1
|
Li W, Zheng T, Zhang J, Li W, Chen K, Zhang K, Fang Y. Supplementary light with different wavelengths improved the monoterpenes aroma and quality traits of 'Shine Muscat' grape berries under facility cultivation. Food Chem 2025; 474:143255. [PMID: 39923511 DOI: 10.1016/j.foodchem.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Monoterpenes are typical aroma components of muscat grapes and are closely related to lighting conditions. However, the changes of light quality and intensity in facility cultivation hinder their accumulation and grape quality development. This study investigated the effect of supplementing light (white, red, blue, red-blue, UV-A, UV-B) on the quality of facility cultivated 'Shine Muscat' grapes. Compared to normal lighting condition (CK), supplementary lights significantly altered grape basic characteristics, including reducing berries green hue (white, red, blue, red-blue) and organic acids contents, while increasing the total soluble solids, glucose and fructose contents. Notably, all lights except red significantly increased the contents of most monoterpenes and enhanced floral and fruity odor by sensory evaluation, with blue light being most effective. Additionally, free forms of linalool, trans-rose oxide, and geraniol were identified as key monoterpenes contributing to muscat flavor. PCA indicated that blue light was the best overall promoter of grape quality.
Collapse
Affiliation(s)
- Wanping Li
- Hainan Institute of Northwest A&F University, College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experimentand Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Tianyi Zheng
- Hainan Institute of Northwest A&F University, College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experimentand Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Junxia Zhang
- Hainan Institute of Northwest A&F University, College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experimentand Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Wangze Li
- Hainan Institute of Northwest A&F University, College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experimentand Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Keqin Chen
- Hainan Institute of Northwest A&F University, College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experimentand Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Kekun Zhang
- Hainan Institute of Northwest A&F University, College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experimentand Demonstration Station, Northwest A&F University, Yangling 712100, China.
| | - Yulin Fang
- Hainan Institute of Northwest A&F University, College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experimentand Demonstration Station, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Yan Y, Li L, Zheng M, Duan B, Zhang J, Li Y, Liu W, Liu X. Dynamic changes in proanthocyanidin composition, biosynthesis, and histochemistry in spine grape (Vitis davidii Foëx) tissues during berry development. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2697-2711. [PMID: 39564696 DOI: 10.1002/jsfa.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Spine grapes are widely cultivated in southern China because of their strong adaptability to hot and humid climates. As a wild species native to China, spine grape (Vitis davidii Foëx) was studied as a resource of proanthocyanidins (PAs). PA composition, biosynthesis, and histochemistry in different tissues (skins, seeds, and stems) during berry development were analyzed in this study. RESULTS The findings revealed that PA accumulation occurred in concurrence with flowering and was completed by veraison. High-performance liquid chromatographic results showed that the epicatechin type was the most dominant. The skins were more likely to accumulate PA polymers. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression levels of structural genes (flavonoid-3'-hydroxylase, flavonoid-3'5'-hydroxylase, dihydroflavonol 4-reductase, leucoanthocyanidin reductase, and leucoanthocyanidin dioxygenase) were positively associated with PA dynamic changes. Histochemical results revealed that PAs in skins were mainly found in the hypodermis of the exocarp, PAs in seeds were mainly found in the middle layer of the outer integument of the testa, and PAs in stems were mainly found in the phloem. CONCLUSION This study provides a clear understanding of the spatial and temporal accumulation of PAs in spine grape, and forms a basis for the analysis of structural profiles and synthesis of PAs and their biological effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yinfang Yan
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Lin Li
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Mingyuan Zheng
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Bingbing Duan
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Jiajing Zhang
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Yashan Li
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
- School of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong, People's Republic of China
| | - Wei Liu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, People's Republic of China
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, People's Republic of China
| |
Collapse
|
3
|
Chen H, Zhang L, Yang B, Wang M, Ma L, Shi J, Zhang Z, Zeng Q. Effects of foliar applications of γ-polyglutamic acid and alginic acid on the quality and antioxidant activity of Marselan grapes and wines. Food Chem X 2025; 25:102112. [PMID: 39816759 PMCID: PMC11732695 DOI: 10.1016/j.fochx.2024.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
This study investigated the effects of γ-polyglutamic acid (PGA) and alginic acid (ALA) on grapes and wines. Marselan grapes were utilized to assess the accumulation and synthesis of phenolic compounds and antioxidant activity. The 0.35 % (v/v) PGA (PGA2) significantly enhanced the antioxidant activity of both grapes and wines in both years. Overall, treatments with 0.45 % (v/v) PGA (PGA3), 0.45 % (v/v) ALA (ALA3), and 0.25 % (v/v) ALA (ALA1) notably increased the total phenolic and anthocyanin content in both grapes and wines. Among these, PGA3 treatment significantly upregulated the levels of Delphinidin-3-O-(6-acetyl)-glucoside, Cyanidin-3-O-(6-acetyl)-glucoside, Peonidin-3-O-glucoside, and Malvidin-3-O-(trans-6-O-coumaryl)-glucoside in both years. Additionally, PGA3 treatment elevated the expression of the VvPAL, VvCHS, VvDFR and VvLDOX genes across both years. In contrast, ALA3 and ALA1 treatments increased anthocyanin content by upregulating the expression of VvCHS, VvF3'H and VvUFGT genes. In summary, PGA3 treatment significantly enhanced the phenolic compounds and antioxidant activity in both grapes and wines. These findings demonstrate the potential of PGA and ALA as biostimulants to significantly enhance grape and wine quality in viticulture.
