1
|
Zhong YX, Xu CY, Cao YF, Li HL, Yang CX. Synthesis of sulfonamide-functionalized magnetic microporous organic network for magnetic solid-phase extraction of polar aromatic amines from tea beverages. J Chromatogr A 2025; 1746:465773. [PMID: 39965268 DOI: 10.1016/j.chroma.2025.465773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Aromatic amines (AAs) are a typical class of carcinogenic contaminants frequently present in food packaging materials. Considering the huge consumption of tea beverages in our daily life and the frequently usage of packaging materials in tea beverages, establishment of sensitive and selective method to detect polar and trace AAs in tea beverages is urgently needed. Herein, a sulfonamide-functionalized magnetic microporous organic network (MMON-SO2NH2) was synthesized for the efficient magnetic solid-phase extraction (MSPE) of AAs from tea beverages through the pre-designed electrostatic attraction, π-π, hydrophobic, and hydrogen bonding interactions. MMON-SO2NH2 demonstrated large surface area (304.4 m2 g-1), rapid magnetic responsiveness (38.3 emu g-1, < 15 s), and good stability and reusability (> 8 times), being an ideal magnetic adsorbent for AAs. The established MMON-SO2NH2-MSPE-HPLC-UV method gave wide linear ranges (1-1000 µg L-1), low limits of detection (0.3-1.0 µg L-1) and limits of quantitation (1.0-3.0 µg L-1), large enrichment factors (80.3-85.6), and good anti-interference ability. Satisfactory recoveries were obtained, which demonstrated the potential of MMON-SO2NH2 for efficient enrichment of trace AAs in complex samples and uncovered the promising of sulfonamide-functionalized magnetic adsorbent in sample pretreatment.
Collapse
Affiliation(s)
- Yi-Xin Zhong
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yi-Fan Cao
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, China.
| | - Hong-Liang Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
2
|
Wang G, Wang B, Xie K, Cao R, Sun J, Chen S, Xu Y. Characterization of the content characteristics of pyrazines and volatile phenols in Chinese Baijiu Daqu by QuEChERS-UPLC-MS/MS approach. Food Res Int 2025; 204:115891. [PMID: 39986760 DOI: 10.1016/j.foodres.2025.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
Based on QuEChERS dispersed purification and UPLC-MS/MS, a novel robust and sensitive approach for the detection of pyrazines and volatile phenols in Baijiu Daqu was established. Pyrazines and volatile phenols were purified by dispersion with primary secondary amine (PSA)/C18 and C18 respectively. Volatile phenols were analyzed by UPLC-MS/MS after being derivatized with dansyl chloride. The matrix effect value of the established method falls within the range 85.46 %-102.68 %. The method attains excellent extraction recoveries (78.32 %-109.45 %), demonstrating outstanding repeatability (precisions < 10 %). The limits of detection for pyrazines and volatile phenols are 0.09-1.54 μg/kg and 0.09-0.19 μg/kg, respectively. Through analysis of different quality levels of medium-high Daqu, it was found that in high-quality Daqu, 2-ethyl-3,5-dimethylpyrazine, vanillin and 4-vinylguaiacol are particularly prominent, with vanillin reaching concentrations as high as 2546.32 μg/kg in premium Daqu. In low grade Daqu, the levels of 2,3,5,6-tetramethylpyrazine, 2,3,5-trimethylpyrazine and p-Cresol are notably elevated. Analysis of different fermentation stages of Daqu reveals that pyrazines and volatile phenols are significantly synthesized in the late and middle stages of fermentation, respectively. This study offers an efficient approach for the quantitative assessment of Baijiu Daqu quality, as well as the control and improvement of medium-high Daqu quality.
Collapse
Affiliation(s)
- Gaowei Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Kaijun Xie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Runjie Cao
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China; Anhui Gujing Distillery Co. Ltd., Bozhou 236800, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| |
Collapse
|
3
|
Wu Y, Liang M, Xian Y, Chen R, Hu J, Dai H, Liu C, Hou X. Dispersive liquid-liquid microextraction with a deep eutectic solvent coupled with GC-MS for the determination of chiral carvone in herbaceous plants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2171-2180. [PMID: 39960457 DOI: 10.1039/d4ay02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Carvone is an important flavoring substance and widely used in the food and chemical industries. Carvone has two optical isomers (L-carvone and D-carvone), which have different aroma characteristics. However, the green extraction of natural carvone and isolation of chiral carvone present challenges, leading to its limited application. In this study, a deep eutectic solvent (DES) was prepared and used as a green extraction solvent for the extraction of carvone from herbaceous plants, and then a chiral chromatography column combined with GC-MS was used for the separation and detection of L-carvone and D-carvone. Response surface methodology was used to optimize the extraction conditions including the volume of DES, extraction time and extraction temperature. The results showed that the extraction recoveries and intra-day precision (n = 6) were 83.5-101.3% and 3.2-6.1% when the volume of DES was 5 mL, and the extraction time and temperature were 25 min and 51 °C, respectively. The MLOD and MLOQ of L-carvone and D-carvone were 8.0 mg kg-1 and 25.0 mg kg-1, respectively. The real sample detection results revealed that about 235.8-1600.0 mg kg-1 of L-carvone was detected in Mentha spicata L., and 6658.5-9788.6 mg kg-1 of D-carvone in Anethum graveolens L. seeds. The established method can be an effective method for the detection of chiral carvone in herbaceous plants.
Collapse
Affiliation(s)
- Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Hang Dai
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Chenghao Liu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| |
Collapse
|
4
|
Tian F, Zhou Z, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Development and validation of a combined QuEChERS and HPLC-MS/MS method for trace analysis of ten diamide insecticides in agricultural products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39969401 DOI: 10.1039/d4ay02117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Diamide insecticides are being widely registered worldwide, yet most of them lack established maximum residue limits (MRLs) in agricultural products. In this study, we combined a QuEChERS (quick, easy, cheap, efficient, rugged, and safe) extraction method with high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) analysis to simultaneously identify and quantify ten diamide insecticides in seven matrices for the first time. The method was validated in accordance with SANTE/11312/2021 guidelines, including sensitivity, linearity, trueness, and precision. Excellent linearity (R2 > 0.99) was obtained for all diamide insecticides within the concentration range of 5-1000 µg kg-1. The limit of detection (LOD) and limit of quantification (LOQ) were 0.01-1 µg kg-1 and 5 µg kg-1, respectively. The recoveries of the ten diamide insecticides at three levels (5, 100, and 1000 µg kg-1) ranged from 76.6% to 108.2% with good intra-day relative standard deviation (RSDr) (1.0-13.4%) and inter-day relative standard deviation (RSDR) (2.3-15.7%). The proposed method was applied to analyze 70 real agricultural product samples, and only six samples contained diamide insecticides. The results demonstrated that the method was both convenient and reliable for detecting diamide insecticides in agricultural products. The method was then applied to analyze agricultural product samples collected in a field trial to estimate the MRLs for the next step.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Zhenzhen Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
5
|
Wang T, Dong M, Shen Q, Wen G, Wang M, Zhao Y. Development of a UPLC-MS/MS-based method for simultaneous determination of advanced glycation end products and heterocyclic amines in stewed meat products. Food Chem 2024; 451:139470. [PMID: 38678663 DOI: 10.1016/j.foodchem.2024.139470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
A novel analytical strategy was proposed to simultaneously quantify two advanced glycation end products (AGEs) including Nε-(Carboxymethyl)lysine (CML), Nε-(Carboxyethyl)lysine (CEL) and eight heterocyclic amines (HAs) including IQ, MeIQ, MeIQx, 4,8-DiMeIQx, 7,8-DiMeIQx, PhIP, Harman, and Norharman. The procedure was based on a two-step extraction, solid phase extraction (SPE) purification followed by ultra performance liquid chromatography tandem mass spectrometry. The established method showed a good linearity (R2 ≥ 0.9950), rapid processing time (8 min per sample), satisfactory recoveries (matrix spiked recoveries range from 72.2% to 119.6%) and precision (intra-day and inter-day RSDs were <19.3%). The limit of quantification (LOQ) and limit of detection (LOD) resulted to be between 0.05-15 ng/g and 0.2-50 ng/g, respectively. The validated technique was further applied to determine HAs and AGEs in eight stewed meat product samples consumed in Shanghai, with the amount of HAs and AGEs ranging from 2.851 to 18.289 ng/g and 118.158-543.493 ng/g, respectively.
