1
|
Chen F, Chen J, Chen Y, He Y, Li H, Li J, Tian YS. Mechanistic insight into degradation of dibutyl phthalate by microorganism in sediment-water environment: Metabolic pathway, community succession, keystone phylotypes and functional genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125932. [PMID: 40020898 DOI: 10.1016/j.envpol.2025.125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 03/03/2025]
Abstract
Despite extensive studies on dibutyl phthalate (DBP) degradation in isolated bacterial cultures, the primary degraders, community dynamics, and metabolic pathways involved in its biotransformation within complex sediment microbial communities remain poorly understood. In this study, we aimed to investigate the biotransformation mechanism of DBP by microorganisms in a sediment-water system by employing gas chromatography-mass spectrometry, 16S rRNA gene sequencing, metagenomic analysis, and bacterial isolation techniques. We observed that DBP biotransformation has three distinct phases: lag, degradative, and stationary. During the degradative phase, DBP gets progressively degraded by microorganisms, resulting in a microbial community with reduced stability and ambiguous boundaries. DBP, primarily metabolised by key phylotypes into monobutyl phthalate (MBP), phthalic acid (PA), and protocatechuic acid, subsequently enters the tricarboxylic acid (TCA) cycle. Through metagenomic analysis, ten functional genes from five genera were identified as crucial for DBP metabolism. Firstly, Arthrobacter degrades DBP into MBP and PA using pheA. Subsequently, Acinetobacter, Massilia, and Arthrobacter convert PA into TCA cycle intermediates using phtBAaAbAcAd and pcaCH. Concurrently, Hydrogenophaga and Acidovorax degrade PA to TCA cycle intermediates through pht1234 and ligAB. Genes related to amino acid synthesis, ABC transporters, and two-component regulatory systems also contribute significantly. Thus, the listed key bacteria, along with their diverse functional genes, collectively exhibit a high capacity for DBP degradation. This study provides insights into the bacterial responses to DBP degradation and offers a theoretical basis for the prevention and control of this pollutant.
Collapse
Affiliation(s)
- Fangyuan Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Jinye Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China; College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yuchi Chen
- Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Hui Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Jianfen Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yang Sheng Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China; School of Information and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Qiu Y, Deng Q, Zhang Y, Sun B, Li W, Dong W, Sun X. Applications of Microextraction Technology for the Analysis of Alcoholic Beverages Quality: Current Perspectives and Future Directions. Foods 2025; 14:1152. [PMID: 40238322 PMCID: PMC11988442 DOI: 10.3390/foods14071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Alcoholic beverages are loved by the majority of consumers because of their diverse characteristics and rich nutritional value; thus, ensuring their quality is necessary for maintaining the rapid development of the alcoholic beverage industry. Due to trace levels of various quality factors and the complexity of the beverage body matrix, pretreatment is usually required before analysis. Among the many pretreatment methods available, microextraction has attracted increasing attention because it aligns with the development direction of green chemistry. This review surveys advancements in microextraction techniques pertaining to three quality aspects in the most frequently consumed alcoholic beverages: baijiu and huangjiu (spirits) and wine and beer (fermented alcoholic drinks). Furthermore, new directions in their development are discussed.
Collapse
Affiliation(s)
- Yue Qiu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Deng
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yongqing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Wenxian Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Durante‐Rodríguez G, de Francisco‐Polanco S, Fernández‐Arévalo U, Díaz E. Engineering bacterial biocatalysts for the degradation of phthalic acid esters. Microb Biotechnol 2024; 17:e70024. [PMID: 39365609 PMCID: PMC11451385 DOI: 10.1111/1751-7915.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.
