1
|
Zhang S, Zhou W, Lv X, Li B, Wang X. Fabrication and application of gold nanoparticles functionalized polymer monolith in spin column for the determination of S-nitrosoglutathione in meat. Food Chem 2025; 463:141210. [PMID: 39270492 DOI: 10.1016/j.foodchem.2024.141210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
S-nitrosoglutathione (GSNO) is the most important S-nitrosothiol in vivo, which could affect the quality of meat by participating in calcium release, glucose metabolism, proteolysis and apoptosis, therefore may potentially serve as a marker for meat freshness. In this work, a solid-phase extraction (SPE) monolithic spin column modified with gold nanoparticles was prepared for GSNO extraction. The optimized SPE-LC-MS/MS method for GSNO quantification displays low limit of detection (0.01 nM), good precision (RSD < 15 %) and acceptable recovery (> 77.7 %). Furthermore, this approach has been applied to monitor GSNO levels in beef and pork stored at -20 °C for different days, showing that endogenous GSNO level increases during prolonged storage and could be employed as a marker to evaluate the freshness of ice stored meat. Additionally, the monolithic spin column remains in good quality after a half-year storage, which is promising to develop into commercial enrichment kit for endogenous GSNO analysis.
Collapse
Affiliation(s)
- Shengman Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Zhou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyuan Lv
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingjie Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Vafaei E, Hasani M, Salehi N, Sabbagh F, Hasani S. Enhancement of Biopolymer Film Properties Using Spermidine, Zinc Oxide, and Graphene Oxide Nanoparticles: A Study of Physical, Thermal, and Mechanical Characteristics. MATERIALS (BASEL, SWITZERLAND) 2025; 18:225. [PMID: 39859696 PMCID: PMC11767190 DOI: 10.3390/ma18020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties. The results show that adding ZnO and GO nanoparticles increased the tensile strength of the layers from 9.203 MPa to 17.787 MPa in films containing graphene oxide and zinc oxide, although the elongation at break decreased. The incorporation of nanoparticles reduced the water vapor permeability from 0.164 to 0.149 (g.m-2.24 h-1). Moreover, the transparency of the layers ranged from 72.67% to 86.17%, decreasing with higher nanoparticle concentrations. The use of nanoparticles enhanced the light-blocking characteristics of the films, making them appropriate for the preservation of light-sensitive food items. The thermal properties improved with an increase in the melting temperature (Tm) up to 115.5 °C and enhanced the thermal stability in the nanoparticle-containing samples. FTIR analysis confirmed the successful integration of all components within the films. In general, the combination of gelatin and chitosan, along with ZnO, GO, and spermidine, significantly enhanced the properties of the layers, making them stronger and more suitable for biodegradable packaging applications.
Collapse
Affiliation(s)
- Esmaeil Vafaei
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Maryam Hasani
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Nasrin Salehi
- Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Farzaneh Sabbagh
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Shirin Hasani
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran;
| |
Collapse
|
3
|
Kandhol N, Singh VP, Pandey S, Sharma S, Zhao L, Corpas FJ, Chen ZH, White JC, Tripathi DK. Nanoscale materials and NO-ROS homeostasis in plants: trilateral dynamics. TRENDS IN PLANT SCIENCE 2024; 29:1310-1318. [PMID: 39379242 DOI: 10.1016/j.tplants.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 10/10/2024]
Abstract
Nanoparticles (NPs) have garnered increasing attention for their applications in agriculture and plant science, particularly for their interactions with reactive oxygen species (ROS) and nitric oxide (•NO). NPs, owing to their novel physicochemical properties, can be used to uniquely modulate ROS levels, enabling great control over redox homeostasis and signaling cascades. In addition, NPs may act as carriers for •NO donors, thus facilitating controlled and synchronized release and targeted delivery of •NO within plant systems. This opinion article provides insights into the current state of knowledge regarding NP interactions with ROS and •NO homeostasis in plants, highlighting key findings and knowledge gaps, as well as outlining future research directions in this rapidly expanding and potentially transformative field of research.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, Chaudhary Mahadeo Prasad (CMP) Degree College, A Constituent Post-Graduate College of the University of Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food, and Agriculture, Department of Stress, Development, and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India.