Collapse
Affiliation(s)
- Tan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Maofeng Dong
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Qinyi Shen
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guangyue Wen
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Walls KM, Joh JY, Hong KU, Hein DW. Heterocyclic Amines Disrupt Lipid Homeostasis in Cryopreserved Human Hepatocytes. Cardiovasc Toxicol 2024; 24:747-756. [PMID: 38851663 PMCID: PMC11300155 DOI: 10.1007/s12012-024-09874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Metabolic dysfunction associated-steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) is the liver manifestation of metabolic syndrome, which is characterized by insulin resistance, hyperglycemia, hypertension, dyslipidemia, and/or obesity. Environmental pollutant exposure has been recently identified as a risk factor for developing MASH. Heterocyclic amines (HCAs) are mutagens generated when cooking meat at high temperatures or until well-done. Recent epidemiological studies reported that dietary HCA exposure may be linked to insulin resistance and type II diabetes, and we recently reported that HCAs induce insulin resistance and glucose production in human hepatocytes. However, no previous studies have examined the effects of HCAs on hepatic lipid homeostasis. In the present study, we assessed the effects of two common HCAs, MeIQx (2-amino-3, 8-dimethylimidazo [4, 5-f] quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4, 5-b] pyridine), on lipid homeostasis in cryopreserved human hepatocytes. Exposure to a single concentration of 25 μM MeIQx or PhIP in human hepatocytes led to dysregulation of lipid homeostasis, typified by significant increases in lipid droplets and triglycerides. PhIP significantly increased expression of lipid droplet-associated genes, PNPLA3 and HSD17B13, and both HCAs significantly increased PLIN2. Exposure to MeIQx or PhIP also significantly increased expression of several key genes involved in lipid synthesis, transport and metabolism, including FASN, DGAT2, CPT1A, SCD, and CD36. Furthermore, both MeIQx and PhIP significantly increased intracellular cholesterol and decreased expression of PON1 which is involved in cholesterol efflux. Taken together, these results suggest that HCAs dysregulate lipid production, metabolism, and storage. The current study demonstrates, for the first time, that HCA exposure may lead to fat accumulation in hepatocytes, which may contribute to hepatic insulin resistance and MASH.
Collapse
Affiliation(s)
- Kennedy M Walls
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Environmental Justice, Community Health and Environmental Review Division, US Environmental Protection Agency, Chicago, USA
| | - Jonathan Y Joh
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kyung U Hong
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Xiao T, Yang L, Yang F, Nie G, Jin X, Peng X, Zhong X, Wang J, Lu Y, Zheng Y. Traceability of chemicals from Tripterygium Wilfordii Hook. f. in raw honey and the potential synergistic effects of honey on acute toxicity induced by celastrol and triptolide. Food Chem 2024; 447:139044. [PMID: 38513481 DOI: 10.1016/j.foodchem.2024.139044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
The object of this study was to trace TwHf-derived toxins in raw honey and clarify their acute toxic effect related to the addition of honey or sugars. TwHf flowers, raw honey from TwHf planting base and from beekeepers in high-risk area were detected using LC-MS/MS. The results revealed five target toxins were detected in TwHf flowers; only celastrol was detected in one raw honey sample, as a food safety risk factor, celastrol had been traced back to TwHf flowers from raw honey. In a series of acute toxic tests on zebrafish, toxification effects were observed when honey, mimic honey or sugar was mixed with toxins. The degree of toxicity varied among various sugar-based solutions. At the same mass concentration, they follow this order: raw honey/mimic honey > glucose > fructose. The main toxic target organs of triptolide and celastrol with honey were the heart and liver.
Collapse
Affiliation(s)
- Tian Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Li Yang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Fan Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Guang Nie
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiue Jin
- Hubei Institute of Veterinary Drug Control, Wuhan 430000, China
| | - Xiaoying Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jun Wang
- Hubei Institute of Veterinary Drug Control, Wuhan 430000, China.
| | - Ying Lu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| | - Yajie Zheng
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Medina-Orjuela ME, Barrios-Rodríguez YF, Carranza C, Amorocho-Cruz C, Gentile P, Girón-Hernández J. Enhancing analysis of neo-formed contaminants in two relevant food global commodities: Coffee and cocoa. Heliyon 2024; 10:e31506. [PMID: 38818199 PMCID: PMC11137541 DOI: 10.1016/j.heliyon.2024.e31506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Neo-formed contaminants (NFCs) are common in many foods, especially those subjected to high-temperature processing. Among these contaminants, products arising from the Maillard reaction, sugar reduction, thermal degradation of polyphenols and lipid oxidation, including acrylamide, furan, furfuryl alcohol, and hydroxymethylfurfural, are consistently linked to potential neoplastic effects. NFCs are found in globally traded commodities like coffee and cocoa, posing a significant risk due to their frequent consumption by consumers. A direct correlation exists between consumption frequency, exposure levels, and health risks. Hence, it's crucial to establish reliable methods to determine levels in both matrices, aiming to mitigate their formation and minimise risks to consumers. This review offers a comprehensive examination, discussion, and identification of emerging trends and opportunities to enhance existing methodologies for extracting and quantifying NFCs in coffee and cocoa. By presenting an in-depth analysis of performance parameters, we aim to guide the selection of optimal extraction techniques for quantifying individual NFCs. Based on the reviewed data, headspace extraction is recommended for furan, while solid and dispersive solid phase extractions are preferred for acrylamide when quantified using gas and liquid chromatography, respectively. However, it is worth noting that the reported linearity tests for certain methods did not confirm the absence of matrix effects unless developed through standard addition, leading to uncertainties in the reported values. There is a need for further research to verify method parameters, especially for determining NFCs like furfuryl alcohol. Additionally, optimising extraction and separation methods is essential to ensure complete compound depletion from samples. Ideally, developed methods should offer comprehensive NFC determination, reduce analysis time and solvent use, and adhere to validation parameters. This review discusses current methods for extracting and quantifying NFCs in coffee and cocoa, highlighting emerging trends and emphasising the need to improve existing techniques, especially for compounds like furfuryl alcohol.
