1
|
Beneš K, Čurn V, Pudhuvai B, Motis J, Michalcová Z, Bohatá A, Lencová J, Bárta J, Rost M, Vilcinskas A, Maťha V. Autonomous Defense Based on Biogenic Nanoparticle Formation in Daunomycin-Producing Streptomyces. Microorganisms 2025; 13:107. [PMID: 39858875 PMCID: PMC11767837 DOI: 10.3390/microorganisms13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.5-6.0 g/L. Daunomycin produced in the oil-based medium was predominantly found in the solid sediment, whereas that produced in the sugar-based medium was mostly soluble. The oil-based medium thus induces an autonomous daunomycin-resistance mechanism involving biogenic nanoparticle formation. The characterization of the nanoparticles confirmed the incorporation of iron and daunomycin, indicating that this approach has the potential to mitigate cytotoxicity while improving yields. The presence of proteins associated with iron homeostasis and oxidative stress responses revealed the ability of the production strain to adapt to high iron concentrations. Our findings provide insight into the mechanisms of biogenic nanoparticle formation and the optimization of cultivation processes. Further investigation will help to refine microbial production systems for daunomycin and also broaden the application of similar strategies for the synthesis of other therapeutically important compounds.
Collapse
Affiliation(s)
- Karel Beneš
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
| | - Vladislav Čurn
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Baveesh Pudhuvai
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Jaroslav Motis
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
| | - Zuzana Michalcová
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
| | - Andrea Bohatá
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Jana Lencová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Jan Bárta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Michael Rost
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Andreas Vilcinskas
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany;
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Vladimír Maťha
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| |
Collapse
|
2
|
Díaz-Galiano FJ, Murcia-Morales M, Fernández-Alba AR. From sound check to encore: A journey through high-resolution mass spectrometry-based food analyses and metabolomics. Compr Rev Food Sci Food Saf 2024; 23:e13325. [PMID: 38532695 DOI: 10.1111/1541-4337.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
This manuscript presents a comprehensive review of high-resolution mass spectrometry in the field of food analysis and metabolomics. We have followed the historical evolution of metabolomics, its associated techniques and technologies, and its increasing role in food science and research. The review provides a critical comparison and synthesis of tentative identification guidelines proposed for over 15 years, offering a condensed resource for researchers in the field. We have also examined a wide range of recent metabolomics studies, showcasing various methodologies and highlighting key findings as a testimony of the versatility of the field and the possibilities it offers. In doing so, we have also carefully provided a compilation of the software tools that may be employed in this type of studies. The manuscript also explores the prospects of high-resolution mass spectrometry and metabolomics in food science. By covering the history, guidelines, applications, and tools of metabolomics, this review attempts to become a comprehensive guide for researchers in a rapidly evolving field.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - María Murcia-Morales
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - Amadeo Rodríguez Fernández-Alba
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| |
Collapse
|
3
|
Prada-Muñoz J, Coy-Barrera E. Targeted Anthocyanin Profiling of Fruits from Three Southern Highbush Blueberry Cultivars Propagated in Colombia. Molecules 2024; 29:691. [PMID: 38338435 PMCID: PMC10855998 DOI: 10.3390/molecules29030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The blueberry, a deciduous shrub in the Ericaceae family, is celebrated for its delightful flavor, sweetness, and abundance of anthocyanins and antioxidants, qualities that have garnered significant attention for their potential health benefits. Blueberries grown in diverse environments and exhibit varied anthocyanin profiles, often influenced by factors such as altitude and climate. Varietal groups worldwide have been bred and categorized based on their growth habits and specific cold requirements, particularly with southern highbush cultivars thriving in temperate climates, demonstrating tolerance to higher altitudes or cooler climates-a result of hybridizations involving various Vaccinium species. In the Colombian Andes, southern highbush blueberries thrive in unique high-altitude conditions, leading to exceptional quality due to the region's cool climate and specific soil characteristics. In this context, this study aimed to chemically characterize and differentiate three southern highbush blueberry cultivars (i.e., 'Biloxi,' 'Legacy' and 'Sharpblue') cultivated in a Colombian Andean plateau and compare them to three commercially available highbush blueberries. This comprehensive evaluation involved examining total phenols, flavonoids, anthocyanin content, and DPPH· free-radical scavenging capacity, as well as conducting anthocyanin-targeted profiling via HPLC-DAD-HRMS. Through supervised multivariate analyses such as sPLS-DA, this study delved into the pattern recognition of those anthocyanins that could potentially serve as markers for quality and cultivar-related chemical trait determination. These findings locate blueberry-derived anthocyanins in a metabolic context and afford some insights into southern highbush blueberry cultivar differentiation to be used for further purposes.