| |
Collapse
|
4
|
Liu Y, Zhang L, Hu T, Liu Q, Zhou S, Zhao Y, Jatt AN, Zhang C, Gong H. A New Strategy for Enhancing Postharvest Quality of Sweet Cherry: High-Voltage Electrostatic Field Improves the Physicochemical Properties and Fungal Community. Foods 2024; 13:3670. [PMID: 39594088 PMCID: PMC11593928 DOI: 10.3390/foods13223670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Sweet cherry has a short shelf life due to the occurrence of senescence and fungal infection after harvest. This study aimed to study the effects of high-voltage electrostatic field (HVEF) on the physicochemical properties and fungal composition of sweet cherry during cold storage. The experiments were conducted at 4 °C for 28 days and the quality indicators were determined every 7 days during the period of storage. The fungal composition on sweet cherry was determined using high-throughput sequencing. The results showed that HVEF could better maintain the total soluble solids and inhibit the respiration of cherries. The decay incidence in sweet cherries was decreased by HVEF during cold storage. High-throughput sequencing revealed that HVEF could alter the fungal community and increase the fungal diversity on sweet cherries. Compared with the control group, HVEF decreased the abundance of Alternaria and Cladosporium on sweet cherries, while Aureobasidium, as a nonpathogenic fungus, increased and became the dominant strain at the end of the storage period. In summary, HVEF can improve the physicochemical properties of sweet cherry by inhibiting respiration and can reduce decay incidence by inhibiting specific pathogenic fungi. HVEF is expected to become an efficient and promising technology for the preservation of fruit.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China
| | - Lulu Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Tan Hu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qiongyin Liu
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Shuya Zhou
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Yi Zhao
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Abdul-Nabi Jatt
- Institute of Microbiology, University of Sindh, Jamshoro 76080, Pakistan;
| | - Caili Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China
| |
Collapse
|
5
|
Zhang X, Sun H, Song S, Li Y, Zhang X, Zhang W. Preparation and characterization of polyvinyl alcohol/pullulan/ZnO-Nps composite film and its effect on the postharvest quality of Allium mongolicum Regel. Int J Biol Macromol 2024; 279:135380. [PMID: 39245089 DOI: 10.1016/j.ijbiomac.2024.135380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Allium mongolicum Regel is prone to rapid senescence and quality deterioration during postharvest storage. Herein, polyvinyl alcohol/pullulan/ZnO nanoparticles (PVA/PUL/ZnO-Nps) composite films were prepared via solution casting and studied to analyze the effects of ZnO-Nps on the PVA/PUL film matrix. Results revealed that the incorporation of suitable ZnO-Nps effectively reduced the light transmittance, improved water contact angle, water vapor permeability, and mechanical properties of the composite films, as well as enhanced their antimicrobial activity. The composite films were used for the postharvest preservation of A. mongolicum Regel. Results revealed that the PVA/PUL/ZnO-Nps film effectively reduced malondialdehyde accumulation content, superoxide radical generation rate, hydrogen peroxide content, improve the activity of related enzymes, and extend the storage time compared with that of polyethylene films. Therefore, the PVA/PUL/ZnO-Nps film can be used as a novel packaging material for the postharvest preservation of A. mongolicum Regel.
Collapse
Affiliation(s)
- Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Haowen Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shengzhao Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
6
|
Zhong Y, Wu X, Zhang L, Zhang Y, Wei L, Liu Y. The roles of nitric oxide in improving postharvest fruits quality: Crosstalk with phytohormones. Food Chem 2024; 455:139977. [PMID: 38850982 DOI: 10.1016/j.foodchem.2024.139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Nowadays, improving the quality of postharvest fruits has become a hot research topic. Nitric oxide (NO) is often regarded as a signaling molecule that delays the postharvest senescence of fruits. Moreover, phytohormones affect the postharvest senescence of fruits. This review mainly describes how NO improves the postharvest quality of fruits by delaying postharvest fruit senescence, mitigating fruit cold damage and controlling postharvest diseases. Furthermore, the crosstalk of NO and multiple plant hormones effectively delays the postharvest senescence of fruits, and the major crosstalk mechanisms include (1) mediating phytohormone signaling. (2) inhibiting ETH production. (3) stimulating antioxidant enzyme activity. (4) decreasing membrane lipid peroxidation. (5) maintaining membrane integrity. (6) inhibiting respiration rate. (7) regulating gene expression related to fruit senescence. This review concluded the roles and mechanisms of NO in delaying postharvest fruit senescence. In addition, the crosstalk mechanisms between NO and various phytohormones on the regulation of postharvest fruit quality are also highlighted, which provides new ideas for the subsequent research.