Collapse
Affiliation(s)
- María E. Medina-Orjuela
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
| | - Yeison F. Barrios-Rodríguez
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
- i-Food, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46021, Valencia, Spain
| | - Carlos Carranza
- Escuela de ciencias agrícolas, pecuarias y del medio ambiente, Universidad Nacional Abierta a Distancia, Calle 14 Sur # 14 - 23, 111511, Bogotá, Colombia
| | - Claudia Amorocho-Cruz
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Joel Girón-Hernández
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NE1 8ST Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Aoudeh E, Oz E, Oz F. Understanding the heterocyclic aromatic amines: An overview and recent findings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:1-66. [PMID: 38906585 DOI: 10.1016/bs.afnr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Heterocyclic aromatic amines (HAAs) constitute a group of highly toxic organic compounds strongly associated with the onset of various types of cancer. This paper aims to serve as a valuable resource for food scientists working towards a better understanding of these compounds including formation, minimizing strategies, analysis, and toxicity as well as addressing existing gaps in the literature. Despite extensive research conducted on these compounds since their discovery, several aspects remain inadequately understood, necessitating further investigation. These include their formation pathways, toxic mechanisms, effective mitigation strategies, and specific health effects on humans. Nonetheless, recent research has yielded promising results, contributing significantly to our understanding of HAAs by proposing new potential formation pathways and innovative strategies for their reduction.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye.
| |
Collapse
|
10
|
Wei S, Yang X, Lin M, Chen N, Gao X, Hu X, Chen F, Zhu Y. Development of a two-step pretreatment and UPLC-MS/MS-based method for simultaneous determination of acrylamide, 5-hydroxymethylfurfural, advanced glycation end products and heterocyclic amines in thermally processed foods. Food Chem 2024; 430:136726. [PMID: 37544159 DOI: 10.1016/j.foodchem.2023.136726] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/08/2023]
Abstract
A two-step pretreatment and UPLC-MS/MS-based method was established to extract and determine 17 thermal processing hazards (TPHs) simultaneously. The first step was to extract acrylamide (AA), 5-hydroxymethylfurfural (HMF) and free heterocyclic amines (HAs). The bound HAs and advanced glycation end products (AGEs) were released by acid hydrolysis in the second step. A fairly good separation was achieved within 7 min. Almost all TPHs showed high correlation coefficients (R2 >0.999) in their respective linear ranges. The accuracy ranged from 98.13 to 100.96%. LODs and LOQs were in the range of 0.01-0.89 µg/L and 0.02-2.96 µg/L, respectively. The method was successfully applied to four representative food products, including high-starch, high-protein, high-fat and high-sugar foods, showing acceptable recoveries, intra-day and inter-day precisions. Moreover, PCA was performed to visualize the association between TPHs and food matrices. The developed method provided technical support for the formation and control researches of TPHs.
Collapse
Affiliation(s)
- Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Nuo Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Gao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Oz E, Aoudeh E, Murkovic M, Toldra F, Gomez-Zavaglia A, Brennan C, Proestos C, Zeng M, Oz F. Heterocyclic aromatic amines in meat: Formation mechanisms, toxicological implications, occurrence, risk evaluation, and analytical methods. Meat Sci 2023; 205:109312. [PMID: 37625356 DOI: 10.1016/j.meatsci.2023.109312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are detrimental substances can develop during the high-temperature cooking of protein-rich foods, such as meat. They are potent mutagens and carcinogens linked to an increased risk of various cancers. HAAs have complex structures with nitrogen-containing aromatic rings and are formed through chemical reactions between amino acids, creatin(in)e, and sugars during cooking. The formation of HAAs is influenced by various factors, such as food type, cooking temperature, time, cooking method, and technique. HAAs exert their toxicity through mechanisms like DNA adduct formation, oxidative stress, and inflammation. The research on HAAs is important for public health and food safety, leading to risk assessment and management strategies. It has also led to innovative approaches for reducing HAAs formation during cooking and minimizing related health risks. Understanding HAAs' chemistry and formation is crucial for developing effective ways to prevent their occurrence and protect human health. The current review presents an overview about HAAs, their formation pathways, and the factors influencing their formation. Additionally, it reviews their adverse health effects, occurrence, and the analytical methods used for measuring them.
Collapse
Affiliation(s)
- Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Eyad Aoudeh
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Michael Murkovic
- Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Biochemistry, Petersgasse 12/II, 8010 Graz, Austria
| | - Fidel Toldra
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | - Charles Brennan
- RMIT University, School of Science, Melbourne, VIC 3001, Australia; Riddet Institute, Palmerston North 4442, New Zealand
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 15784 Athens, Greece
| | - Maomao Zeng
- Jiangnan University, State Key Laboratory of Food Science and Technology, Wuxi 214122, China; Jiangnan University, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye.
| |
Collapse
|
12
|
Yan X, Zhao Q, Yan Z, Chen X, He P, Li S, Fang Y. Determination of Pentachlorophenol in Seafood Samples from Zhejiang Province Using Pass-Through SPE-UPLC-MS/MS: Occurrence and Human Dietary Exposure Risk. Molecules 2023; 28:6394. [PMID: 37687223 PMCID: PMC10490177 DOI: 10.3390/molecules28176394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Pentachlorophenol (PCP) has attracted wide attention due to its high toxicity, persistence, and bioaccumulation. In this study, a sensitive UPLC-MS/MS method for the determination of PCP in seafood samples was developed and validated. The samples were ultrasonic extracted with acetonitrile containing 1% acetic acid-acetonitrile and followed by using a pass-through solid-phase extraction (SPE) cleanup on Captiva EMR-Lipid cartridges. The linearity of this method ranged from 1 to 1000 μg/L, with regression coefficients of >0.99. The detection limit and quantitation limit were 0.5 μg/kg and 1.0 μg/kg, respectively. The recoveries in different types of seafood samples ranged from 86.4% to 102.5%, and the intra-day and inter-day relative standard deviations (RSDs) were 3.7% to 11.2% and 2.9% to 12.1%, respectively (n = 6). Finally, the method has been successfully utilized for the screening of PCP in 760 seafood samples from Zhejiang Province. PCP was detected in 5.8% of all seafood samples, with the largest portion of detections found in shellfish, accounting for approximately 60% of the total. The average concentrations detected ranged from 1.08 to 21.49 μg/kg. The non-carcinogenic risk indices for adults and children who consume PCP ranged from 10-4 to 10-3 magnitudes. All of these indices stayed significantly below 1, implying that the health risk from PCP in marine organisms to humans is minimal.
Collapse
Affiliation(s)
- Xiaoyang Yan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316012, China
| | - Zhongyong Yan
- Zhejiang Marine Ecology and Environment Monitoring Center, Zhoushan 316021, China
| | - Xuechang Chen
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Pengfei He
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Shiyan Li
- Zhejiang Fisheries Technology Extension Center, Hangzhou 310023, China
| | - Yi Fang
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| |
Collapse
|
13
|
The role of flavonoids in mitigating food originated heterocyclic aromatic amines that concerns human wellness. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Walls KM, Hong KU, Hein DW. Heterocyclic amines reduce insulin-induced AKT phosphorylation and induce gluconeogenic gene expression in human hepatocytes. Arch Toxicol 2023; 97:1613-1626. [PMID: 37005939 PMCID: PMC10192068 DOI: 10.1007/s00204-023-03488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Heterocyclic amines (HCAs) are well-known for their mutagenic properties. One of the major routes of human exposure is through consumption of cooked meat, as certain cooking methods favor formation of HCAs. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes. However, no previous studies have examined if HCAs, independent of meat consumption, contributes to pathogenesis of insulin resistance or metabolic disease. In the present study, we have assessed the effect of three HCAs commonly found in cooked meat (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline [MeIQ], 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline [MeIQx], and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [PhIP]) on insulin signaling and glucose production. HepG2 or cryopreserved human hepatocytes were treated with 0-50 μM of MeIQ, MeIQx, or PhIP for 3 days. Treatment of HepG2 cells and hepatocytes with MeIQ and MeIQx resulted in a significant reduction in insulin-induced AKT phosphorylation, suggesting that HCA exposure decreases hepatic insulin signaling. HCA treatment also led to significant increases in expression of gluconeogenic genes, G6PC and PCK1, in both HepG2 and cryopreserved human hepatocytes. Additionally, the level of phosphorylated FOXO1, a transcriptional regulator of gluconeogenesis, was significantly reduced by HCA treatment in hepatocytes. Importantly, HCA treatment of human hepatocytes led to increases in extracellular glucose level in the presence of gluconeogenic substrates, suggesting that HCAs induce hepatic glucose production. The current findings suggest that HCAs induce insulin resistance and promote hepatic glucose production in human hepatocytes. This implicates that exposure to HCAs may lead to the development of type II diabetes or metabolic syndrome.