Collapse
Affiliation(s)
- Huawei Chen
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Lijian Zhang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Bowei Yang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Miaomiao Wang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Litao Ma
- Xinjiang Zhangyu Baron Balboa Vineyard, Shihezi, Xinjiang 832061, China
| | - Jingjing Shi
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Zhenwen Zhang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
| | - Qingqing Zeng
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
| |
Collapse
|
4
|
Chen H, Wang M, Zhang L, Ren F, Li Y, Chen Y, Liu Y, Zhang Z, Zeng Q. Anthocyanin profiles and color parameters of fourteen grapes and wines from the eastern foot of Helan Mountain in Ningxia. Food Chem X 2024; 24:102034. [PMID: 39659684 PMCID: PMC11629261 DOI: 10.1016/j.fochx.2024.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
To identify wine grape cultivars (Vitis vinifera) with superior color properties for wine production, the anthocyanin composition and color characteristics of fourteen cultivars and their wines were investigated. Grapes and wines from 'Dornfelder', 'Dunkelfelder', and 'Malbec' cultivars exhibited significantly higher total phenolic contents. At harvest, 'Dornfelder' grapes and wines exhibited the highest total anthocyanin contents, with values of 249.94 mg/kg in grapes and 1686.76 mg/L in wines, significantly higher than other cultivars. PCA and PLS-DA analyses identified malvidin-3-O-(trans-6-O-coumaryl)-glucoside as a common differential metabolite in both grapes and wines across all cultivars. Correlation analysis revealed that non-acylated anthocyanins (r = 0.68) have a more significant impact than acylated anthocyanins (r = 0.28) on color chromatic diversity in grapes and wines (P < 0.05). These findings suggest that wines produced from 'Dornfelder' grapes are particularly valuable for their superior color properties and high individual anthocyanin contents. This study addresses a gap in comparative anthocyanin analysis among cultivars and provides valuable insights for grape growers and winemakers seeking to optimize grape selection for improved wine quality.
Collapse
Affiliation(s)
- Huawei Chen
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Miaomiao Wang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Lijian Zhang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Fuxian Ren
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Yutao Li
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Yong Chen
- Ningxia Helan Donglu Wine Industry Investment Development Group, Yinchuan 750000, China
| | - Yunqi Liu
- Ningxia Xige Estat, Wuzhong 751600, China
| | - Zhenwen Zhang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Qingqing Zeng
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| |
Collapse
|
5
|
Ren R, Chen H, Xie R, Yuan H, Xie S, Zhang Z. Manganese sulfate application promotes berry flavonoid accumulation in Vitis vinifera cv. 'Cabernet Sauvignon' by regulating flavonoid metabolome and transcriptome profiles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1092-1106. [PMID: 37782112 DOI: 10.1002/jsfa.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Flavonoids are vital for the development of high-quality grapes and wine, and manganese deficiency decreases grape berry coloration. However, the effects and underlying mechanisms of action of manganese sulfate on grape metabolic profiles have not been adequately researched. In this study, three concentrations of manganese sulfate solutions, 0.5 μmol·L-1 (low, L), 5 μmol·L-1 (middle, M - the standard manganese concentration of Hoagland nutrient solution, control), and 1000 μmol·L-1 (high, H), were applied to the 'Cabernet Sauvignon' grapevine (Vitis vinifera L.) to explore the effect on berry composition. RESULTS Manganese application improved manganese concentration effectively in grape organs. Furthermore, the concentrations of malvidin 3-O-(6-O-acetyl)-glucoside, malvidin 3-O-glucoside, malvidin-trans-3-O-(6-O-p-coumaryl)-glucoside, and peonidin 3-O-(6-O-acetyl)-glucoside increased significantly under H treatment. Weighted gene co-expression network analysis (WGCNA) revealed that the structural genes (VvDFR, VvUFGT, and VvOMT) of flavonoid biosynthesis were upregulated under H treatment, and their transcription levels correlated positively with malvidin- and peonidin-derived anthocyanin concentrations. CONCLUSIONS This study suggested that manganese application regulates berry transcriptional and flavonoid metabolic profiles, providing a theoretical basis for improving the color of red grapes and wines. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, Yangling, China
| | - Huangzhao Chen
- College of Enology, Northwest A&F University, Yangling, China
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Rui Xie
- College of Enology, Northwest A&F University, Yangling, China
| | - Haohao Yuan
- College of Enology, Northwest A&F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Zhongguancun Innovation Center, Yinchuan, China
| |
Collapse
|
6
|
Zhang J, Li W, Zhang P, Zhang X, Wang J, Wang L, Chen K, Fang Y, Zhang K. Effect of Supplementary Light with Different Wavelengths on Anthocyanin Composition, Sugar Accumulation and Volatile Compound Profiles of Grapes. Foods 2023; 12:4165. [PMID: 38002222 PMCID: PMC10670164 DOI: 10.3390/foods12224165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Protected cultivation is currently one of the main cultivation modes for grape production, but the long-term use of plastic film will have a certain negative impact on the light environment in vineyards, which in turn causes poor colouring, low sugar content and a lack of aroma in some red grape varieties. Supplementing light can be an effective way to mitigate these problems. In this study, vines of three red table grape varieties ('Summer Black', 'Xinyu' and 'Queen Nina') cultivated in a plastic greenhouse were supplemented with red, blue, white and red-blue light from veraison to harvest. All four supplemental light treatments increased the content of anthocyanins, sugars and volatile compounds in three grape varieties compared to CK (no supplemental lighting). Red-blue light treatment was the most favourable for the accumulation of anthocyanins and sugars, and the grapes treated with blue light had the highest content of volatile compounds. The grapes treated with red-blue light all obtained the highest composite scores via principal component analysis. For most of the sensory properties, the highest scores were obtained by the red-blue light-treated grapes. The results of this study will be useful in improving the colouring, sugar, and aroma content of grapes under protected cultivation.
Collapse
Affiliation(s)
- Junxia Zhang
- Heyang Viti-Viniculture Station, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China; (J.Z.); (W.L.); (P.Z.); (X.Z.); (K.C.); (Y.F.)
| | - Wanping Li
- Heyang Viti-Viniculture Station, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China; (J.Z.); (W.L.); (P.Z.); (X.Z.); (K.C.); (Y.F.)
| | - Peng Zhang
- Heyang Viti-Viniculture Station, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China; (J.Z.); (W.L.); (P.Z.); (X.Z.); (K.C.); (Y.F.)
| | - Xuehao Zhang
- Heyang Viti-Viniculture Station, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China; (J.Z.); (W.L.); (P.Z.); (X.Z.); (K.C.); (Y.F.)
| | - Jinfeng Wang
- Weinan Grape Research Institute, Weinan 714000, China; (J.W.); (L.W.)
| | - Lujun Wang
- Weinan Grape Research Institute, Weinan 714000, China; (J.W.); (L.W.)
| | - Keqin Chen
- Heyang Viti-Viniculture Station, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China; (J.Z.); (W.L.); (P.Z.); (X.Z.); (K.C.); (Y.F.)
| | - Yulin Fang
- Heyang Viti-Viniculture Station, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China; (J.Z.); (W.L.); (P.Z.); (X.Z.); (K.C.); (Y.F.)
| | - Kekun Zhang
- Heyang Viti-Viniculture Station, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, College of Enology, Northwest A&F University, Yangling 712100, China; (J.Z.); (W.L.); (P.Z.); (X.Z.); (K.C.); (Y.F.)