Collapse
Affiliation(s)
- Yue Zhong
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lingling Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiming Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
7
|
da Veiga JC, Silveira NM, Seabra AB, Pieretti JC, Boza Y, Jacomino AP, Filho JCZ, Campagnoli VP, Cia P, Bron IU. Spraying with encapsulated nitric oxide donor reduces weight loss and oxidative damage in papaya fruit. Nitric Oxide 2024; 150:37-46. [PMID: 39038732 DOI: 10.1016/j.niox.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/24/2024]
Abstract
The combination of nitric oxide (NO) donors with nanomaterials has emerged as a promising approach to reduce postharvest losses. The encapsulation of NO donors provides protection from rapid degradation and controlled release, enhancing the NO effectiveness in postharvest treatments. Moreover, the application method can also influence postharvest responses. In this study, two application methods were evaluated, spraying and immersion, using S-nitrosoglutathione (GSNO, a NO donor) in free and encapsulated forms on papaya fruit. Our hypothesis was that GSNO encapsulated in chitosan nanoparticles would outperform the free form in delaying fruit senescence. In addition, this study marks the pioneering characterization of chitosan nanoparticles containing GSNO within the framework of a postharvest investigation. Overall, our findings indicate that applying encapsulated GSNO (GSNO-NP-S) through spraying preserves the quality of papaya fruit during storage. This method not only minimizes weight loss, ethylene production, and softening, but also stimulates antioxidant responses, thereby mitigating oxidative damage. Consequently, it stands out as the promising technique for delaying papaya fruit senescence. This innovative approach holds the potential to enhance postharvest practices and advance sustainable agriculture.
Collapse
Affiliation(s)
- Julia C da Veiga
- Center R&D of Agricultural Biosystems and Post-Harvest, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Neidiquele M Silveira
- Department of Biodiversity, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Yolanda Boza
- Center R&D of Agricultural Biosystems and Post-Harvest, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Angelo P Jacomino
- Crop Science Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Júlio César Z Filho
- Crop Science Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Vinícius P Campagnoli
- Center R&D of Agricultural Biosystems and Post-Harvest, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Patrícia Cia
- Center R&D of Agricultural Biosystems and Post-Harvest, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Ilana U Bron
- Center R&D of Agricultural Biosystems and Post-Harvest, Agronomic Institute (IAC), Campinas, SP, Brazil.
| |
Collapse
|
8
|
Taher MA, Dawood DH, Selim MAE, Amin BH, Elsherbiny EA. Effect of Chitosan/Gum Arabic Blends Enriched by Sodium Nitroprusside or Methyl Salicylate on the Storability and Antioxidant Activity of Tomato Fruit. Polymers (Basel) 2024; 16:1518. [PMID: 38891464 PMCID: PMC11174673 DOI: 10.3390/polym16111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The impact of methyl salicylate (MeSA) or sodium nitroprusside (SNP) in chitosan (CS)/Gum Arabic (GA) mixture on physio-chemical characteristics and antioxidant status during the postharvest ripening of green tomato fruits was studied. CS/GA-MeSA at a 1 mM formulation was the best treatment to retard firmness and titratable acidity (TA) losses. Moreover, this formulation retarded pigmentation progress where it had the lowest significant values of total carotenes (TCs) and lycopene (LYP) contents until the 15th day of the storage period, as well as efficiently faced the rise in malondialdehyde (MDA) levels. Moreover, peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT), and phenylalanine ammonia-lyase (PAL) activities of tomatoes treated with CS/GA-SNP at 2 mM were significantly better than that of control in the primary stages of storage. CS/GA-SNP at a 2 mM formulation showed an extremely high significant content of total polyphenol (TP) in the early stage of storage, while CS/GA and CS/GA-MeSA at 1 and 2 mM accumulated higher significant TP contents than uncoated fruits at the late stage of storage. All formulations were characterized by FTIR spectroscopy. Furthermore, the polymer formulations exhibited strong antifungal activity against Alternaria alternata and Botrytis cinerea as major pathogens of postharvest tomatoes. Transmission electron microscope (TEM) observations for the mycelia of both fungi treated by CS/GA-MeSA at 2 mM revealed serious ultrastructural damage, including distortion of the cell wall and cell membrane and degradation of cytoplasmic organelles.