Collapse
Affiliation(s)
- Kennedy M. Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center,
University of Louisville School of Medicine, Louisville, KY. U.S.A
| | - Kyung U. Hong
- Department of Pharmacology & Toxicology and Brown Cancer Center,
University of Louisville School of Medicine, Louisville, KY. U.S.A
| | - David W. Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center,
University of Louisville School of Medicine, Louisville, KY. U.S.A
| |
Collapse
|
15
|
Fan M, Xu X, Lang W, Wang W, Wang X, Xin A, Zhou F, Ding Z, Ye X, Zhu B. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115059. [PMID: 37257344 DOI: 10.1016/j.ecoenv.2023.115059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Thermal processing is one of the important techniques for most of the plant-based food and herb medicines before consumption and application in order to meet the specific requirement. The plant and herbs are rich in amino acids and reducing sugars, and thermal processing may lead to Maillard reaction, resulting as a high risk of acrylamide pollution. Acrylamide, an organic pollutant that can be absorbed by the body through the respiratory tract, digestive tract, skin and mucous membranes, has potential carcinogenicity, neurological, genetic, reproductive and developmental toxicity. Therefore, it is significant to conduct pollution determination and risk assessment for quality assurance and security of medication. This review demonstrates state-of-the-art research of acrylamide focusing on the toxicity, formation, contamination, determination, and mitigation in taking food and herb medicine, to provide reference for scientific processing and ensure the security of consumers.
Collapse
Affiliation(s)
- Min Fan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China; Wenshui Center for Disease Control and Prevention, Luliang City, Shanxi Province 032100 PR China
| | - Xiaoying Xu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjun Lang
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjing Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xinyu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Angjun Xin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
16
|
Feng Y, Shi Y, Huang R, Wang P, Li G. Simultaneous detection of heterocyclic aromatic amines and acrylamide in thermally processed foods by magnetic solid-phase extraction combined with HPLC-MS/MS based on cysteine-functionalized covalent organic frameworks. Food Chem 2023; 424:136349. [PMID: 37244185 DOI: 10.1016/j.foodchem.2023.136349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Acrylamide (AA) and heterocyclic aromatic amines (HAAs), as classic hazards produced during food thermal processing, have been widely concerned, but because of their polarity difference, it is very difficult to detect these contaminants simultaneously. Herein, novel cysteine (Cys)-functionalized magnetic covalent organic frameworks (Fe3O4@COF@Cys) were synthesized via a thiol-ene click strategy and then used as adsorbents for magnetic solid-phase extraction (MSPE). Benefiting from the hydrophobic properties of COFs and the modification of hydrophilic Cys, AA and HAAs could be enriched simultaneously. Then, a rapid and reliable method based on MSPE coupled with HPLC-MS/MS was developed for the simultaneous detection of AA and 5 HAAs in thermally processed foods. The proposed method showed good linearity (R2 ≥ 0.9987) with satisfactory limits of detection (0.012-0.210 μg kg-1) and recoveries (90.4-102.8%). Actual sample analysis showed that the levels of AA and HAAs in French fries were affected by frying time and temperature, water activity of samples, content and type of reaction precursors, and reuse of oils.
Collapse
Affiliation(s)
- Yanmei Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Huang
- Zhongken Huashanmu Dairy Co., Ltd, Weinan 714019, China
| | - Panpan Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
17
|
Yangping L, Yuxiang L, Hongjing C, Wenting Z, Yan Y. General method for detecting acrylamide in foods and comprehensive survey of acrylamide in foods sold in Southeast China. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2275-2283. [PMID: 37129466 DOI: 10.1039/d3ay00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study aimed to investigate the distribution of acrylamide (AA) in food by developing a universal method for detecting AA in various foods and analyzing the levels of AA in 437 food samples collected from Southeast China. The developed method was simple, rapid, and widely applicable, with an average recovery rate range of 81.7-94.2% and a relative standard deviation range of 1.7-8.2%. The limit of detection (LOD, 2.0-3.4 µg kg-1) and limit of quantitation (LOQ, 6.0-10 µg kg-1) were also determined. AA was detected in all types of food, with a total detection rate of 76%, and the levels ranged from LOQ to 6020 µg kg-1. Potato chips had the highest level of AA (mean value of 504 µg kg-1), whereas pastries had the lowest level (mean value < 6.0 µg kg-1). Kruskal-Wallis analysis revealed significant differences in AA levels among different foods (H = 229.8, p < 0.05). The AA safety limit intake recommendations suggested that the intake of high-AA foods should be strictly controlled to reduce the risk of potential carcinogenic effects. The developed method provides a useful tool for monitoring AA levels in food.
Collapse
Affiliation(s)
- Li Yangping
- Fujian Health College, Fujian, 350101, China
| | - Li Yuxiang
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control& Prevention), No. 386 Chong'an Road, Jin'an District, Fuzhou, 350012, China.
| | - Chen Hongjing
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control& Prevention), No. 386 Chong'an Road, Jin'an District, Fuzhou, 350012, China.
| | - Zhang Wenting
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control& Prevention), No. 386 Chong'an Road, Jin'an District, Fuzhou, 350012, China.
| | - Yang Yan
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control& Prevention), No. 386 Chong'an Road, Jin'an District, Fuzhou, 350012, China.
| |
Collapse
|
18
|
Batool Z, Xia W, Chen JH, Bi Y, Chen F, Wang M. Quantification of hetero-cyclic amines from different categories of braised beef by optimized UPLC-TQ-XS/ESI method. Food Chem 2023; 421:136191. [PMID: 37105122 DOI: 10.1016/j.foodchem.2023.136191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
This research work has developed and optimized a sensitive analytical method for separation and quantification of heterocyclic amines (HCAs) mainly including PhIP, Harman, Norharman, IQ, MeIQ, AαC, MeAαC and Trp-P-2 by optimizing UPLC-TQ-XS using electrospray ionization source (ESI+) on ACQUITY UPLC® BEH C18 column in <7 min, from braised beef sample matrix. Meanwhile, modified HCAs extraction by modifying QuEChERS (quick, easy, cheap, efficient, rugged and safe) technique and revisited with solid phase extraction (SPE) for HCAs purification, instead using traditional QuEChERS salts. Moreover, optimized pH conditions of HCA extracts before purification, for better extraction recoveries. Furthermore, this method was validated in terms of method validation parameters. Lastly, simulation of real braised beef model provided the minimum formation of HCAs by optimizing cooking parameters and precursors in a cooking system. Therefore, this method could be applied simultaneously on braised beef matrix either marketed or home cooked for HCAs analysis.
Collapse
Affiliation(s)
- Zahra Batool
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wang Xia
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yuge Bi
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
19
|
Li Z, Zhao C, Cao C. Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 2023; 28:molecules28083476. [PMID: 37110710 PMCID: PMC10143638 DOI: 10.3390/molecules28083476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee is the third-largest beverage with wide-scale production. It is consumed by a large number of people worldwide. However, acrylamide (AA) is produced during coffee processing, which seriously affects its quality and safety. Coffee beans are rich in asparagine and carbohydrates, which are precursors of the Maillard reaction and AA. AA produced during coffee processing increases the risk of damage to the nervous system, immune system, and genetic makeup of humans. Here, we briefly introduce the formation and harmful effects of AA during coffee processing, with a focus on the research progress of technologies to control or reduce AA generation at different processing stages. Our study aims to provide different strategies for inhibiting AA formation during coffee processing and investigate related inhibition mechanisms.