Collapse
Affiliation(s)
| | | | - Unai Fernández‐Arévalo
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
4
|
Li Z, Wang Q, Wang Y, Chen J, Lei X, Jiu R, Liu H, Bai T, Liu J. Degradation of Di (2-ethylhexyl) phthalic acid plasticizer in baijiu by a foam titanium flow reactor attached with hairpin-like structured peptide enzyme mimics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134596. [PMID: 38820744 DOI: 10.1016/j.jhazmat.2024.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Because of the significant environmental and health hazards imposed by di(2-ethylhexyl) phthalate (DEHP), a common plasticizer, developing safe and green techniques to degrade DEHP plasticizer is of huge scientific significance. It has been observed that environmental contamination of DEHP may also induce serious food safety problems because crops raised in plasticizers contaminated soils would transfer the plasticizer into foods, such as Baijiu. Additionally, when plastic packaging or vessels are used during Baijiu fermentation and processing, plasticizer compounds frequently migrate and contaminate the product. In this study, hairpin-like structured peptides with catalytically active sites containing serine, histidine and aspartic acid were found to degrade DEHP. Furthermore, after incorporating caffeic acid molecules at the N-terminus, the peptides could be attached onto foam titanium (Ti) surfaces via enediol-metal interactions to create an enzyme-mimicking flow reactor for the degradation of DEHP in Baijiu. The structure and catalytic activity of peptides, their interaction with DEHP substrate and the hydrolysis mechanism of DEHP were discussed in this work. The stability and reusability of the peptide-modified foam Ti flow reactor were also investigated. This approach provides an effective technique for the degradation of plasticizer compounds.
Collapse
Affiliation(s)
- Zongda Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qiuying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yunyao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangmin Lei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ruiqing Jiu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haochi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tianhou Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Dong W, Fan Z, Shang X, Han M, Sun B, Shen C, Liu M, Lin F, Sun X, Xiong Y, Deng B. Nanotechnology-based optical sensors for Baijiu quality and safety control. Food Chem 2024; 447:138995. [PMID: 38513496 DOI: 10.1016/j.foodchem.2024.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Baijiu quality and safety have received considerable attention owing to the gradual increase in its consumption. However, owing to the unique and complex process of Baijiu production, issues leading to quality and safety concerns may occur during the manufacturing process. Therefore, establishing appropriate analytical methods is necessary for Baijiu quality assurance and process control. Nanomaterial (NM)-based optical sensing techniques have garnered widespread interest because of their unique advantages. However, comprehensive studies on nano-optical sensing technology for quality and safety control of Baijiu are lacking. In this review, we systematically summarize NM-based optical sensor applications for the accurate detection and quantification of analytes closely related to Baijiu quality and safety. Furthermore, we evaluate the sensing mechanisms for each application. Finally, we discuss the challenges nanotechnology poses for Baijiu analysis and future trends. Overall, nanotechnological approaches provide a potentially useful alternative for simplifying Baijiu analysis and improving final product quality and safety.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhen Fan
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolong Shang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Mengjun Han
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | | | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| |
Collapse
|
6
|
Huang H, Xu Y, Lin M, Li X, Zhu H, Wang K, Sun B. Complete genome sequence of Acinetobacter indicus and identification of the hydrolases provides direct insights into phthalate ester degradation. Food Sci Biotechnol 2024; 33:103-113. [PMID: 38186616 PMCID: PMC10766577 DOI: 10.1007/s10068-023-01334-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 05/04/2023] [Indexed: 01/09/2024] Open
Abstract
A strain designated Acinetobacter indicus WMB-7 with the ability to hydrolyze phthalate esters (PAEs) was isolated from the fermented grains of Baijiu. The genome of the strain was sequenced with a length of 3,256,420 bp and annotated with 3183 genes, of which 36 hydrolases encoding genes were identified. The hydrolases were analyzed by protein structure modeling and molecular docking, and 14 enzymes were docked to the ligand di-butyl phthalate with the catalytic active regions, and showed binding affinity. The 14 enzymes were expressed in E. coli and 5 of them showed the ability for PAEs hydrolysis. Enzyme GK020_RS15665 showed high efficiency for PAEs hydrolysis and could efficiently hydrolyze di-butyl phthalate under an initial concentration of 1000 mg/L with a half-life of 4.24 h. This work combined a series of methods for identifying PAEs hydrolases and offered a molecular basis for PAEs degradation of A. indicus strains from Baijiu. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01334-w.