Collapse
Affiliation(s)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| |
Collapse
|
4
|
Vaitiekūnaitė D, Dodoo D, Snitka V. Traceability of bilberries (Vaccinium myrtillus L.) of the Baltic-Nordic region using surface-enhanced Raman spectroscopy (SERS): DFT simulation-based DNA analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122192. [PMID: 36493623 DOI: 10.1016/j.saa.2022.122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Food traceability is a major issue in the industry. We investigated whether bilberries (Vaccinium myrtillus L.) from 4 different locations within the Baltic-Nordic region could be effectively differentiated using surface-enhanced Raman scattering (SERS) based spectral data and chemometric analyses. Furthermore, we aimed to determine if nucleobase (adenine and cytosine) methylation could be responsible for any observed variation. Our experiment was successful in that both principal component (PCA) and discriminant function analyses (DFA) showed differentiation between bilberry DNA from all 4 geographical regions. Density functional theory (DFT) based simulations allowed us to analyze whether DNA's spectral data dissimilarities may be due to nucleobase methylation. Although results were inconclusive on this, our investigation provides valuable data on simulated versus experimental DNA and DNA component spectra. Further research will be directed towards understanding what other epigenetic changes could be responsible for the observed DNA variation as well as determining the optimal parameters for using DFT simulations in upcoming projects.
Collapse
Affiliation(s)
- Dorotėja Vaitiekūnaitė
- Lithuanian Research Centre for Agriculture and Forestry, Laboratory of Forest Plant Biotechnology Institute of Forestry, Liepu st. 1, LT-53101 Girionys, Lithuania.
| | - Daniel Dodoo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu str. 65, LT-51369 Kaunas, Lithuania.
| |
Collapse
|
5
|
Sevenich R, Gratz M, Hradecka B, Fauster T, Teufl T, Schottroff F, Chytilova LS, Hurkova K, Tomaniova M, Hajslova J, Rauh C, Jaeger H. Differentiation of sea buckthorn syrups processed by high pressure, pulsed electric fields, ohmic heating, and thermal pasteurization based on quality evaluation and chemical fingerprinting. Front Nutr 2023; 10:912824. [PMID: 36866052 PMCID: PMC9971502 DOI: 10.3389/fnut.2023.912824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Impact of processing on product characteristics, sustainability, traceability, authenticity, and public health along the food chain becomes more and more important not only to the producer but also to the customer and the trust of a consumer toward a brand. In recent years, the number of juices and smoothies containing so called super foods or fruits, which have been "gently pasteurized," has increased significantly. However, the term "gentle pasteurization" related to the application of emerging preservation technologies such as pulsed electric fields (PEF), high pressure processing (HPP) or ohmic heating (OH) is not clearly defined. Methods Therefore, the presented study investigated the influence of PEF, HPP, OH, and thermal treatment on quality characteristics and microbial safety of sea buckthorn syrup. Syrups from two different varieties were investigated under the following conditions HPP (600 MPa 4-8 min), OH (83°C and 90°C), PEF (29.5 kV/cm, 6 μs, 100 Hz), and thermal (88°C, hot filling). Analyses to test the influence on quality parameters like ascorbic acid (AA), flavonoids, carotenoids, tocopherols, antioxidant activity; metabolomical/chemical profiling (fingerprinting) via U-HPLC-HRMS/MS (here especially flavonoids and fatty acids); sensory evaluation, as well as microbial stability including storage, were conducted. Results and discussion Independent from the treatment, the samples were stable over 8 weeks of storage at 4°C. The influence on the nutrient content [Ascorbic acid (AA), total antioxidant activity (TAA), total phenolic compounds (TPC), tocopherols (Vit E)] was similar for all tested technologies. Employing statistical evaluation Principal Component Analysis (PCA) a clear clustering based on the processing technologies was observed. Flavonoids as well as fatty acids were significantly impacted by the type of used preservation technology. This was obvious during the storage time of PEF and HPP syrups, where enzyme activity was still active. The color as well as taste of the syrups were found to be more fresh-like for the HPP treated samples.