Collapse
Affiliation(s)
- Zelin Li
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
20
|
Niklas AA, Pedersen M, Christensen T, Duedahl-Olesen L. Simultaneous determination of heterocyclic aromatic amines and N-nitrosamines in fried bacon cubes and slices using LC-(ESI/APCI)-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:493-507. [PMID: 36893441 DOI: 10.1080/19440049.2023.2185082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bacon manufacturing involves several processing steps including nitrite curing, followed by cooking processes, typically frying. During these processes, harmful processing contaminants such as N-nitrosamines (NAs) and heterocyclic aromatic amines (HAAs) can be formed. Consequently, we developed and validated a multi-class method for quantification of the most frequently reported HAAs and NAs in fried bacon. Satisfactory repeatability and reproducibility with limits of quantification between 0.1 and 0.5 ng g-1 for most of the compounds were achieved. Quantification in pan-fried bacon cubes and slices revealed generally low levels of individual HAAs (≤1.5 ng g-1), except in ready-to-eat bacon (0.9-2.9 ng g-1). Differences in amounts of individual HAAs were observed in cubes and slices, most likely due to meat thickness. Among volatile NAs (VNAs), only N-nitrosopiperidine (NPIP), N-nitrosopyrolidine (NPYR), and N-nitrosodibutylamine (NDBA) were found at generally low concentrations (≤5 ng g-1). In contrast, non-volatile NAs (NVNAs) were present in all tested samples at considerably higher amounts, for example, N-nitroso-thiazolidine-4-carboxylic acid (NTCA) at 12-77 ng g-1. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodipropylamine (NDPA) were not detected in any samples. Statistical evaluation and principal component analysis revealed some differences among tested samples. Dietary exposure estimation of the Danish population to HAAs and NAs showed the highest exposure in the teenage group (10-17 years).
Collapse
Affiliation(s)
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Tue Christensen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
21
|
Determination of chlorpromazine and its metabolites in animal-derived foods using QuEChERS-based extraction, EMR-Lipid cleanup, and UHPLC-Q-Orbitrap MS analysis. Food Chem 2023; 403:134298. [DOI: 10.1016/j.foodchem.2022.134298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
|
22
|
Zhu L, Jia W, Wan X, Zhuang P, Ma G, Jiao J, Zhang Y. Advancing metabolic networks and mapping updated urinary metabolic fingerprints after exposure to typical carcinogenic heterocyclic aromatic amines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120936. [PMID: 36572270 DOI: 10.1016/j.envpol.2022.120936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Heterocyclic aromatic amines (HAAs) were not only present in cooked foods and cigarette smoke, but also measured in airborne particles and diesel-exhaust particles. Typical HAAs have been reported to induce carcinogenicity and metabolic disturbances, but how these hazardous compounds interfere with metabolic networks by regulating metabolic pathways and fingerprinting signature metabolites as biomarkers remains ambiguous. We developed an advanced strategy that adopted chemical isotope labeling ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry for urinary nontargeted metabolomics analysis to gain new insight into in vivo physiological responses stimulated by exposure to typical HAAs. Rats were orally administered with a single dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (1 and 10 mg/kg bw) and their D3-isotopic compounds, respectively, and urine samples were then continuously collected within 36 h. Metabolomics data were acquired and processed by classical multivariate statistical analysis, while urinary metabolites were further identified and characterized according to mass spectrometric fragmentation rules, time- and dose-dependent profiles, and calibration of synthesized standards. We monitored 23 and 37 urinary metabolites as the biotransformation products of PhIP and MeIQx, respectively, and first identified demethylated metabolites of PhIP, tentatively named 2-amino-6-phenylimidazo[4,5-b]pyridine, and dihydroxylation products of classical HAAs as short-term biomarkers of exposure to further unravel the metabolic networks. In addition, our findings revealed that both HAAs significantly disturb histidine metabolism, arginine and proline metabolism, tryptophan metabolism, pyrimidine metabolism, tricarboxylic acid cycle, etc. Furthermore, we found that histamine, methionine, alanine, and 4-guanidinobutanoic acid could be considered potential characteristic biomarkers for the oncogenicity or carcinogenicity of both PhIP and MeIQx and screened their specific key pivotal metabolites. The current metabolomics approach is applicable in mapping updated urinary metabolic fingerprints and identifying potential specific biomarkers for HAAs-induced early tumorigenesis.
Collapse
Affiliation(s)
- Li Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guicen Ma
- Tea Quality and Supervision Testing Center, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
23
|
Determination of 2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) and its precursors and possible intermediates in a chemical model system and roast pork. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
24
|
Development and application of a rapid screening and quantification method for multi-class herbicide residues in fishery products using UPLC-Q-Tof-MS/MS: Evidence for prometryn residues in shellfish. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Liu M, Li X, Han L, Wang Q, Kong X, Xu M, Wang K, Xu H, Shen Y, Gao G, Nie J. Determination and risk assessment of 31 pesticide residues in apples from China's major production regions. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Zhang Y, Zhao J, Jin Z, Gao Y, Chen L. Quantitative determination of polychlorinated biphenyls in chicken based on QuEChERS extraction and GC-MS/MS detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Shu X, Chu N, Zhang X, Yang X, Meng X, Yang J, Wang N. Rapid Analysis of Residues of 186 Pesticides in Hawk Tea Using Modified QuEChERS Coupled with Gas Chromatography Tandem Mass Spectrometry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12639. [PMID: 36231938 PMCID: PMC9565042 DOI: 10.3390/ijerph191912639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this work, the QuEChERS method was modified and evaluated for the determination of 186 pesticides from caffeine-free and fatty hawk tea prior to their gas chromatography tandem mass spectrometry analysis for the first time. The results showed that the combination of MgSO4 + PSA + MWCNTs plus EMR-Lipid provided the lowest matrix effect and best recovery; 117 of 186 pesticides manifested weak matrix effects. Thus, for accurate quantification, it is necessary to use matrix-matched calibration curves to compensate for the matrix effect. At the spiked level of 0.1 mg/kg, the average recoveries of 184 pesticides were in the range of 70-120% and the RSDs were 0.3-14.4% by the modified method. Good linearity was shown for 186 analytes at concentration of 0.01 mg/L~0.4 mg/L, and the correlation coefficients exceeded 0.99 for 182 pesticides. The detection limits of 186 pesticides by the modified QuEChERS method were 0.001-0.02 mg/kg, and the limits of quantification (LOQ) were 0.005 mg/kg~0.05 mg/kg. The necessity of solvent exchange is also explained in this work. The successful application of the modified QuEChERS in real samples proved that this method could be one of the routine options for analysis of herbal tea.
Collapse
Affiliation(s)
- Xiao Shu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
- Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China
| | - Nengming Chu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
- Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China
| | - Xuemei Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
- Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China
| | - Xiaoxia Yang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
- Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China
| | - Xia Meng
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
- Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China
| | - Junying Yang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
- Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China
| | - Na Wang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
- Agricultural Product Quality and Safety Supervision, Inspection and Testing Center, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China
| |
Collapse
|
28
|
Farshi P, Amamcharla J, Smith JS. Effect of whey protein isolate-based edible films containing amino acids on the PhIP level and physicochemical properties of pan-fried chicken breasts. J Food Sci 2022; 87:5128-5141. [PMID: 36117494 DOI: 10.1111/1750-3841.16325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
This study was conducted to investigate the inhibitory effects of edible films containing amino acids (AAs) on the formation of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) in chicken breasts and to evaluate the physicochemical properties of the edible films. Heated whey protein isolate (HWPI) solution was made by heating 5 g whey protein isolate (WPI) solution at 90°C for 30 min in a water bath and subsequently mixed with 2.5 g glycine, and tryptophan (Trp) or lysine (Lys) at 0.25%, 0.5%, and 0.75% concentrations. Unheated whey protein isolate (UHWPI)-based casting solution was prepared with the same method but without heating of WPI solution. Chicken breasts were cut at the same weights and were covered with the prepared edible films. For edible films, total soluble matter (TSM%), color (calorimeter), radical scavenging activity (DPPH), and Fourier transform infrared spectroscopy (FTIR) were conducted. For chicken breasts, PhIP level, color before and after frying (calorimeter), cooking loss percentage (weigh loss before after frying), and tenderness (texture analyzer) were evaluated. The average PhIP level decreased from 78.47 ppb to 6.69-8.31 ppb for chicken covered with Lys-containing HWPI edible films, and to 25.82-46.80 ppb for chicken covered with Trp-containing ones. For chicken covered with UHWPI edible films, the PhIP decreased 28.4-56.04 ppb for Trp-containing ones and 19.67-40.32 ppb for Lys-containing ones. Moreover, chicken breasts covered with HWPI edible films had lower cooking loss and improved tenderness compared to the chicken breasts with no edible film. This study provides a new approach to decrease the PhIP levels in fried chicken breast.