Collapse
Affiliation(s)
- Huiqin Huang
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Youqiang Xu
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Mengwei Lin
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Xiuting Li
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
| | - Hua Zhu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Beijing Huadu Wine Food Limited Liability Company, Beijing, 102212 China
| | - Kun Wang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Beijing Huadu Wine Food Limited Liability Company, Beijing, 102212 China
| | - Baoguo Sun
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048 China
| |
Collapse
|
7
|
Gebrehiwot DG, Castro R, Hidalgo-Gárate JC, Robles AD, Durán-Guerrero E. Method development of stir bar sportive extraction coupled with thermal desorption-gas chromatography-mass spectrometry for the analysis of phthalates in Peruvian pisco. J Chromatogr A 2023; 1711:464470. [PMID: 37890374 DOI: 10.1016/j.chroma.2023.464470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
In this work, for the first time, a stir bar sorptive extraction (SBSE) coupled with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was developed and validated for the determination of seven phthalates in Peruvian pisco. The phthalate compounds considered were dimethyl phthalate (DMP), diethyl phthalate (DEP), bis(2-ethylhexyl) hexahydrophthalate (BEHP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di-isodecyl phthalate (DIDP) and di-isobutyl phthalate (DIBP). The best overall analytical conditions obtained from the optimization were as follow: extraction time of 120 min, size of polydimethylsiloxane (PDMS) twister (20 mm length x 1 mm thickness), NaCl content (20 %) and sample volume (40 mL). The in-house validation of SBSE/TD-GC-MS method was performed taking into account the ISO/IEC 17,025 requirements and EURACHEM/CITAC guideline. Under optimal conditions, very low limits of detection of 1.3-0.21 µg L-1 were obtained. Furthermore, the limits of quantification ranged from 4.2-70 µg L-1, and the correlation coefficients were found to be ≥ 0.991. The method was precise, with relative standard deviations (RSD, %) for inter twister repeatability and the inter day repeatability precisions from 1.1 to 11 and from 6.2 to 15.9, respectively. The pisco samples were analysed with recoveries between 91-124.4%, and DBP, BEHP, and BBP were the most commonly found compounds in the samples. The optimized methodology was also evaluated in terms of green character, and it obtained almost the best AGREE score when it was compared with other previous methods for the analysis of phthalates in alcoholic beverages. Therefore, the SBSE/TD-GC-MS method has proved to be suitable for routine practice because it is simple, less laborious, economical, precise, accurate and green, and it would be applicable for pisco safety regulations.
Collapse
Affiliation(s)
- Desta Gebremedhin Gebrehiwot
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real 11510, Cadiz, Spain
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real 11510, Cadiz, Spain
| | | | - Alicia Daniela Robles
- Department of Chemistry and Biochemistry, Faculty of Exact and Natural Sciences, National University of Mar del Plata (UNMDP), Funes 3350, CP 7600, Mar del Plata, Argentina
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real 11510, Cadiz, Spain.
| |
Collapse
|
8
|
Deng J, Ma Y, Liu X, Xu J, Luo H, Luo X, Huo D, Hou C. Identification of Chinese baijiu from the same brand based on a graphene quantum dots fluorescence sensing array. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5891-5900. [PMID: 37905962 DOI: 10.1039/d3ay01083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The identification of Chinese baijiu is crucial to regulating the international market and maintaining legitimate rights, as the popularity, influence and awareness of baijiu are growing. A graphene quantum dot (GQD) based fluorescence sensor array is designed in this paper. Upon using only GQDs as a single sensing element, combining three different solvents improves the sensing array's detection sensitivity while simplifying material preparation and experimental detection. Adding organic substances creates intermolecular forces between the GQDs and the solvent, causing the fluorescence intensity to change. The sensor array was able to distinguish 21 types of organic matter, different ratios of quaternary mixed organic materials and 17 types of baijiu of the same brand. It also showed excellent performance in the detection of species in blind samples, with the machine learning algorithm successfully distinguishing baijiu from five other distilled spirits. The experiment provides guidance for the practical application of GQDs and provides a simple but effective reference for sensor arrays to detect baijiu.