Collapse
Affiliation(s)
- Robert Sevenich
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany,Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany,*Correspondence: Robert Sevenich,
| | - Maximilian Gratz
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Beverly Hradecka
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Thomas Fauster
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Thomas Teufl
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Felix Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria,BOKU Core Facility Food and Bio Processing, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucie Souckova Chytilova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Kamila Hurkova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Monika Tomaniova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany
| | - Henry Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
6
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Volatile Compositions of Panax ginseng and Panax quinquifolium Grown for Different Cultivation Years. Foods 2022; 12:foods12010136. [PMID: 36613353 PMCID: PMC9818133 DOI: 10.3390/foods12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The present study examined the volatile profiles of Panax ginseng (Korean ginseng) and Panax quinquefolium (American ginseng) grown for different cultivation years by using HS-SPME/GC-MS and determined the key discriminant volatile compounds by chemometric analysis including principal component analysis (PCA), hierarchical cluster analysis (HCA), and partial least squares-discrimination analysis (PLS-DA). Fifty-six compounds, including forty terpenes, eight alcohols, one alkane, one ketone, and one furan, were identified in the ginseng roots. The chemometric results identified two major clusters of American ginseng and Korean ginseng cultivars with distinct volatile compositions. The volatile compounds in fresh white ginseng roots were affected by the species, but the influence of different cultivation ages was ambiguous. The major volatile components of ginseng roots are terpenes, including monoterpenes and sesquiterpenes. In particular, panaginsene, ginsinsene, α-isocomene, and caryophyllene were predominant in Korean ginseng cultivars, whereas β-farnesene levels were higher in American ginseng. The difference in volatile patterns between Panax ginseng and Panax quinquefolium could be attributed to the composition of sesquiterpenes such as β-panaginsene, ginsinsene, caryophyllene, and β-farnesene.
Collapse
|
8
|
Przybylska D, Kucharska AZ, Sozański T. A Review on Bioactive Iridoids in Edible Fruits – from Garden to Food and Pharmaceutical Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - A. Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - T. Sozański
- Department of Pharmacology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
9
|
Krstić Đ, Milinčić DD, Kostić AŽ, Fotirić Akšić M, Stanojević SP, Milojković-Opsenica D, Pešić MB, Trifković J. Comprehensive electrophoretic profiling of proteins as a powerful tool for authenticity assessment of seeds of cultivated berry fruits. Food Chem 2022; 383:132583. [PMID: 35245833 DOI: 10.1016/j.foodchem.2022.132583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
Abstract
Product authentication is one of the most important food quality assurances. Considering the importance of consumption of berry fruits with proven health-beneficial properties, high sensory values and rich composition in bioactive substances, the aim of this study was to evaluate a straightforward and simple procedure for the protein fingerprinting of berry seeds. For this purpose, protein profiles of 45 samples of genuine berry fruit cultivars (strawberry, raspberry, blackberry, black currant, blueberry, gooseberry, chokeberry, cape gooseberry, and gojiberry) were analyzed by SDS-PAGE electrophoresis in combination with advanced chemometric tools. The most important parameters for discrimination among berry seeds were polypeptides at 12.8; 15.1; 25.0; 26.4; 30.0; 41.8; 44.4; 46.0; 48.5; 52.3 and 56.4 kDa. Biomarkers obtained from the protein profile of berry seeds proved to be a powerful tool in the authentication of their botanical origin, as well as for potential detection of berry-based products adulteration.