| |
Collapse
|
7
|
Zhao T, Xie S, Zhang Z. Effects of foliar-sprayed potassium dihydrogen phosphate on accumulation of flavonoids in Cabernet Sauvignon (Vitis vinifera L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4838-4849. [PMID: 36916448 DOI: 10.1002/jsfa.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/01/2022] [Accepted: 03/14/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND In current vineyards, potassium dihydrogen phosphate (KH2 PO4 ) is a common foliar fertilizer with the lowest salt index. It is employed to improve the transportation and distribution of grape photosynthetic products, but the mechanism of its effect on fruit flavonoid synthesis is unclear. RESULTS This study investigated the effects of foliar spraying of KH2 PO4 at different developmental stages (1 week before veraison; the end of veraison (EV)) on flavonoid metabolites and related gene expression of 'Cabernet Sauvignon' grape for two consecutive vintages. High-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry technology was used to identify 6 flavan-3-ols, 11 flavonols, and 16 anthocyanins. KH2 PO4 influenced anthocyanins content, especially when applied at the EV stage, the content of anthocyanins was significantly higher than that of the control. Further, quantitative polymerase chain reaction analysis showed that KH2 PO4 treatment applied at the EV stage can increase the expression of anthocyanin synthesis genes and accelerate anthocyanin synthesis. In particular, the expression of VviGST in EV treatment was significantly higher than that of the control during the development process. CONCLUSION These findings have enhanced our understanding of the effect of KH2 PO4 treatment on grape flavonoids. Among them, EV treatment can significantly increase anthocyanins content. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Zhao
- College of Enology, Northwest A & F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A & F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A & F University, Yangling, China
| |
Collapse
|
8
|
Ji Q, Wang R, Chen K, Xie Z, Li S, Wang D, Zhang A, Xu Y, Li S, Cui J, Liu S, Zhou J, Wang L. Comparative transcriptome profiling analysis provides insight into the mechanisms for sugar change in Chinese jujube (Ziziphus jujuba Mill.) under rain-proof cultivation. THE PLANT GENOME 2023:e20341. [PMID: 37144674 DOI: 10.1002/tpg2.20341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is a globally popular and economically important fruit that is rich in bioactive compounds with strong anti-cancer effects. Rain-proof cultivation is widely used to cultivate Chinese jujube, as it helps avoid rainfall damage during fruit harvest. Although the sugar content of jujube fruits differs between rain-proof and open-field cultivation, the underlying molecular mechanisms are unknown. Here, we analyzed the levels of sugar content, sugar accumulation pattern, and transcriptome profiles of jujube fruits at five developmental stages grown under rain-proof and open-field cultivation modes. The sugar content of jujube fruits was significantly higher under rain-proof cultivation than under open-field cultivation, although the sugar composition and sugar accumulation patterns were comparable. Comparative analysis of transcriptomic profiles showed that rain-proof cultivation enhanced the intrinsic metabolic activity of fruit development. Gene expression and correlation analyses suggested that ZjSPS, ZjSS, ZjHXK, and ZjINV regulate the development-related changes in sugar content in jujube fruits grown under rain-proof cultivation. Temperature, humidity, and moisture conditions were key climatic factors affecting sugar accumulation. Our results provide insights into the molecular mechanisms regulating sugar content and sugar accumulation in Chinese jujube fruits grown under rain-proof cultivation, and we provide genetic resources for studying the development mechanism of Chinese jujube fruit.
Collapse
Affiliation(s)
- Qing Ji
- Puer University, Puer, Yunnan, China
| | | | - Kai Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | | | | | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ao Zhang
- Puer University, Puer, Yunnan, China
| | - Yumei Xu
- Puer University, Puer, Yunnan, China
| | - Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jun Zhou
- College of Life Science and Engineering, North Minzu University, Yinchuan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
9
|
Liao L, Li Y, Lan X, Yang Y, Wei W, Ai J, Feng X, Chen H, Tang Y, Xi L, Wang Z. Integrative Analysis of Fruit Quality and Anthocyanin Accumulation of Plum cv. 'Cuihongli' ( Prunus salicina Lindl.) and Its Bud Mutation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1357. [PMID: 36987044 PMCID: PMC10059968 DOI: 10.3390/plants12061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Fruit color is one of the quality indicators to judge the freshness of a plum. The coloring process of plum skin is valuable for research due to the high nutritional quality of anthocyanins found in plums. 'Cuihongli' (CHL) and its precocious mutant variety 'Cuihongli Red' (CHR) were used to analyze the changes of fruit quality and anthocyanin biosynthesis during plum development. The results showed that, during the development of the two plums, the total soluble solid and soluble sugar contents were highest at the mature stage, as the titratable acid trended gradually downward as the fruits of the two cultivars matured, and the CHR fruit showed higher sugar content and lower acid content. In addition, the skin of CHR turned red in color earlier than CHL. Compared with CHL, the skin of CHR had higher anthocyanin concentrations, higher activities of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), dihydroflavonol-4-reductase (DFR), and UDPglucose: flavonoid-3-O-glucosyltransferase (UFGT), and higher transcript levels of genes associated with anthocyanin production. In the flesh of the two cultivars, no anthocyanin content was detected. Taken together, these results suggest that the mutation exerted a major effect on anthocyanin accumulation via modification of the level of transcription; thus, CHR advances the ripening period of 'Cuihongli' plum and improves the fruit quality.