Collapse
Affiliation(s)
- Jiaxi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Xiaofang Liu
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| |
Collapse
|
9
|
Yang WT, Yi YJ, Xia B. Unveiling the duality of Pantoea dispersa: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162320. [PMID: 36801414 DOI: 10.1016/j.scitotenv.2023.162320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pantoea dispersa is a Gram-negative bacterium that exists in a variety of environments and has potential in many commercial and agricultural applications, such as biotechnology, environmental protection, soil bioremediation, and plant growth stimulation. However, P. dispersa is also a harmful pathogen to both humans and plants. This "double-edged sword" phenomenon is not uncommon in nature. To ensure survival, microorganisms respond to both environmental and biological stimuli, which could be beneficial or detrimental to other species. Therefore, to harness the full potential of P. dispersa, while minimizing potential harm, it is imperative to unravel its genetic makeup, understand its ecological interactions and underlying mechanisms. This review aims to provide a comprehensive and up-to-date overview of the genetic and biological characteristics of P. dispersa, in addition to potential impacts on plants and humans, as well as to provide insights into potential applications.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - You-Jin Yi
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China.
| |
Collapse
|
10
|
Dong W, Lin W, Chen X, Lian X, Shen C, Liu M, Lin F, Sun X, Xu Y, Xiong Y, Deng B. Reducing the background interference of liquid–liquid extraction method during Baijiu aroma analysis. Food Chem 2023; 404:134557. [DOI: 10.1016/j.foodchem.2022.134557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
|
11
|
Xu J, Yuan H, Zhou H, Zhao Y, Wu Y, Zhang J, Zhang S. A novel fluorescent sensor array to identify Baijiu based on the single gold nanocluster probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121787. [PMID: 36087404 DOI: 10.1016/j.saa.2022.121787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Baijiu occupies a vital position in Chinese food and China's market. Strict evaluation of Baijiu is highly demanded. In this study, we constructed a novel fluorescent sensor array based on the single glutathione-protected gold nanoclusters (AuNCs) probe for the detection of organic acids and Baijiu. The fluorescence of AuNCs was simply modulated by three metal ions (Cu2+, Mn2+, and Ag+), and formed new complexes as sensing elements. These four sensing elements responded variously to nine organic acids, and further chemometric analysis results allowed for the classification and quantification of acids. Moreover, the sensor array successfully identified 21 Baijiu samples of different brands among 11 aroma types. It could also distinguish Baijiu of different qualities as well as pure Baijiu from its adulterations and showed high selectivity among multiple interfering drinks. The results demonstrated that the AuNCs-based sensor array has considerable potential for quality monitoring of Baijiu.
Collapse
Affiliation(s)
- Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd, Shanghai 200241, China
| | - Hao Yuan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd, Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd, Shanghai 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd, Shanghai 200241, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, No.500, Dongchuan Rd, Shanghai 200241, China.
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd, Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd, Shanghai 200062, China.
| |
Collapse
|
12
|
Chen P, Liu Y, Wu J, Yu B, Zhao H, Huang M, Zheng F. Sensory-directed decoding of key aroma compounds from Jiugui-series Baijiu, the representative of Fuyu-flavor-type Baijiu (FFTB). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Microbial succession and its effect on key aroma components during light-aroma-type Xiaoqu Baijiu brewing process. World J Microbiol Biotechnol 2022; 38:166. [PMID: 35861902 DOI: 10.1007/s11274-022-03353-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Light-aroma-type Baijiu is a Chinese distilled alcoholic beverage produced from fermented sorghum. Microbial composition and dynamics during Baijiu production have a great influence on the flavor and quality of Chinese Baijiu. However, the microbial changes that occur during brewing of Xiaoqu Baijiu are poorly understood. In this study, the microbial composition of light-aroma-type Xiaoqu Baijiu at the saccharification and fermentation stages was investigated to explore microbial dynamics and their effects on aroma components using high-throughput sequencing and gas chromatography-flame ionization detection (GC-FID). Rhizopus, Pichia, Wickerhamomyces, Saccharomyces, Acinetobacter, Lactobacillus, and Weissella constituted the core microbes for Xiaoqu Baijiu production. Microbial succession during brewing could be divided into two phases: at the saccharification and early fermentation stages (F-0d to F-4d), Rhizopus and Acinetobacter were identified as the predominant microbes, accounting for 78.2-90.8% and 53.9-89.5% of the fungal and bacterial communities, respectively, whereas at the middle and late stages of fermentation (F-5d to F-14d), the abundance of Pichia, Wickerhamomyces, Saccharomyces, and Lactobacillus increased. Redundancy analysis (RDA) and Mantel tests indicated that the water, amino acid nitrogen, acid, and reducing sugar contents were significantly correlated with the fungal and bacterial communities in grains (p < 0.05). Pichia, Rhizopus, Saccharomyces, and Wickerhamomyces, especially Saccharomyces, were closely related to the contents of major alcohols, esters and aldehydes, and these microbes had an important functional role in the formation of Xiaoqu Baijiu flavor. This work provides insights into the microbial succession that occurs during brewing of light-aroma-type Xiaoqu Baijiu and the microbial contribution to flavor, which have potential for optimizing production and enhancing the flavor of Baijiu.