Collapse
Affiliation(s)
- Đurđa Krstić
- University of Belgrade - Faculty of Chemistry, P.O.Box 51, 11158 Belgrade, Serbia
| | - Danijel D Milinčić
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milica Fotirić Akšić
- University of Belgrade, Faculty of Agriculture, Chair of Fruit Science, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana P Stanojević
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | | | - Mirjana B Pešić
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Jelena Trifković
- University of Belgrade - Faculty of Chemistry, P.O.Box 51, 11158 Belgrade, Serbia
| |
Collapse
|
10
|
Kouba V, Hůrková K, Navrátilová K, Kok D, Benáková A, Laureni M, Vodičková P, Podzimek T, Lipovová P, van Niftrik L, Hajšlová J, van Loosdrecht MCM, Weissbrodt DG, Bartáček J. Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154715. [PMID: 35337864 PMCID: PMC7612979 DOI: 10.1016/j.scitotenv.2022.154715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC-HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10-37 °C. "Candidatus Brocadia" appeared to be the dominant organism in all but two laboratory enrichments of "Ca. Scalindua" and "Ca. Kuenenia". At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. "Ca. Scalindua" and "Ca. Kuenenia" had distinct profile of ladderane lipids compared to "Ca. Brocadia" biomasses with potential implications for adaptability to low temperatures. "Ca. Brocadia" membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for "Ca. Scalindua" at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of "Ca. Scalindua" in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments.
Collapse
Affiliation(s)
- Vojtěch Kouba
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia.
| | - Kamila Hůrková
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Klára Navrátilová
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Dana Kok
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| | - Andrea Benáková
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| | - Michele Laureni
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; TU Delft, Department of Water Management, Building 23, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Patricie Vodičková
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia; University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Tomáš Podzimek
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Petra Lipovová
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Laura van Niftrik
- Radboud University, Department of Microbiology, Institute for Water and Wetland Research, 1Heyendaalseweg 135, 6525 ED AJ Nijmegen, the Netherlands
| | - Jana Hajšlová
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Mark C M van Loosdrecht
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - David Gregory Weissbrodt
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Jan Bartáček
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| |
Collapse
|
11
|
Karppinen K, Avetisyan A, Hykkerud AL, Jaakola L. A dPCR Method for Quantitative Authentication of Wild Lingonberry ( Vaccinium vitis-idaea) versus Cultivated American Cranberry ( V. macrocarpon). Foods 2022; 11:1476. [PMID: 35627046 PMCID: PMC9141823 DOI: 10.3390/foods11101476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Berries of the genus Vaccinium are highly valued health-beneficial superfoods, which are commonly subjected to adulteration and mixed with each other, or with other common berry species. A quantitative DNA-based method utilizing a chip-based digital polymerase chain reaction (dPCR) technique was developed for identifying and quantifying wild lingonberry (V. vitis-idaea) and cultivated American cranberry (V. macrocarpon). The dPCR method with species-specific primers for mini-barcoding was designed based on the indel regions found in the trnI-CAU-trnL-CAA locus in the chloroplast genome. The designed primers were able to amplify only target species, enabling to distinguish the two closely related species with good sensitivity. Our results illustrated the ability of the method to identify lingonberry and American cranberry DNA using PCR without the need for probes or further sequencing. The dPCR method could also quantify the DNA copy number in mixed samples. Based on this study, the method provides a basis for a simple, fast, and sensitive quantitative authentication analysis of lingonberry and American cranberry by dPCR. Moreover, it can also provide a platform for authentication analyses of other plant species as well by utilizing the indel regions of chloroplast genomes.
Collapse
Affiliation(s)
- Katja Karppinen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tromsø, Norway; (K.K.); (A.A.)
| | - Anna Avetisyan
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tromsø, Norway; (K.K.); (A.A.)
- NIBIO, Norwegian Institute of Bioeconomy Research, Department of Horticulture, NO-1431 Ås, Norway;
| | - Anne Linn Hykkerud
- NIBIO, Norwegian Institute of Bioeconomy Research, Department of Horticulture, NO-1431 Ås, Norway;
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tromsø, Norway; (K.K.); (A.A.)