Collapse
Affiliation(s)
- Parastou Farshi
- Food Science Graduate Program, Food Science Institute, Kansas State University, Manhattan, Kansas, USA
| | - Jayendra Amamcharla
- Food Science Graduate Program, Food Science Institute, Kansas State University, Manhattan, Kansas, USA
| | - J Scott Smith
- Food Science Graduate Program, Food Science Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
29
|
Zhao H, Li M, Liu X, Yang J, Li X, Chen J, Dai X, Simal-Gandara J, Kong Z, Li Z. Simultaneous determination of succinate-dehydrogenase-inhibitor fungicide traces in cereals by QuEChERS preparation and UPLC-MS/MS analysis. Food Chem 2022; 396:133708. [PMID: 35878445 DOI: 10.1016/j.foodchem.2022.133708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
A method for the simultaneous determination of 19 succinate dehydrogenase inhibitor (SDHI) fungicide residues in 8 kinds of cereals was established by combining UHPLC-MS/MS with the improved QuEChERS method. MgSO4 and octadecylsilane (C18) were used as the dispersive-solid phase extraction sorbent. The proposed method had good linearity in the range of 10-100 µg/L with correlation coefficients (R2 > 0.99). The limit of quantification of 19 fungicides was 10 µg/L, which is the minimum addition level of the method. The fortified recoveries of 19 SDHI fungicides at three levels were ranged from 79.57 % to 126.25 %. The developed method was utilized for the analysis of 45 real cereal samples, only 5 samples were detected with SDHI fungicides. The contents of the fungicides detected in the real samples are far lower than the MRL. The results indicated that the proposed method is reliable for detecting SDHI fungicides in cereals.
Collapse
Affiliation(s)
- Haoran Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaowei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiajie Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College Life Science & Technology, Xinjiang University, 830046 Shengli Road, Urumqi, China
| | - Xueyao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
30
|
Improved enrichment and analysis of heterocyclic aromatic amines in thermally processed foods by magnetic solid phase extraction combined with HPLC-MS/MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Determination of Heterocyclic Aromatic Amines in Various Fried Food by HPLC–MS/MS Based on Magnetic Cation-Exchange Resins. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Wu Y, Liang M, Xian Y, Wang B, Chen R, Wang L, Hu J, Hou X, Dong H. Fragmentation pathway of hypophosphite (H 2PO 2-) in mass spectrometry and its determination in flour and flour products by LC-MS/MS. Food Chem 2022; 377:132060. [PMID: 35026474 DOI: 10.1016/j.foodchem.2022.132060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Abstract
The fragmentation pathway of H2PO2- in MS was obtained by Orbitrap HRMS and the reverse confirmation was carried out by the neutral loss detection experiment. The results showed that H2PO2- with even electron ion would produce the neutral loss of 2H and form a new even electron ion with a pair of lone-pair electrons. Based on this, a LC-MS/MS method was developed for the determination of H2PO2- in flour and flour products. The H2PO2- was separated on an Acclaim Trinity P1 composite ion exchange column, and then detected by MS/MS under MRM mode. Finally, the developed method was validated in terms of the linearity, selectivity, accuracy, precision and matrix effect. The method showed a good linearity (R2>0.999) in the concentration range of 50 ∼ 1500 μg/L. The LOD and LOQ for H2PO2- were 10.0 mg/kg and 30.0 mg/kg, respectively. The average recoveries and RSDs (n = 6) were 93.0%∼102.9% and 2.6 ∼ 5.6%, respectively.
Collapse
Affiliation(s)
- Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China.
| | - Bin Wang
- Guangzhou Hexin Instrument Co. Ltd, Guangzhou 510700, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
33
|
Ma Q, Li M, Gong H, Zhang Y, Cui Y. Enantioseparation of β-receptor blockers and the enantioselective degradation of carvedilol in soil. J Pharm Biomed Anal 2022; 217:114859. [DOI: 10.1016/j.jpba.2022.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
|
34
|
Domínguez-Hernández C, Ortega-Zamora C, González-Sálamo J, Hernández-Borges J. Determination of phthalic acid esters and di(2-ethylhexyl) adipate in coffee obtained from capsules. Food Chem 2022; 388:132997. [PMID: 35472627 DOI: 10.1016/j.foodchem.2022.132997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
In this work, the ammonium formate version of the QuEChERS method has been applied for the first time to the extraction of a group of nine phthalic acid esters and one adipate from three types of coffee (maximum intensity, intermediate intensity and decaffeinated) prepared from coffee capsules, using gas chromatography coupled to mass spectrometry for analytes separation and determination. Matrix-matched calibration showed good linearity with determination coefficients (R2) higher than 0.9983 for all analytes and matrices. In general, matrix effect assessment revealed a medium effect of signal suppression, while mean relative recovery values were in the range 70-120% with relative standard deviation values ≤19% for most analytes. Several samples of each type of coffee obtained from capsules made of different materials were also analysed, finding concentrations of DBP, DEHA and DEHP in the range 29.3-734 ng/capsule, below the tolerable daily intake established for some of them.
Collapse
Affiliation(s)
- Cristopher Domínguez-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| |
Collapse
|
35
|
Wang J, Cai Z, Zhang N, Hu Z, Zhang J, Ying Y, Zhao Y, Feng L, Zhang J, Wu P. A novel single step solid-phase extraction combined with bromine derivatization method for rapid determination of acrylamide in coffee and its products by stable isotope dilution ultra-performance liquid chromatography tandem triple quadrupole electrospray ionization mass spectrometry. Food Chem 2022; 388:132977. [PMID: 35453012 DOI: 10.1016/j.foodchem.2022.132977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
This work aimed to establish a novel determination method for acrylamide in coffee and its products by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Acrylamide in samples were prepared by a single-step solid-phase extraction clean-up using mixed mode sorbents. The bromine derivatization efficiency of acrylamide and its internal standard were improved at an acidic condition. After derivation, the retention capability of acrylamide and its resistance to interference were significantly improved. The limit of detection (LOD) and the limit of quantification (LOQ) were 1.2 and 4 μg/kg for roasted and instant coffees, while they were 0.24 and 0.8 μg/kg for ready-to-drink coffees. The average recoveries for acrylamide ranged from 99.3 to 102.2% in coffee and its products. All the results showed that the developed method was simple, quick, specific and suitable for screening and determination of acrylamide in batch samples of coffee and its products.
