Bardhan S, Chanda DK, Ghosh S, Mondal D, Roy J, Das S. Development of a Cu(ii) doped boehmite based multifunctional sensor for detection and removal of Cr(vi) from wastewater and conversion of Cr(vi) into an energy harvesting source. Dalton Trans 2020; 49:6607-6615. [PMID: 32342977 DOI: 10.1039/d0dt00888e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article reports a copper doped boehmite (CBH) based nano-material which is capable of detecting and removing hexavalent chromium simultaneously. Basic characterization has been performed to determine its phase purity, particle size (∼20 nm), morphology and surface properties (surface area 15.29 m2 g-1 and pore diameter 3.9 nm) by using some basic characterization tools. The Rietveld refinement method has been adopted to analyze the microstructural details of the synthesized nanostructure. Photoinduced electron transfer (PET) based quenching of fluorescence is mainly responsible for chromium sensing in this case. This nanosensor is exceptionally sensitive (limit of detection ∼ 6.24 μM) and merely selective towards hexavalent chromium ions. Industrial wastewater samples have also been used here to demonstrate the real life applicability of this material, which shows the same trend. This fluoro-sensor gains its multi-functionality when it comes to the adsorption based removal of Cr(vi) from wastewater. The synthesized material shows a remarkably high adsorption rate (∼85% in just 5 minutes) due to its sponge-like porous structure. Adsorption of hexavalent chromium from wastewater enhances the dielectric constant of this material significantly (∼7.93 times). Ionic polarization-dependent enhancement of the dielectric constant resulting from industrial wastewater treatment is a quite unmarked approach. Very low tangent loss with augmented dielectric permittivity makes this nano-material desirable for energy harvesting applications. Previously many articles have reported the sensing and removal of various industrial effluents. Keeping this in mind, this work has been designed and, apart from sensing and removal, it provides a new insight into energy harvesting from wastewater.
Collapse
Affiliation(s)
- Shubham Roy
- Department of Physics, Jadavpur University, Raja S.C. Mullick Road, Kolkata-700032, India.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang X, Xu J, Luo N, Tang F, Zhang M, Zhao B. N,Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food Chem 2020; 310:125832. [DOI: 10.1016/j.foodchem.2019.125832] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
|
41
|
Tang M, Ren G, Chai F. A facile synthesis of magnetic fluorescence Fe3O4-carbon dots for the detection and removal of Hg2+. NEW J CHEM 2020. [DOI: 10.1039/d0nj00275e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article reports a one-pot hydrothermal strategy for preparing fluorescence carbon dots with magnetic properties (Fe3O4-CDs). The Fe3O4-CDs can be utilized for the detection of Hg2+, simultaneously accompanied with a magnetic removal process.
Collapse
Affiliation(s)
- Mingyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
| | - Guojuan Ren
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
| |
Collapse
|
42
|
Bardhan S, Roy S, Chanda DK, Ghosh S, Mondal D, Das S, Das S. Nitrogenous carbon dot decorated natural microcline: an ameliorative dual fluorometric probe for Fe3+ and Cr6+ detection. Dalton Trans 2020; 49:10554-10566. [DOI: 10.1039/d0dt02166k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work reports a C-dot loaded natural microcline based selective and sensitive dual fluorescent probe for hazardous Fe3+ and Cr6+ detection in water along with its effects in real-life water samples.
Collapse
Affiliation(s)
| | - Shubham Roy
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Dipak Kr. Chanda
- School of Materials Science and Nano-Technology
- Jadavpur University
- Kolkata-700032
- India
| | - Saheli Ghosh
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | | | - Solanky Das
- Department of Geology
- Jadavpur University
- Kolkata-700032
- India
| | - Sukhen Das
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
43
|
Kotra VSR, Satyabanta L, Goswami TK. A critical review of analytical methods for determination of curcuminoids in turmeric. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:5153-5166. [PMID: 31749463 PMCID: PMC6838282 DOI: 10.1007/s13197-019-03986-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
Turmeric (Curcuma longa) is one of the most important ingredients in Indian and Chinese cuisine. Curcuminoids and volatile oils present in turmeric are known for their functional and nutraceutical properties. Health benefits attributed to curcuminoids have resulted in their wide utilization in food and pharmaceutical formulations. Therefore, characterization and estimation of the curcuminoids in fresh/dry turmeric, food and nutraceutical products are essential for their quality control during processing and storage. To meet the demand for analytical methods of curcuminoids, several methods have been developed for their quantification in turmeric powder and food formulations. In the present review, various analytical methods (spectrophotometric, chromatographic, capillary electrophoresis and biosensor techniques) which are used for monitoring curcuminoids have been thoroughly summarized and discussed. The spectrophotometric method is not useful when individual components of curcuminoids are required. Mobile phase optimization, the broadness of spots, plate-to-plate variations are significant limitations for TLC and HPTLC methods. Many analysts believe that HPLC method is the best choice for curcuminoids determination because of its rapid analysis. Spectrofluorimetry and Electrochemical methods are the more advanced methods with high sensitivity as well as rapid analysis. However, the selection of analytical method for curcuminoids analysis depends on the type of sample matrix, purpose of the analysis and limit of detection and limit of quantitation of the method.