- NIBIO, Norwegian Institute of Bioeconomy Research, Department of Horticulture, NO-1431 Ås, Norway;
| |
Collapse
|
12
|
Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Compr Rev Food Sci Food Saf 2022; 21:2455-2488. [DOI: 10.1111/1541-4337.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Anastasios Koidis
- Institute for Global Food Security Queen's University Belfast Belfast UK
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
13
|
V K, D V, E Z, K H, K N, M L, P V, T P, J H, M P, McM VL, J B, P L, Dg W. Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks: Distinctions in protein expression, membrane composition and activities. WATER RESEARCH 2022; 209:117822. [PMID: 34915336 DOI: 10.1016/j.watres.2021.117822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Anammox bacteria enable efficient removal of nitrogen from sewage in processes involving partial nitritation and anammox (PN/A) or nitrification, partial denitrification, and anammox (N-PdN/A). In mild climates, anammox bacteria must be adapted to ≤15 °C, typically by gradual temperature decrease; however, this takes months or years. To reduce the time necessary for the adaptation, an unconventional method of 'cold shocks' is promising, involving hours-long exposure of anammox biomass to extremely low temperatures. We compared the efficacies of gradual temperature decrease and cold shocks to increase the metabolic activity of anammox (fed batch reactor, planktonic "Ca. Kuenenia"). We assessed the cold shock mechanism on the level of protein expression (quantitative shot-gun proteomics, LCHRMS/MS) and the structure of membrane lipids (UPLCHRMS/MS). The shocked culture was more active (0.66±0.06 vs 0.48±0.06 kg-N/kg-VSS/d) and maintained the relative content of N-respiration proteins at levels consistent levels with the initial state, whereas the content of these proteins decreased in gradually acclimated culture. Cold shocks also induced a more efficient expression of potential cold shock proteins (e.g. ppiD, UspA, pqqC), while putative cold shock proteins CspB and TypA were upregulated in both cultures. Ladderane lipids characteristic for anammox evolved to a similar end-point in both cultures; this confirms their role in anammox bacteria adaptation to cold and indicates a three-pronged adaptation mechanism (ladderane alkyl length, introduction of shorter non-ladderane alkyls, polar headgroup). Overall, we show the outstanding potential of cold shocks for low-temperature adaptation of anammox bacteria and provide yet unreported detailed mechanisms of anammox adaptation to low temperatures.
Collapse
Affiliation(s)
- Kouba V
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands; Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Vejmelkova D
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Zwolsman E
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hurkova K
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Navratilova K
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Laureni M
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Vodickova P
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Podzimek T
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Hajslova J
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Pabst M
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - van Loosdrecht McM
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Bartacek J
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Lipovova P
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Weissbrodt Dg
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
14
|
Stranska M, Lovecka P, Vrchotova B, Uttl L, Bechynska K, Behner A, Hajslova J. Bacterial Endophytes from Vitis vinifera L. - Metabolomics Characterization of Plant-Endophyte Crosstalk. Chem Biodivers 2021; 18:e2100516. [PMID: 34609783 DOI: 10.1002/cbdv.202100516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022]
Abstract
Bacterial endophytes are known to protect Vitis vinifera L. against various harmful effects of the environment and support its growth. However, for the most part, biochemical responses of such co-existence have not yet been fully elucidated. In this work, we aimed to characterize the activities of endophytic consortia in a plant-endophyte extract by measuring five indicators of colonization (overall endophyte metabolic activity, microbial ACC deaminase activity, ability to solubilize phosphorus, ability to convert atmospheric nitrogen to ammonia ions, and ability to produce growth promoting indole acetic acid), and find relationships between these activities and metabolome. The V. vinifera canes for the metabolomics fingerprinting were extracted successively with water and methanol, and analysed by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. For data processing, the MS-DIAL - MS-CleanR - MS-FINDER software platform was used, and the data matrix was processed by PCA and PLS-DA multivariate statistical methods. The metabolites that were upregulated with the heavy endophyte colonization were mainly chlorins, phenolics, flavonoid and terpenoid glycosides, tannins, dihydropyranones, sesquiterpene lactones, and long-chain unsaturated fatty acids.