Collapse
Affiliation(s)
- Junlin Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zengxuan Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Nianhua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ying Ying
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yongxin Zhao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Liang Feng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jingshun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Pinggu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| |
Collapse
|
36
|
Desmarchelier A, Bebius A, Reding F, Griffin A, Ahijado Fernandez M, Beasley J, Clauzier E, Delatour T. Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:653-665. [PMID: 35113763 DOI: 10.1080/19440049.2021.2022773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acrylamide is prone to misquantification, and critical steps in the analytical procedures need to be identified and controlled to ensure a reliable determination. Four methods were considered to illustrate misquantification issues with acrylamide. For two methods varying by the extent of their sample preparations, cases of overestimation in cocoa samples reaching up to a 20-fold factor are shown. A second example, applied to a variety of food products, includes two other methods varying by their chromatographic conditions. As a follow up of a study conducted in 2020 about the identification of N-acetyl-ß-alanine as an interference of acrylamide in coffee, the extent of this interference was evaluated in a selection of coffee samples, cereal-based products and baby foods. The ultimate objective of this manuscript was to resolve such cases of misquantification and validate a wide scope and robust method allowing an interference free acrylamide analysis. To do so, an extraction procedure based on the EN 16618:2015 standard with water extraction and two consecutive solid phase extraction (SPE) steps was applied with modified liquid chromatographic conditions. The method was validated in coffee, cereals, baby foods, cocoa and pet foods with excellent performance in terms of recovery (97-108%) and precision (RSDr and RSDiR <12 %). The breath of scope was further proved through trueness determination in quality control materials and reference materials including French fries, potato crisps, vegetable crisps, instant coffee, infant food and biscuit (cookie), with trueness values found within a 94-107% range.
Collapse
Affiliation(s)
| | - Aude Bebius
- Société des Produits Nestlé SA, Nestlé Research and Development Orbe, Orbe, Switzerland
| | - Frédérique Reding
- Société des Produits Nestlé SA, Nestlé Research and Development Orbe, Orbe, Switzerland
| | - Ashley Griffin
- Center, Quality Management, Nestlé Quality Assurance Center, Dublin, Ohio, USA
| | | | - Jason Beasley
- Reading Scientific Services Ltd, Reading Science Centre, Reading, UK
| | - Emilie Clauzier
- Reading Scientific Services Ltd, Reading Science Centre, Reading, UK
| | - Thierry Delatour
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
37
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Study of the Contents of Analogues of Aristolochic Acid in Houttuynia cordata by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Foods 2022; 11:foods11030302. [PMID: 35159454 PMCID: PMC8834043 DOI: 10.3390/foods11030302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a new and simple method was established for the simultaneous determination of analogues of aristolochic acids (aristolochic acid I, aristolochic acid II, aristolactam I and aristolactam AII) in Houttuynia cordata by ultra-high performance liquid chromatography–quadrupole/time-of-flight mass spectrometry (UHPLC–Q/TOF-MS). The samples were ultrasonically extracted with methanol, purified with HC-C18, and then separated on a C18 column (75 × 2.1 mm, 2.0 μm) at 35 °C. Under the optimized conditions, aristolochic acid I (AA-I), aristolochic acid II (AA-II), aristolactam I (AL-I) and aristolactam AII (AL-AII) all showed good linear regression (not less than 0.9987). The average recoveries of the four analytes were within the range of 72.3–105.5%, with the relative standard deviations (RSDs) being ≤7.6%. The proposed method was then applied to the determination of Houttuynia cordata samples collected from different regions in China. The results showed that none of the three carcinogenic substances (aristolochic acid I, aristolochic acid II and aristolactam I) were detected in any of the 22 samples collected from 22 different regions of China, while aristolactam AII, which has not been reported to have genotoxicity, was detected in all samples. This study provides a valuable reference for the further safety assessment of Houttuynia cordata.
Collapse
|
39
|
Deng H, Su XG, Wang H, Liang M, Huang J. Biomass magnetic porous carbon prepared from mangosteen shell for the preconcentration of 3 bisphenols from beverages followed by liquid chromatographyquadrupoleorbitrap high-resolution mass spectrometry determination. J Sep Sci 2022; 45:1202-1209. [PMID: 35023282 DOI: 10.1002/jssc.202100816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/11/2022]
Abstract
Natural biomass magnetic porous carbon was successfully prepared via a cost-effective and green route using mangosteen shell as raw material. The prepared magnetic porous carbon was used as a magnetic solid phase extraction adsorbent for bisphenols enrichment from beverages followed by high-performance liquid chromatographyquadrupole Orbitrap high-resolution mass spectrometry. Parameters affecting extraction efficiency including sample solutionpH, adsorbent amount, extraction time, eluent type and volume were optimized. Results showed that biomass magnetic porous carbon had excellent adsorption properties for bisphenols due to its large specific surface area and abundant functional groups, which could form hydrogen bonding and π-π stacking with bisphenols. The enrichment factor of 3 bisphenolswere in the range of15∼19. Under optimum conditions, favorable linearity for all analytes was obtained with correlation coefficients higher than 0.998. Recoveries of spiked samples were in the range of 88.5%∼105.1% with relative standard deviation of 3.4%∼5.5%. These results demonstrated thatmagnetic porous carbon may be a promising adsorbent for enrichment of aromatic compounds. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongling Deng
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, China
| | - Xin-Guo Su
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, China
| | - Haibo Wang
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, China
| | - Minhua Liang
- Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, China
| | - Jianghua Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| |
Collapse
|
40
|
Liang M, Hou X, Xian Y, Wu Y, Hu J, Chen R, Wang L, Huang Y, Zhang X. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples. Food Chem 2021; 376:131948. [PMID: 34968906 DOI: 10.1016/j.foodchem.2021.131948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022]
Abstract
Functionalized magnetic nanoporous carbon derived from banana peel was synthesized through carbonization, porogenesis, carboxylation and magnetization using banana peel and was successfully used as a magnetic solid phase extraction (MSPE) material for the enrichment of six bisphenols (BPs) from beverage and water samples. After the optimization of MSPE process, the enrichment factors of six target analytes were in the range of 74-112 for water samples, and 15-22 for beverage samples. Then, high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (HPLC-Q Orbitrap-HRMS) was used for the separation and determination of the target analytes. Results showed that the extraction recoveries for 6 BPs were in the range of 71.9-108.4% with an RSD of 2.5-7.5% (n = 6). These results demonstrated that the as-prepared material could efficiently enrich some aromatic compounds and the proposed method is reliable and robust for the determination of BPs in water and beverage samples.
Collapse
Affiliation(s)
- Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China.
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yufeng Huang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China; Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou 511447, China; Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Xiaoli Zhang
- Guangzhou Customs Technology Center, Guangzhou 510000, China
| |
Collapse
|
41
|
Liu X, Bai W, Zhao W, Qian M, Dong H. Correlation analysis of microbial communities and precursor substances of ethyl carbamate (EC) during soy sauce fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Sun G, Wang P, Chen W, Hu X, Chen F, Zhu Y. Simultaneous quantitation of acrylamide, 5-hydroxymethylfurfural, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine using UPLC-MS/MS. Food Chem 2021; 375:131726. [PMID: 34954579 DOI: 10.1016/j.foodchem.2021.131726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/04/2022]
Abstract
A robust and sensitive isotope dilution UPLC-MS/MS method was established for the simultaneous analysis of acrylamide (AA), 5-hydroxymethylfurfural (HMF), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP). A fairly good separation of three analytes was achieved within 4.5 min. High correlation coefficients (R2 > 0.9998) of the three compounds were obtained in their respective linear ranges. This method demonstrated low limits of detection (1.57 μg/L for AA, 0.61 μg/L for HMF, and 0.02 μg/L for PhIP) and limits of quantification (5.22 μg/L for AA, 2.03 μg/L for HMF, and 0.05 μg/L for PhIP). This method also demonstrated excellent quantification accuracy (99.02%-101.12%), precision (RSD < 6%), and recovery (82.83-119.92%) in the Maillard model systems and deep-fried meatballs. This work develops a fundamental method for the rapid simultaneous determination of AA, HMF, and PhIP in thermally processed foods that are both carbohydrates-rich and protein-rich, meanwhile providing technical support for the generation mechanism of various hazards.