Collapse
|
14
|
Multi-objective evaluation of freshly distilled brandy: Characterisation and distribution patterns of key odour-active compounds. Food Chem X 2022; 14:100276. [PMID: 35284819 PMCID: PMC8907661 DOI: 10.1016/j.fochx.2022.100276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
The characterisation and distribution patterns of key odour-active compounds in head, heart1, heart2, tail, and stillage cuts of freshly distilled brandy were investigated by gas chromatography–olfactometry-mass spectrometry coupled with aroma extract dilution analysis (AEDA) and chemometrics analysis. Results from AEDA showed that there were 50, 61, 48, 25, and 18 odour-active compounds in the head, heart1, heart2, tail, and stillage cuts, respectively. Besides, 19, 22, 11, 5, and 4 quantified compounds with odour activity values ≥ 1, respectively, were considered to be potential contributors to the aroma profile of different distillation cuts. Especially, the chemometrics analysis illustrated the heart1 fraction was characterized by 3-methylbutanol, ethyl hexanoate, 1-hexanol, ethyl octanoate, benzaldehyde, ethyl decanoate, and 2-phenylethyl acetate; (E)-hex-3-en-1-ol, (Z)-hex-3-en-1-ol, and 2-phenylethyl acetate greatly contributed to the characteristics of the heart2 cut. Furthermore, different volatile compounds with a variety of boiling points and solubilities followed diverse distillation rules during the second distillation. Our findings may provide a rational basis for concentrating more pleasant aroma components contributing to brandy.
Collapse
Key Words
- AD, aroma descriptor
- AEDA, aroma extract dilution analysis
- Distillation cut
- FD, flavor dilution
- Freshly distilled brandy
- GC-O-MS, gas chromatography-olfactometry-mass spectrometry
- HS-SPME, headspace solid-phase microextraction
- MS, mass spectra
- OAV, odour activity value
- Odour-active compounds
- PCA, principal component analysis
- PLS-DA, partial least squares discriminant analysis
- Partial least squares discriminant analysis
- Principal component analysis
- RI, retention indices
- SAFE, solvent-assisted flavour evaporation
- Std, standards
- VIP, variable importance in projection
Collapse
|
15
|
Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem 2022; 369:130920. [PMID: 34461518 DOI: 10.1016/j.foodchem.2021.130920] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022]
Abstract
Chinese traditional fermented baijiu is a famous alcoholic beverage with unique flavor. Despite its consumption for millennia, the flavor mystery behind baijiu is still unclear. Studies indicate that esters are the most important flavor substances, and bring health benefits. However, the aroma contribution and formation mechanism of esters still need to be clarified to reveal the flavor profile of baijiu. This review systematically summarizes all the 510 esters and finds 9 ethyl esters contribute greatly to the flavor of baijiu. The 508 different microbial species that have been identified affect the synthesis of esters through fatty acid and amino acid metabolism. The determination of minimum functional microbial groups and the analysis of their metabolic characteristics are crucial to reveal the mechanism of formation of baijiu flavor, and ensure the reproducible formation of flavor substances.