Collapse
Affiliation(s)
- Venkata Subba Rao Kotra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Laishram Satyabanta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Tridib Kumar Goswami
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
44
|
Hong D, Deng X, Liang J, Li J, Tao Y, Tan K. One-step hydrothermal synthesis of down/up-conversion luminescence F-doped carbon quantum dots for label-free detection of Fe3+. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100318] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Comparative study of Cl,N-Cdots and N-Cdots and application for trinitrophenol and ClO - sensor and cell-imaging. Anal Chim Acta 2019; 1091:76-87. [PMID: 31679577 DOI: 10.1016/j.aca.2019.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 11/20/2022]
Abstract
To understand the effect of Cl doping in carbon dots, nitrogen-doped carbon dots (N-Cdots) and nitrogen and chlorine dual-doped carbon dots (Cl,N-Cdots) were fabricated by high-temperature carbonization and low-temperature concentrated acid (HCl) acidification of dried shaddock peel, respectively. The quantum yield of Cl,N-Cdots is about four times of that of N-Cdots and the size of Cl,N-Cdots is smaller than that of N-Cdots. Furthermore, since trinitrophenol (PA) and ClO- could effectively quench the fluorescence of Cl,N-Cdots, the fluorescence sensors for determining PA and ClO- was constructed, respectively. The linear range of PA and ClO- are 0.9-90 μM and 3.24-216 μM with the limit of detection of 37.1 nM and 2.88 μM, respectively. The proposed sensor was used to detect PA in Taiyuan tap water, Wutai tap water, Wutai rain water and Wutai river water samples with encouraging results. The as-constructed sensor was also used to detect ClO- in Taiyuan tap water and commercial disinfectants. Last but not least, Cl,N-Cdots was employed as an agent for A549 and HeLa cell-imaging, possessing optimal imaging effect and ultra-low cytotoxicity. Our results suggested that Cl,N-Cdots has promising applications in sensing, water monitoring, commodity supervision and cell-imaging.
Collapse
|
47
|
Carbon dots co-doped with nitrogen and chlorine for “off-on” fluorometric determination of the activity of acetylcholinesterase and for quantification of organophosphate pesticides. Mikrochim Acta 2019; 186:585. [DOI: 10.1007/s00604-019-3715-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
|
48
|
Yang R, Mu WY, Chen QY. Urazole-Au Nanocluster as a Novel Fluorescence Probe for Curcumin Determination and Mitochondria Imaging. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01519-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Wu C, Zhu Y, Wu T, Wang L, Yuan Y, Chen J, Hu Y, Pang J. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem 2019; 288:139-145. [PMID: 30902273 DOI: 10.1016/j.foodchem.2019.03.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/24/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Curcumin loaded mesoporous silica nanoparticle (SBA-15) was incorporated into chitosan (CS) film to improve the functional properties of pure CS film. Curcumin was loaded into SBA-15 (SBA-15-Cur) through a rotavapor method. The structural properties of SBA-15-Cur were characterised in detail by small-angle X-ray scattering, fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy and N2 adsorption-desorption analyses. The CS/SBA-15-Cur bionanocomposite film was prepared by solvent casting. The mechanical properties of the bionanocomposite film were improved by the addition of the SBA-15-Cur nanofiller, as revealed by the FT-IR analysis of the biocomposite film. However, the water vapour permeability of the films was not significantly influenced by the filler. Release studies suggested that the CS/SBA-15-Cur bionanocomposite film exhibited pH-responsive and sustained release behaviour of curcumin. The CS/SBA-15-Cur film demonstrated efficient antimicrobial activity against Staphylococcus aureus and Escherichia coli. These data indicated that the CS/SBA-15-Cur bionanocomposite film could be a promising active food packaging material.
Collapse
Affiliation(s)
- Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 6068502, Japan
| | - Tiantian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Yuan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jicheng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaqin Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|