Collapse
Affiliation(s)
- Guoyu Sun
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Pengpu Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Weina Chen
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
43
|
Advances in Analysis of Contaminants in Foodstuffs on the Basis of Orbitrap Mass Spectrometry: a Review. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Nadeem HR, Akhtar S, Ismail T, Sestili P, Lorenzo JM, Ranjha MMAN, Jooste L, Hano C, Aadil RM. Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts. Foods 2021; 10:foods10071466. [PMID: 34202792 PMCID: PMC8307633 DOI: 10.3390/foods10071466] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic compounds induced by the Maillard reaction in well-done cooked meats. Free amino acids, protein, creatinine, reducing sugars and nucleosides are major precursors involved in the production of polar and non-polar HAAs. The variety and yield of HAAs are linked with various factors such as meat type, heating time and temperature, cooking method and equipment, fresh meat storage time, raw material and additives, precursor’s presence, water activity, and pH level. For the isolation and identification of HAAs, advanced chromatography and spectroscopy techniques have been employed. These potent mutagens are the etiology of several types of human cancers at the ng/g level and are 100- to 2000-fold stronger than that of aflatoxins and benzopyrene, respectively. This review summarizes previous studies on the formation and types of potent mutagenic and/or carcinogenic HAAs in cooked meats. Furthermore, occurrence, risk assessment, and factors affecting HAA formation are discussed in detail. Additionally, sample extraction procedure and quantification techniques to determine these compounds are analyzed and described. Finally, an overview is presented on the promising strategy to mitigate the risk of HAAs by natural compounds and the effect of plant extracts containing antioxidants to reduce or inhibit the formation of these carcinogenic substances in cooked meats.
Collapse
Affiliation(s)
- Hafiz Rehan Nadeem
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Muhammad Modassar Ali Nawaz Ranjha
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Leonie Jooste
- Environmental Health Sciences, Faculty of Communication, Arts and Sciences, Canadian University Dubai, Dubai 117781, United Arab Emirates;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, CEDEX 2, 45067 Orléans, France;
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| |
Collapse
|
45
|
Xu Y, Li H, Liang J, Ma J, Yang J, Zhao X, Zhao W, Bai W, Zeng X, Dong H. High-throughput quantification of eighteen heterocyclic aromatic amines in roasted and pan-fried meat on the basis of high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry. Food Chem 2021; 361:130147. [PMID: 34051597 DOI: 10.1016/j.foodchem.2021.130147] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022]
Abstract
Triple quadrupole mass spectrometry has been the main technique for HAAs analysis in recent decade, while it requires extensive optimization of compound-dependent parameters. A novel method based on HPLC-Q-Orbitrap-HRMS was developed firstly for simultaneous determination of eighteen HAAs. Extraction and purification conditions were optimized and the developed method was validated in terms of linearity, accuracy and precision. Results indicated eighteen HAAs and two internal standards could be separated in 12 min using a gradient elution program. The full MS/dd-MS2 scan was adopted for analysis, which indicated favorable recoveries (71.3-114.8%) along with LODs and LOQs in the ranges of 0.02-0.6 and 0.05-2.0 μg/kg, respectively. Internal standards used for calibration could effectively reduce quantification errors produced by matrix effects. The validated method was successfully applied for HAAs analysis in roasted and pan-fried meat and was confirmed to be an alternative method when triple quadrupole mass spectrometry is absent in lab.
Collapse
Affiliation(s)
- Yan Xu
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haixia Li
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian Liang
- Guangzhou Highgoal Biotech Company Limited, Guangzhou 510110, China
| | - Jina Ma
- Guangzhou Highgoal Biotech Company Limited, Guangzhou 510110, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojuan Zhao
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hao Dong
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
46
|
Peng J, Gan J, Ju X, Liu T, Chen J, He L. Analysis of triazine herbicides in fish and seafood using a modified QuEChERS method followed by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122622. [DOI: 10.1016/j.jchromb.2021.122622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022]
|
47
|
Zhu B, Xu X, Ye X, Zhou F, Qian C, Chen J, Zhang T, Ding Z. Determination and risk assessment of acrylamide in thermally processed Atractylodis Macrocephalae Rhizoma. Food Chem 2021; 352:129438. [PMID: 33690072 DOI: 10.1016/j.foodchem.2021.129438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023]
Abstract
As one of the medicine homologous foods in China, Atractylodis Macrocephalae Rhizoma (AMR) is usually distributed after thermal processing, which raised the possibility of acrylamide pollution and a potential carcinogenic risk. In this study, a method was developed for the determination of the acrylamide in AMR using graphited multiwalled carbon nanotubes as the dispersive solid phase extraction sorbent and liquid chromatography tandem mass spectrometry. The concentration of acrylamide was investigated at processing conditions of 80℃-210℃ and 5 min-100 min. Method validation results demonstrated the reliability of the method with good linearity, accuracy and precision. Significant increment of acrylamide was found in AMR after thermal processing with the highest concentration at 9826 μg/kg, which led to a margin of exposure at 90.83-181.7 according to the BMDL10 of carcinogenicity at 0.17 mg/kg, indicating a high health risk of taking thermally processed AMR, and monitoring and controlling should be considered.
Collapse
Affiliation(s)
- Bingqi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Xiaoying Xu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, China
| | - Xiaoqing Ye
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China.
| | - Fangmei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Chaodong Qian
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Jin Chen
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Ting Zhang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Zhishan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
48
|
Robust Detection of Advanced Glycation Endproducts in Milk Powder Using Ultrahigh Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS). FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01986-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Sheng W, Zhang B, Zhao Q, Wang S, Zhang Y. Preparation of a Broad-Spectrum Heterocyclic Aromatic Amines (HAAs) Antibody and Its Application in Detection of Eight HAAs in Heat Processed Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15501-15508. [PMID: 33326242 DOI: 10.1021/acs.jafc.0c05480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potential human mutagens and carcinogens mainly generated in heat-treated meat. In this work, a broad-spectrum HAAs antibody was prepared and used to develop an indirect competitive ELISA (ic-ELISA) for simultaneous determination of eight HAAs, including 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f] quinoline (MeIQ), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx), 2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline (4,7,8-TriMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in grilled and fried meat samples. The limit of detection (LOD, calculated as IC10) and 50% inhibition concentration (IC50) of ic-ELISA were 5.29 μg/L and 99.08 μg/L, respectively. The detection results of this ic-ELISA were in good agreement with the detection results of UPLC-MS/MS in real samples, which indicated that this ic-ELISA can be applied to detect the total content of eight HAAs in heat processed meat. Use of a broad-spectrum antibody is an efficient strategy in developing immunoassay for simultaneous measuring food risk factors with similar structure.
Collapse
Affiliation(s)
- Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Biao Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiuxia Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Determination of bongkrekic acid and isobongkrekic acid in rice noodles by HPLC-Orbitrap HRMS technology using magnetic halloysite nanotubes. Food Chem 2020; 344:128682. [PMID: 33246684 DOI: 10.1016/j.foodchem.2020.128682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023]
Abstract
The existing extraction and detection methods of bongkrekic acid (BKA) and isobongkrekic acid (IBKA) are complex, time-consuming and solvent-consuming. In this work, a simple and fast pre-concentration procedure based on Fe3O4/HNTs was developed for the determination of BKA and IBKA in rice noodles using HPLC-Orbitrap HRMS. The structure and morphology of Fe3O4/HNTs was characterized by means of XRD, SEM, FT-IR and VSM. Parameters affecting the extraction efficiency including adsorbent amount, pH, extraction time, type and volume of eluent were investigated by employing the response surface method. Results indicated that the proposed method had favorable linearity in the concentration range of 2-200 μg/L with a correlation coefficient >0.998. Method LOD and LOQ were 0.3 μg/kg and 1.0 μg/kg, respectively. Finally, the method was successfully applied to determine BKA and IBKA in rice noodle samples from southern China with recoveries ranging from 79.8% to 102.6% and relative standard deviation (RSD) of 4.2%-7.1%.
Collapse
|