Collapse
|
16
|
Xu Y, Zhao J, Huang H, Guo X, Li X, Zou W, Li W, Zhang C, Huang M. Biodegradation of phthalate esters by Pantoea dispersa BJQ0007 isolated from Baijiu. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Zheng Q, Hu Y, Xiong A, Su Y, Wang Z, Zhao K, Yu Y. Elucidating metal ion-regulated flavour formation mechanism in the aging process of Chinese distilled spirits (Baijiu) by electrochemistry, ICP-MS/OES, and UPLC-Q-Orbitrap-MS/MS. Food Funct 2021; 12:8899-8906. [PMID: 34606541 DOI: 10.1039/d1fo01505b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elucidating the organometallic interactions in Baijiu will promote a deeper understanding of the flavour formation mechanism during Baijiu aging. However, the organometallic interactions during aging are difficult to explore because the concentration and status of metals in Baijiu samples are affected by other substances (such as organic acids), and the concentrations of these substances also change dynamically. Hence, the flavour formation mechanism of aged Baijiu was investigated based on a multi-method analysis (i.e. electrochemistry, ICP-MS/OES, and UPLC-Q-Orbitrap-MS/MS), which enabled us to solve the difficulty above. The key finding is that, in the aging period, the organic acids induce the transformation of the metal ion state from the complex state to the free state. As a result, the flavour compound (i.e. the esters) contents in aged Baijiu are regulated by the free metal ion-catalyzed reactions.
Collapse
Affiliation(s)
- Qing Zheng
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China. .,Hunan Provincial Key Laboratory of New Technology and Application for Ecological Baijiu Production, Shaoyang University, Shaoyang 422000, China
| | - Yaru Hu
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Ayuan Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Ying Su
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Zihao Wang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Kun Zhao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Yougui Yu
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China. .,Hunan Provincial Key Laboratory of New Technology and Application for Ecological Baijiu Production, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
18
|
Luís C, Algarra M, Câmara JS, Perestrelo R. Comprehensive Insight from Phthalates Occurrence: From Health Outcomes to Emerging Analytical Approaches. TOXICS 2021; 9:toxics9070157. [PMID: 34357900 PMCID: PMC8309855 DOI: 10.3390/toxics9070157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Phthalates are a group of chemicals used in a multitude of important industrial products (e.g., medical devices, children's toys, and food packages), mainly as plasticizers to improve mechanical properties such as flexibility, transparency, durability, and longevity of polyvinyl chloride (PVC). The wide occurrence of phthalates in many consumer products, including foods (e.g., bottled water, soft drinks, wine, milk, and meat) brings that most people are exposed to phthalates every day, which raises some concerns. Adverse health outcomes from phthalates exposure have been associated with endocrine disruption, deformities in the human reproductive system, increased risk of preterm birth, carcinogen exposure, among others. Apprehension related to the health risks and ubiquitous incidence of phthalates in foods inspires the development of reliable analytical approaches that allow their detection and quantification at trace levels. The purpose of the current review is to provide information related to the presence of phthalates in the food chain, highlighting the health risks associated with their exposure. Moreover, an overview of emerging extraction procedures and high-resolution analytical approaches for a comprehensive quantification of phthalates is presented.
Collapse
Affiliation(s)
- Catarina Luís
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Faculdade de Ciências da Vida, Unidade de Ciências Médicas, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Science, Campus de Teatinos s/n, University of Málaga, 29071 Malaga, Spain;
| | - José S. Câmara
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Departamento de Química, Faculdade de Ciências e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.L.); (J.S.C.)