Collapse
Affiliation(s)
- Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Blanka Vrchotova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Leos Uttl
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Kamila Bechynska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Adam Behner
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| |
Collapse
|
15
|
Vilkickyte G, Raudone L. Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds. Foods 2021; 10:foods10102243. [PMID: 34681292 PMCID: PMC8535033 DOI: 10.3390/foods10102243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccinium vitis-idaea L. (lingonberry) fruits are promising sources of bioactive components with high potential in biomedical applications. Selection in plant breeding, determination of perspective wild clones with optimal growing conditions, and appropriate harvesting time leading to standardized extracts are key factors for achieving phytochemical quality to meet consumer’s needs. In the present study, lingonberry fruits collected along different phenological stages and from different geographical locations were analyzed for the composition of 56 constituents using validated chromatographic techniques. Early stages of lingonberries vegetation were determined as the best stages for obtaining high levels of most phenolics and triterpenoids, while the end of berry vegetation could be chosen as the optimal harvesting time in terms of anthocyanins. Furthermore, intensified continuous biosynthesis of triterpenoids and phenolic acids precursors after vegetation season in the winter sample was observed. Chemodiversity of lingonberries was affected by geographical factors as well as climatic and edaphic conditions, indicating different favorable growing conditions for the accumulation of particular compounds. Present findings could serve for breeders to obtain the highest yields of desirable lingonberry constituents, relevant in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-622-34977
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
16
|
Popescu ID, Codrici E, Mihai S, Luntraru CM, Neagu M, Tanase C. In vitro assessment of the cytotoxicity and anti-inflammatory properties of a novel dietary supplement. Exp Ther Med 2021; 22:1170. [PMID: 34504615 PMCID: PMC8393499 DOI: 10.3892/etm.2021.10604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Studies on the immunopharmacological activities of various plant species have provided evidence for the high therapeutic potential of different extracts. These represent a promising alternative to reduce the inflammatory processes and, thus, diseases related to inflammation. Numerous scientific studies strongly suggest that diet plays an essential role in inflammation, and that certain dietary factors can act as preventive or treatment methods to lower inflammation. In the present study, a novel lingonberry-based dietary supplement was investigated for the ability to suppress the inflammatory response in activated monocytes/macrophages. Based on cell viability/proliferation and cytotoxicity tests, concentrations between 40 and 130 µg/ml of the extracts showed a high viability/proliferation effect and no cytotoxic activity in monocyte/macrophage cells. To further investigate the anti-inflammatory potential of our novel lingonberry-based dietary supplement, we studied the effect of the extract on the inflammatory response in lipopolysaccharide (LPS)-stimulated macrophages. We found that the extract exhibited a strong anti-inflammatory potential by inhibiting the expression of major inflammatory cytokines [interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)α] in activated monocyte/macrophage cells. The expression of IL-6 and IL-8 was subsequently validated by enzyme-linked immunosorbent assay (ELISA). In conclusion, we demonstrated that our product exhibits no cytotoxicity and suppresses inflammation, and thus can be considered a natural important tool for inflammation control.
Collapse
Affiliation(s)
- Ionela D Popescu
- Biochemistry-Proteomics Department, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Department, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania
| | - Simona Mihai
- Biochemistry-Proteomics Department, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina-Mihaela Luntraru
- Department of Research and Development Patents, SC Hofigal Export Import SA, 042124 Bucharest, Romania
| | - Mihaela Neagu
- Department of Research and Development Patents, SC Hofigal Export Import SA, 042124 Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Department, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Faculty of Medicine, 'Titu Maiorescu' University, 004051 Bucharest, Romania
| |
Collapse
|
17
|
Salo HM, Nguyen N, Alakärppä E, Klavins L, Hykkerud AL, Karppinen K, Jaakola L, Klavins M, Häggman H. Authentication of berries and berry-based food products. Compr Rev Food Sci Food Saf 2021; 20:5197-5225. [PMID: 34337851 DOI: 10.1111/1541-4337.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Berries represent one of the most important and high-valued group of modern-day health-beneficial "superfoods" whose dietary consumption has been recognized to be beneficial for human health for a long time. In addition to being delicious, berries are rich in nutrients, vitamins, and several bioactive compounds, including carotenoids, flavonoids, phenolic acids, and hydrolysable tannins. However, due to their high value, berries and berry-based products are often subject to fraudulent adulteration, commonly for economical gain, but also unintentionally due to misidentification of species. Deliberate adulteration often comprises the substitution of high-value berries with lower value counterparts and mislabeling of product contents. As adulteration is deceptive toward customers and presents a risk for public health, food authentication through different methods is applied as a countermeasure. Although many authentication methods have been developed in terms of fast, sensitive, reliable, and low-cost analysis and have been applied in the authentication of a myriad of food products and species, their application on berries and berry-based products is still limited. The present review provides an overview of the development and application of analytical chemistry methods, such as isotope ratio analysis, liquid and gas chromatography, spectroscopy, as well as DNA-based methods and electronic sensors, for the authentication of berries and berry-based food products. We provide an overview of the earlier use and recent advances of these methods, as well as discuss the advances and drawbacks related to their application.