Collapse
Affiliation(s)
- Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Yaman Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Xuejiao Lan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Yiyue Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Wen Wei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Jinglan Ai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Xiangning Feng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Hongyu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Yuhang Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Lijuan Xi
- Agriculture and Rural Bureau of Qingshen County, Meishan 620000, China;
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| |
Collapse
|
10
|
Microbial community succession and volatile compounds changes during spontaneous fermentation of Cabernet Sauvignon (Vitis vinifera L.) under rain-shelter cultivation. Food Chem X 2023; 17:100618. [PMID: 36974178 PMCID: PMC10039258 DOI: 10.1016/j.fochx.2023.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Microbiota succession in spontaneous fermentation of Cabernet Sauvignon cultivated under the rain-shelter was characterized, with open-field cultivation as the control. For both cultivation modes, Saccharomyces, Starmerella, and Mycosphearella were the principal fungi, and Tatumella, Gluconobacter, and Acinetobacter were the prevailing bacteria. Rain-shelter reduced the abundance of Hanseniaspora, Candida, Starmerella, Gluconobacter, and Lactococcus. During fermentation, fungal microbiota diversity in samples from the rain-shelter cultivation decreased more drastically than the control (p < 0.05). In terms of the correlation between microbiota and volatile compounds production, the abundance of Hanseniaspora uvarum, Candida apicola, Starmerella bacillaris, Gluconobacter oxydans, and Lactococcus lactis were positively correlated with the production of esters and higher alcohols. Instead of bacterial microbiota, fungal community succession exhibited a positive correlation with the final wine volatiles under the rain-shelter cultivation. These findings demonstrated rain-shelter cultivation influences the succession pattern of microbial communities and in turn impacts the wine aromas and flavors.
Collapse
|
11
|
Liu C, Liu M, Yang L, Zhang X. Influence of ripening stage and meteorological parameters on the accumulation pattern of polyphenols in greengages ( Prunus mume Sieb. Et Zucc) by widely targeted metabolomic. Curr Res Food Sci 2022; 5:1837-1844. [PMID: 36276245 PMCID: PMC9579437 DOI: 10.1016/j.crfs.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Greengage is a Chinese traditional medicine food homology plant that contains abundant polyphenols. Greengages with different levels of maturity have different medicinal functions and applications. Therefore, this study comprehensively analysed the phenolic compounds in greengage of whole mature stage. Notably, the influence of climate conditions on greengage polyphenol synthesis was deeply explored. The polyphenols of greengages were profiled based on the widely targeted metabolomic technology using ultra-performance liquid chromatography-electrospray ionisation triple quadrupole mass spectrometry (UPLC-QTRAP-MS/MS). A total of 214 polyphenols were detected, covering 11 subclasses. During the ripening of greengages, these polyphenols first increased and then decreased, peaking during the swell stage. Multivariate statistical methods, including redundancy analysis (RDA), random forest analysis, Mantel test, and Spearman's correlation indicated that temperature, sunshine hours, humidity, and radiation were important factors driving the formation and changes in the polyphenols of greengages. In particular, flavanones and flavonols, showed a structure-dependent response to temperature and radiation.
Collapse
Affiliation(s)
- Chang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Minxin Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lili Yang
- Department of Horticulture, Beijing Changping Vocational School, Beijing, 102206, China
| | - Xiaoxu Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China,Corresponding author.