- Correspondence: ; Tel.: +351-291-705-224
| |
Collapse
|
19
|
He F, Duan J, Zhao J, Li H, Sun J, Huang M, Sun B. Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-mass spectrometry combined with chemometric strategies. Food Chem 2021; 365:130430. [PMID: 34311281 DOI: 10.1016/j.foodchem.2021.130430] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Liquid-liquid microextraction (LLME) combined with gas chromatography-olfactometry-mass spectrometry (GC-O-MS) was used to detect the variations in volatile compounds during the distillation process (head, heart, and tail) of raw Baijiu produced by different layers of fermented grains; 47 aroma compounds were sniffed and identified. Moreover, temperature-programmed headspace gas chromatography-ion mobility spectrometry (TP-HS-GC-IMS) was applied to characterize the Baijiu distillation process for the first time. The 3D fingerprint spectrum clearly showed a variation in volatile compounds from different distillation stages, and most compounds showed a downward trend. In addition, multivariate statistical analysis, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), etc., confirmed ten aroma active markers related to classification, indicating that these markers had a great influence on the flavor of raw Baijiu.
Collapse
Affiliation(s)
- Fei He
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jiawen Duan
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jiwen Zhao
- Technology Center of Bandaojing Co. Ltd., Gaoqing 256300, China
| | - Hehe Li
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinyuan Sun
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Mingquan Huang
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
20
|
Li Y, Fan S, Li A, Liu G, Lu W, Yang B, Wang F, Zhang X, Gao X, Lǚ Z, Su N, Wang G, Liu Y, Ji X, Xin P, Li G, Wang D, Lu F, Zhong Q. Vintage analysis of Chinese Baijiu by GC and 1H NMR combined with multivariable analysis. Food Chem 2021; 360:129937. [PMID: 33989881 DOI: 10.1016/j.foodchem.2021.129937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Economical-driven counterfeit and inferior aged Chinese Baijiu has caused serious concern of publicity in China. In this study, a total of 167 authentic Chinese Baijiu samples with different vintages including 3 flavor types were carefully collected. Gas chromatography (GC) was used to determine main volatile components and proton nuclear magnetic resonance (1H NMR) spectroscopy was employed to obtain non-targeted fingerprints of Chinese Baijiu samples. Partial least squares regression (PLSR) models, which were confirmed by internal and external validation, were established for effectively identifying actual storage vintage of Chinese Baijiu with various brands, flavor types. Centering (Ctr), pareto scaling (Par), unit variance scaling (UV) data pretreatment methods, principal components (PCs), and three modified variable selection methods were proposed to successfully optimize the vintage model and effectively extract important vintage characteristic factors. This study demonstrated that NMR and GC combined with multivariate statistical analysis are effective tools for validating vintage authenticity of Chinese Baijiu.
Collapse
Affiliation(s)
- Yicong Li
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Shuangxi Fan
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China; Tianjin University of Science and Technology, Tianjing 300000, China; Shanxi Xinghuacun Fen Wine Factory Co. Ltd, Fengyang 032200, China
| | - Anjun Li
- Anhui Gujing Gongjiu Co. Ltd, Bozhou 236800, China
| | - Guoying Liu
- Anhui Gujing Gongjiu Co. Ltd, Bozhou 236800, China
| | - Wei Lu
- Anhui Gujing Gongjiu Co. Ltd, Bozhou 236800, China
| | - Bo Yang
- Shanxi Xinghuacun Fen Wine Factory Co. Ltd, Fengyang 032200, China
| | - Fengxian Wang
- Shanxi Xinghuacun Fen Wine Factory Co. Ltd, Fengyang 032200, China
| | - Xin Zhang
- Shanxi Xinghuacun Fen Wine Factory Co. Ltd, Fengyang 032200, China
| | - Xiaojuan Gao
- Shanxi Xinghuacun Fen Wine Factory Co. Ltd, Fengyang 032200, China
| | - Zhiyuan Lǚ
- Jinan Baotuquan Liquor-making Co. Ltd., Shandong 250000, China
| | - Ning Su
- Jinan Baotuquan Liquor-making Co. Ltd., Shandong 250000, China
| | - Guanghao Wang
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Yinuo Liu
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Xin Ji
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Peng Xin
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Guohui Li
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Daobing Wang
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Fuping Lu
- Tianjin University of Science and Technology, Tianjing 300000, China
| | - Qiding Zhong
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China.