Collapse
Affiliation(s)
- Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Linards Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Anne Linn Hykkerud
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Katja Karppinen
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Laura Jaakola
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maris Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
18
|
Stranska M, Uttl L, Bechynska K, Hurkova K, Behner A, Hajslova J. Metabolomic fingerprinting as a tool for authentication of grapevine (Vitis vinifera L.) biomass used in food production. Food Chem 2021; 361:130166. [PMID: 34058658 DOI: 10.1016/j.foodchem.2021.130166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Use of 'green biomass' of the grapevine is gradually extending into the food industry. The aim of our study was to demonstrate the potential of metabolomic fingerprinting for characterization of grapevine leaves and canes. Our method comprises successive aqueous-methanolic extractions, followed by U-HPLC-HRMS/MS. For data processing, PCA and (O)PLS-DA methods were utilized, and mathematical models were validated. We showed that from all factors investigated, harvesting season explained most of the variability between samples, followed by locality combined with farming system. The identified statistically significant metabolites for harvesting season models mostly represented the groups of fatty acids, fatty phenols, (lyso)phospholipids, flavonoids and organic acids. For models of localities with different farming systems, majority of identified metabolites significant for organic farming belonged to groups of fatty acids and their derivatives, terpenoids, sterols, and fat soluble vitamins, whereas for conventional farming, the only identified significant metabolites were the pesticide residues.
Collapse
Affiliation(s)
- Milena Stranska
- University of Chemistry and Technology, Department of Food Chemistry and Analysis, Prague, Czech Republic.
| | - Leos Uttl
- University of Chemistry and Technology, Department of Food Chemistry and Analysis, Prague, Czech Republic
| | - Kamila Bechynska
- University of Chemistry and Technology, Department of Food Chemistry and Analysis, Prague, Czech Republic
| | - Kamila Hurkova
- University of Chemistry and Technology, Department of Food Chemistry and Analysis, Prague, Czech Republic
| | - Adam Behner
- University of Chemistry and Technology, Department of Food Chemistry and Analysis, Prague, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology, Department of Food Chemistry and Analysis, Prague, Czech Republic
| |
Collapse
|
19
|
Liquid Chromatographic Fingerprints for the Characterization of Flavanol-Rich Nutraceuticals Based on 4-Dimethylaminocinnamaldehyde Precolumn Derivatization. Sci Pharm 2021. [DOI: 10.3390/scipharm89020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flavanols consist of a great family of bioactive molecules displaying a wide range of health-promoting attributes for humans, including antioxidant, antimicrobial or anti-inflammatory effects. As a result, botanical species rich in this type of compound are often used to develop nutraceutical products or dietary supplements with recognized healthy attributes. This paper aims at characterizing nutraceutical products using liquid chromatographic fingerprints related to flavanol composition. Catechins and their oligomers were exploited to characterize and authenticate various commercial products prepared with extracts of red berries and medicinal plants. These compounds resulted in interesting descriptors of some fruits and vegetables, thus providing an additional perspective for the study of nutraceuticals. For such a purpose, a new method based on liquid chromatography with UV/Vis detection (HPLC–UV/Vis) with precolumn derivatization with 4-dimethylaminocinnamaldehyde was developed. Results indicated that the separation of flavanols was very complex due to the degradation of procyanidin derivatives. The resulting data sets were analyzed using chemometric methods such as principal component analysis and partial least square–discriminant analysis. Despite the complexity of chromatographic fingerprints, nutraceutical samples could be discriminated according to their main ingredients. In general, catechin and epicatechin were the most abundant compounds in the different samples, and procyanidin A2 was highly specific to cranberry.