| |
Collapse
|
12
|
Huang R, Shen L, Yu H, Jiang J, Qin Y, Liu Y, Zhang J, Song Y. Evaluation of rain-shelter cultivation mode effects on microbial diversity during Cabernet Sauvignon (Vitis vinifera L.) maturation in Jingyang, Shaanxi, China. Food Res Int 2022; 156:111165. [DOI: 10.1016/j.foodres.2022.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022]
|
13
|
Yue X, Zhao Y, Ma X, Jiao X, Fang Y, Zhang Z, Ju Y. Effects of leaf removal on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in Cabernet Sauvignon (Vitis vinifera L.) grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3214-3224. [PMID: 33211320 DOI: 10.1002/jsfa.10951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/11/2020] [Accepted: 11/19/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Anthocyanins, a major flavonoid class, determine the color and quality of wine. Recent research revealed that basal leaf removal can increase the content of these compounds. This study determined the effects of basal leaf removal on the anthocyanin profiles of Cabernet Sauvignon grapes. RESULTS The effects of basal leaf removal on anthocyanin composition in Cabernet Sauvignon grapes were investigated over two growing seasons. Leaf removal at 5% veraison (VB6) and at 100% veraison (VC6) was compared with a control. Reducing sugar and total anthocyanin contents in the leaf removal group were significantly higher than in the control group at harvest for both vintages. Leaf removal increased the content of individual anthocyanins and significantly improved the malvidin-3-O-glucoside (Mv-3-glc), peonidin-3-O-glucoside (Pn-3-glc), and malvidin-3-O-(6-acetyl)-glucoside (Mv-3-acglc) content of the VB6 group. At harvest, VB6 treatment increased the transcript abundance of structural and regulator genes in the anthocyanin pathway, especially VvF3'5'H, VvLDOX, and VvDFR. CONCLUSIONS Our results suggest that leaf removal at 5% veraison may be useful for improving the anthocyanin content in grapes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling, P.R. China
| | - Yameng Zhao
- College of Enology, Northwest A&F University, Yangling, P.R. China
| | - Xin Ma
- College of Enology, Northwest A&F University, Yangling, P.R. China
| | - Xuliang Jiao
- Sino-French Joint Venture Dynasty Winery LTD, Tianjin, P.R. China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, P.R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, P.R. China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, P.R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, P.R. China
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
14
|
Fu H, Qiao Y, Wang P, Mu X, Zhang J, Fu B, Du J. Changes of bioactive components and antioxidant potential during fruit development of Prunus humilis Bunge. PLoS One 2021; 16:e0251300. [PMID: 34010329 PMCID: PMC8133403 DOI: 10.1371/journal.pone.0251300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Dynamic changes in flavonoid, total phenol, and antioxidant potential in different Prunus humilis accessions during fruit development stages were studied in order to provide a reference for the optimum harvest time for flavonoid extraction. 'Nongda 4', 'Nongda 5', 'DS-1' and '02-16' were selected as plant materials to determine the content of flavonoid, total phenol and antioxidant indices during six fruit development stages. Changes in total flavonoid content (TFC) and total phenol content (TPC) in different accessions of P. humilis were slightly different depending on the development stage of P. humilis fruit. TFC and TPC in 'Nongda 5' fruit showed a trend of continuous decline. There was a small increase in TFC and TPC from the young fruit stage to the stone hardening stage, followed by a decreasing trend, and then to the lowest level at the ripening stage of 'Nongda 4', 'DS-1', and '02-16' fruits. The trend of antioxidant capacity (ABTS, FRAP, DPPH) with the TFC and TPC of P. humilis fruit was basically the same, and the correlation analysis results showed that the TFC of P. humilis fruit was positively correlated with the antioxidant indices (P<0.01). Catechin (CC), rutin (RT), and quercetin-7-O-β-D-glucopyranoside (Q7G) were detected in all the fruit development stages of the four P. humilis fruits. Among them, catechin was the most abundant component, accounting for approximately 10%. Myricetin (MC) and quercetin (QC) were generally detected only in the early fruit development stage, but not in the later fruit development stage. Correlation analysis showed that the flavonoid components with TFC, TPC, and antioxidant indices differed between the different accessions. RT, CC, and liquiritigenin (LR) had a stronger correlation with TFC and antioxidant indices. Cyanidin-3-O-glucoside (C3G) was not detected until the coloring stage in two red P. humilis accessions ('Nongda 4' and 'DS-1'), and so it is better to choose a red P. humilis fruit to extract C3G at the ripening stage. Selecting an early stage of fruit development, especially the stone hardening stage, was important for extracting flavonoids, total phenols and other components. We believe that our results will provide basic information and reference for evaluation of fruit nutrition and health benefits, breeding of functional new varieties, and efficient utilization of P. humilis fruit.