| |
Collapse
|
21
|
Identification of age-markers based on profiling of Baijiu volatiles over a two-year maturation period: Case study of Lu-flavor Baijiu. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Hu Y, Wang L, Zhang Z, Yang Q, Chen S, Zhang L, Xia X, Tu J, Liang Y, Zhao S. Microbial community changes during the mechanized production of light aroma Xiaoqu baijiu. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1892525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Luyao Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Qiang Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Shenxi Chen
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Long Zhang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
23
|
Wu D, Liu F, Tian T, Wu JF, Zhao GC. Copper ferrite nanoparticles as novel coating appropriated to solid-phase microextraction of phthalate esters from aqueous matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Xu Y, Liu X, Zhao J, Huang H, Wu M, Li X, Li W, Sun X, Sun B. An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116461. [PMID: 33485001 DOI: 10.1016/j.envpol.2021.116461] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/β hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.
Collapse
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, China
| | - Xiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jingrong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Huiqin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Mengqin Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, China.
| | - Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaotao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, China
| |
Collapse
|
25
|
He NX, Bayen S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr Rev Food Sci Food Saf 2020; 19:3916-3950. [PMID: 33337040 DOI: 10.1111/1541-4337.12649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
The presence of chemical contaminant in alcoholic beverages is a widespread and notable problem with potential implications for human health. With the complexity and wide variation in the raw materials, production processes, and contact materials involved, there are a multitude of opportunities for a diverse host of undesirable compounds to make their way into the final product-some of which may currently remain unidentified and undetected. This review provides an overview of the notable contaminants (including pesticides, environmental contaminants, mycotoxins, process-induced contaminants, residues of food contact material [FCM], and illegal additives) that have been detected in alcoholic products thus far based on prior reviews and findings in the literature, and will additionally consider the potential sources for contamination, and finally discuss and identify gaps in current analytical strategies. The findings of this review highlight a need for further investigation into unwanted substances in alcoholic beverages, particularly concerning chemical migrants from FCMs, as well as a need for comprehensive nontargeted analytical techniques capable of determining unanticipated contaminants.
Collapse
Affiliation(s)
- Nancy Xiaohe He
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
26
|
Jia W, Fan Z, Du A, Li Y, Zhang R, Shi Q, Shi L, Chu X. Recent advances in Baijiu analysis by chromatography based technology–A review. Food Chem 2020; 324:126899. [DOI: 10.1016/j.foodchem.2020.126899] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 01/27/2023]
|
27
|
Xu Y, Minhazul KAHM, Wang X, Liu X, Li X, Meng Q, Li H, Zhang C, Sun X, Sun B. Biodegradation of phthalate esters by Paracoccus kondratievae BJQ0001 isolated from Jiuqu (Baijiu fermentation starter) and identification of the ester bond hydrolysis enzyme. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114506. [PMID: 32268225 DOI: 10.1016/j.envpol.2020.114506] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Phthalate ester (PAE) pollution is an increasing problem globally. Paracoccus kondratievae BJQ0001 was isolated from the fermentation starter of Baijiu and showed an efficient degradation capability toward PAEs. To our poor knowledge, this is the first report of a P. kondratievae strain capable of degrading PAEs. The first complete genome sequence of P. kondratievae was presented without gaps, and composed of two circular chromosomes and one plasmid. The species simultaneously degraded di-methyl phthalate (DMP), di-ethyl phthalate (DEP), di-butyl phthalate (DBP), di-isobutyl phthalate (DIBP) and di-(2-ethylhexyl) phthalate (DEHP), with DMP and DEP as the preferred substrates. The half-life (t1/2) of DMP was only 6.34 h with an initial concentration of 200 mg/L. Combined with gene annotation and metabolic intermediate analysis, a metabolic pathway was proposed for the species. Benzoic acid, the intermediate of anaerobic PAE metabolism, was identified in the aerobic degradation process. Two key enzymes for alkyl ester bond hydrolysis were obtained, and belonged to families IV and VI of hydrolases, respectively. These results will promote the investigation of PAE degradation by P. kondratievae, and provide useful information for improving the quality control of food and environmental PAE treatment.
Collapse
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Karim A H M Minhazul
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaocheng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Qi Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Hehe Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaotao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|