Collapse
|
20
|
Chromatography hyphenated to high resolution mass spectrometry in untargeted metabolomics for investigation of food (bio)markers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Hrbek V, Zdenkova K, Jilkova D, Cermakova E, Jiru M, Demnerova K, Pulkrabova J, Hajslova J. Authentication of Meat and Meat Products Using Triacylglycerols Profiling and by DNA Analysis. Foods 2020; 9:foods9091269. [PMID: 32927765 PMCID: PMC7555453 DOI: 10.3390/foods9091269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Two alternative, complementary analytical strategies were successfully used to identify the most common meat species—beef, pork and chicken—in meat products. The first innovative high-throughput approach was based on triacylglycerols fingerprinting by direct analysis in real time coupled with high-resolution mass spectrometry (DART–HRMS). The second was the classic commonly used DNA analysis based on the use of nuclear or mitochondrial DNA in multiplex polymerase chain reaction (mPCR). The DART–HRMS method represents a rapid, high throughput screening method and was shown to have a good potential for the authentication of meat products. Nevertheless, it should be noted that due to a limited number of samples in this pilot study, we present here a proof of concept. More samples must be analyzed by DART–HRMS to build a robust classification model applicable for reliable authentication. To verify the DART–HRMS results, all samples were analyzed by PCRs. Good compliance in samples classification was documented. In routine practice under these conditions, screening based on DART–HRMS could be used for identification of suspect samples, which could be then examined and validated by accurate PCRs. In this way, saving of both labor and cost could be achieved. In the final phase, commercially available meat products from the Czech market were tested using this new strategy. Canned meats—typical Czech sausages and luncheon meats, all with declared content of beef, pork and chicken meat—were used. Compliance with the label declaration was confirmed and no adulteration was found.
Collapse
Affiliation(s)
- Vojtech Hrbek
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (V.H.); (M.J.); (J.P.); (J.H.)
| | - Kamila Zdenkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (E.C.); (K.D.)
- Correspondence:
| | - Diliara Jilkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (E.C.); (K.D.)
- Research Department, Food Research Institute Prague, Radiová 1285/7, 10231 Prague 10, Czech Republic;
| | - Eliska Cermakova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (E.C.); (K.D.)
| | - Monika Jiru
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (V.H.); (M.J.); (J.P.); (J.H.)
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (E.C.); (K.D.)
| | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (V.H.); (M.J.); (J.P.); (J.H.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic; (V.H.); (M.J.); (J.P.); (J.H.)
| |
Collapse
|
22
|
Kitrytė V, Kavaliauskaitė A, Tamkutė L, Pukalskienė M, Syrpas M, Rimantas Venskutonis P. Zero waste biorefining of lingonberry (Vaccinium vitis-idaea L.) pomace into functional ingredients by consecutive high pressure and enzyme assisted extractions with green solvents. Food Chem 2020; 322:126767. [PMID: 32330787 DOI: 10.1016/j.foodchem.2020.126767] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/09/2023]
|
23
|
Jia W, Dong X, Shi L, Chu X. Discrimination of Milk from Different Animal Species by a Foodomics Approach Based on High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6638-6645. [PMID: 32469210 DOI: 10.1021/acs.jafc.0c02222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An untargeted foodomics strategy based on ultra-high-performance liquid chromatography coupled with quadrupole orbitrap and chemometrics was used to observe subtle differences in the molecule profiles of raw milk from different animal species (cow milk, goat milk, and water buffalo milk), which could prevent the fraud activities in the dairy industry. In data-dependent acquisition (DIA), spectra for all precursor ions facilitated the comprehensive identification of unknown compounds in untargeted foodomics. Chemometrics techniques were used to analyze large amounts of complex data to observe the separation of different sample groups and find the potential markers of sample groups. Finally, five markers were putatively identified by the potential marker identification workflow. The quantification results showed that β-carotene was found only in cow milk; ergocalciferol was found only in water buffalo milk; and the contents of nonanoic acid, decanoic acid, and octanoic acid were higher in goat milk than those in cow milk and water buffalo milk. The quantification of β-carotene enabled the detection of cow milk with a sensitivity threshold of 5% (w/w). This work provided an efficient approach for the discrimination of cow milk, goat milk, and water buffalo milk. Compared with proteomics and genomics, the simpler analytical procedures, lower costs, and higher speed of this work make it of great benefit for routine operations.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuyang Dong
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiaogang Chu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| |
Collapse
|