Collapse
Affiliation(s)
- Hongbo Fu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
- Research Institute of Pomology, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Yujia Qiao
- Research Institute of Wheat, Shanxi Agricultural University, Linfen, Shanxi, People’s Republic of China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Xiaopeng Mu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Baochun Fu
- Research Institute of Pomology, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Junjie Du
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
- * E-mail:
| |
Collapse
|
15
|
Tian MB, Yuan L, Zheng MY, Xi ZM. Differences in Anthocyanin Accumulation Profiles between Teinturier and Non-Teinturier Cultivars during Ripening. Foods 2021; 10:foods10051073. [PMID: 34066198 PMCID: PMC8151246 DOI: 10.3390/foods10051073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are vital components of plant secondary metabolites, and are also the most important coloring substances in wine. Teinturier cultivars are rich in anthocyanins. However, the differences in anthocyanin accumulation and profiles between teinturier and non-teinturier cultivars have not been reported. In this study, Yan 73 and Dunkelfelder were selected as the experimental materials, and three non-teinturier cultivars were used for comparison. LC-MS and qRT-PCR were used to determine the individual anthocyanin contents and the relative gene expression. The results show that the total anthocyanin content of the teinturier cultivars was considerably higher than that in non-teinturier cultivars, and the levels of individual anthocyanins increased gradually during ripening. Lower ratios of modified anthocyanins were found in the teinturier cultivars, which was not only due to the high expression level of VvUFGT and VvGST4, but also due to the relatively low expression of VvOMT in these cultivars. Cluster analysis of gene expression and anthocyanin accumulation showed that VvUFGT is related to anthocyanin accumulation, and that AM1 is related to the synthesis and transport of methylated anthocyanins. Our results will be useful for further clarifying the pathways of anthocyanin synthesis, modification, and transport in teinturier cultivars.
Collapse
Affiliation(s)
- Meng-Bo Tian
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; (M.-B.T.); (M.-Y.Z.)
| | - Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Ming-Yuan Zheng
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; (M.-B.T.); (M.-Y.Z.)
| | - Zhu-Mei Xi
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; (M.-B.T.); (M.-Y.Z.)
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence:
| |
Collapse
|
16
|
Yue X, Ren R, Ma X, Fang Y, Zhang Z, Ju Y. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Food Res Int 2020; 137:109736. [PMID: 33233302 DOI: 10.1016/j.foodres.2020.109736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Monoterpenes are important aroma components in grapes and wines. We analyzed the free and bound monoterpene profiles and the transcript levels of terpenoid biosynthesis genes in Vitis Vinifera cvs. Muscat Hamburg, Riesling, and Sauvignon Blanc grapes at five ripening stages. Principal component analyses revealed that the three cultivars had different free monoterpene profiles at harvest and the early stage of ripening. In all cultivars, the total bound monoterpene contents were higher than the free monoterpene contents during grape ripening. The changes in monoterpene profiles in different grape varieties were correlated with the transcript levels of some VviTPS and VviGT genes. In Riesling, the VviGT14 and VviUGT88A1L1 transcript levels were related to geraniol glucoside accumulation. In Muscat Hamburg, the VviPNLGl1, VviPNLGl2, and VviPNLGl4 transcript levels were related to linalool accumulation. Understanding the dynamic changes in monoterpene accumulation and biosynthesis will allow winemakers to devise strategies to improve grape and wine aromas.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Ruihua Ren
- College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Xin Ma
- College of Enology, Northwest A&F University, Yangling 712100, PR China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling 712100, PR China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, PR China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, PR China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, PR China.
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
17
|
Rao S, Santhakumar AB, Chinkwo K, Snell P, Oli P, Blanchard CL. Rice phenolic compounds and their response to variability in growing conditions. Cereal Chem 2020. [DOI: 10.1002/cche.10327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences Charles Sturt University Wagga Wagga NSW Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| | - Abishek B. Santhakumar
- School of Biomedical Sciences Charles Sturt University Wagga Wagga NSW Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| | - Kenneth Chinkwo
- School of Biomedical Sciences Charles Sturt University Wagga Wagga NSW Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| | - Peter Snell
- New South Wales Department of Primary Industries Yanco NSW Australia
| | - Prakash Oli
- New South Wales Department of Primary Industries Yanco NSW Australia
| | - Christopher L. Blanchard
- School of Biomedical Sciences Charles Sturt University Wagga Wagga NSW Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga NSW Australia
| |
Collapse
|
18
|
Ren R, Yue X, Li J, Xie S, Guo S, Zhang Z. Coexpression of Sucrose Synthase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:321. [PMID: 32457764 PMCID: PMC7221319 DOI: 10.3389/fpls.2020.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
The sugar content of grape berries is affected by many factors. To explore the hexose content in different cultivars, the photosynthesis, vegetative, and reproductive biomass, as well as the enzyme activities and expression levels of genes related to sugar metabolism and sugar contents were measured. Samples were collected 70-110 days after anthesis (DAA), from Riesling (RI), Petit Manseng (PM), and Cabernet Sauvignon (CS) berries cultivated in the field. The results indicated that high expression levels of VvSWEET15 and VvSS3 and a high activity of sucrose synthase (SS) are associated with a higher hexose content in the berries of PM than in the berries of the other two cultivars. These genes promoted hexose accumulation in the berries by regulating sugar hydrolysis and transport. The results of this study indicate that active sugar hydrolysis and transport increase the hexose content of PM berries, which provides insights for grape berry quality improvement and breeding projects in wine production. Main Conclusion: The active VvSS3, sucrose synthase (SS), and VvSWEET15 increases the hexose content in Petit Manseng berries, which are associated with sugar hydrolysis and transport.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, Yangling, China
| | - Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling, China
| | - Junnan Li
- College of Enology, Northwest A&F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A&F University, Yangling, China
| | - Shuihuan Guo
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Tian T, Qiao G, Wen Z, Deng B, Qiu Z, Hong Y, Wen X. Comparative transcriptome analysis reveals the molecular regulation underlying the adaptive mechanism of cherry (Cerasus pseudocerasus Lindl.) to shelter covering. BMC PLANT BIOLOGY 2020; 20:27. [PMID: 31952478 PMCID: PMC6967096 DOI: 10.1186/s12870-019-2224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rain-shelter covering is widely applied during cherry fruit development in subtropical monsoon climates with the aim of decreasing the dropping and cracking of fruit caused by excessive rainfall. Under rain-shelter covering, the characteristics of the leaves and fruit of the cherry plant may adapt to the changes in the microclimate. However, the molecular mechanism underlying such adaptation remains unclear, although clarifying it may be helpful for improving the yield and quality of cherry under rain-shelter covering. RESULTS To better understand the regulation and adaptive mechanism of cherry under rain-shelter covering, 38,621 and 3584 differentially expressed genes were identified with a combination of Illumina HiSeq and single-molecule real-time sequencing in leaves and fruits, respectively, at three developmental stages. Among these, key genes, such as those encoding photosynthetic-antenna proteins (Lhca and Lhcb) and photosynthetic electron transporters (PsbP, PsbR, PsbY, and PetF), were up-regulated following the application of rain-shelter covering, leading to increased efficiency of light utilization. The mRNA levels of genes involved in carbon fixation, namely, rbcL and rbcS, were clearly increased compared with those under shelter-free conditions, resulting in improved CO2 utilization. Furthermore, the transcription levels of genes involved in chlorophyll (hemA, hemN, and chlH) and carotenoid synthesis (crtB, PDS, crtISO, and lcyB) in the sheltered leaves peaked earlier than those in the unsheltered leaves, thereby promoting organic matter accumulation in leaves. Remarkably, the expression levels of key genes involved in the metabolic pathways of phenylpropanoid (PAL, C4H, and 4CL) and flavonoid (CHS, CHI, F3'H, DFR, and ANS) in the sheltered fruits were also up-regulated earlier than of those in the unsheltered fruits, conducive to an increase in anthocyanin content in the fruits. CONCLUSIONS According to the physiological indicators and transcriptional expression levels of the related genes, the adaptive regulation mechanism of cherry plants was systematically revealed. These findings can help understand the effect of rain-shelter covering on Chinese cherry cultivation in rainy regions.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
- Institute for Forest Resources & Environment of Guizhou/ College of Forestry, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Bin Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhilang Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
- Institute for Forest Resources & Environment of Guizhou/ College of Forestry, Guizhou University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
20
|
Alteration of flesh color and enhancement of bioactive substances via the stimulation of anthocyanin biosynthesis in 'Friar' plum fruit by low temperature and the removal. Food Chem 2019; 310:125862. [PMID: 31767480 DOI: 10.1016/j.foodchem.2019.125862] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/21/2022]
Abstract
'Friar' plum (Prunus salicina Lindl.) fruit were transferred to shelf life (25 °C) following different storage periods at low (0 °C) or intermediate (5 °C) temperature. The earliest flesh reddening appeared in plums during shelf life removed after 28 d at 0 °C and 14 d at 5 °C, respectively, in comparison with turning yellow in plums remained at 25 °C immediately after harvest. The flesh reddening developed rapidly thereafter. Anthocyanins, in particular, cyanidin 3-O-glucoside, significantly accumulated in the reddening tissue, and activities of enzymes associated with the phenylpropanoid pathway were considerably activated after the removal. The removal elicited extremely high ethylene production in plums, which might mediate the activation of the anthocyanin biosynthesis in response to cold stress signal. The results provided a potential approach for postharvest regulation of flesh color and accumulation of bioactive substances in plums, which could lead to attractive attributes and health-promoting effects on consumers.
Collapse
|