Collapse
Affiliation(s)
- Mohamed A. Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Dawood H. Dawood
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed A. E. Selim
- Agricultural Microbiology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Basma H. Amin
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt;
| | | |
Collapse
|
9
|
Rubilar-Hernández C, Álvarez-Maldini C, Pizarro L, Figueroa F, Villalobos-González L, Pimentel P, Fiore N, Pinto M. Nitric Oxide Mitigates the Deleterious Effects Caused by Infection of Pseudomonas syringae pv. syringae and Modulates the Carbon Assimilation Process in Sweet Cherry under Water Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1361. [PMID: 38794433 PMCID: PMC11125257 DOI: 10.3390/plants13101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Bacterial canker is an important disease of sweet cherry plants mainly caused by Pseudomonas syringae pv. syringae (Pss). Water deficit profoundly impairs the yield of this crop. Nitric oxide (NO) is a molecule that plays an important role in the plant defense mechanisms. To evaluate the protection exerted by NO against Pss infection under normal or water-restricted conditions, sodium nitroprusside (SNP), a NO donor, was applied to sweet cherry plants cv. Lapins, before they were exposed to Pss infection under normal or water-restricted conditions throughout two seasons. Well-watered plants treated with exogenous NO presented a lower susceptibility to Pss. A lower susceptibility to Pss was also induced in plants by water stress and this effect was increased when water stress was accompanied by exogenous NO. The lower susceptibility to Pss induced either by exogenous NO or water stress was accompanied by a decrease in the internal bacterial population. In well-watered plants, exogenous NO increased the stomatal conductance and the net CO2 assimilation. In water-stressed plants, NO induced an increase in the leaf membranes stability and proline content, but not an increase in the CO2 assimilation or the stomatal conductance.
Collapse
Affiliation(s)
- Carlos Rubilar-Hernández
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile; (C.R.-H.); (L.P.); (F.F.)
| | - Carolina Álvarez-Maldini
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile;
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile
| | - Lorena Pizarro
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile; (C.R.-H.); (L.P.); (F.F.)
- Centro UOH de Biología de Sistemas Para la Sanidad Vegetal, Universidad de O’Higgins, San Fernando 3070000, Chile
| | - Franco Figueroa
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile; (C.R.-H.); (L.P.); (F.F.)
| | | | - Paula Pimentel
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile; (L.V.-G.); (P.P.)
| | - Nicola Fiore
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile;
| | - Manuel Pinto
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile;
| |
Collapse
|
10
|
Liu Z, Huang D, Yao Y, Pan X, Zhang Y, Huang Y, Ding Z, Wang C, Liao W. The Crucial Role of SlGSNOR in Regulating Postharvest Tomato Fruit Ripening. Int J Mol Sci 2024; 25:2729. [PMID: 38473974 DOI: 10.3390/ijms25052729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) is a well-known regulator in controlling protein S-nitrosylation modification and nitric oxide (NO) homeostasis. Here, a GSNOR inhibitor N6022 and SlGSNOR silencing were applied to investigate the roles of SlGSNOR in tomato fruit postharvest ripening. We found that the application of N6022 and S-nitrosoglutathione (GSNO, a NO donor), and SlGSNOR silencing delayed the transition of fruit skin color by improving total chlorophyll level by 88.57%, 44.78%, and 91.03%, respectively. Meanwhile, total carotenoid and lycopene contents were reduced by these treatments. Concurrently, the activity of chlorophyll biosynthesis enzymes and the expression of related genes were upregulated, and the transcript abundances of total carotenoid bioproduction genes were downregulated, by N6022 and GSNO treatments and SlGSNOR silencing. In addition, fruit softening was postponed by N6022, GSNO, and SlGSNOR silencing, through delaying the decrease of firmness and declining cell wall composition; structure-related enzyme activity; and gene expression levels. Furthermore, N6022, GSNO, and SlGSNOR silencing enhanced the accumulation of titratable acid; ascorbic acid; total phenol; and total flavonoid, but repressed the content of soluble sugar and soluble protein accompanied with the expression pattern changes of nutrition-related genes. In addition, the endogenous NO contents were elevated by 197.55%; 404.59%; and 713.46%, and the endogenous SNOs contents were enhanced by 74.65%; 93.49%; and 94.85%; by N6022 and GSNO treatments and SlGSNOR silencing, respectively. Altogether, these results indicate that SlGSNOR positively promotes tomato postharvest fruit ripening, which may be largely on account of its negative roles in the endogenous NO level.
Collapse
Affiliation(s)
- Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yanqin Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yi Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zhiqi Ding
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
11
|
Claudiane da Veiga J, Silveira NM, Seabra AB, Bron IU. Exploring the power of nitric oxide and nanotechnology for prolonging postharvest shelf-life and enhancing fruit quality. Nitric Oxide 2024; 142:26-37. [PMID: 37989410 DOI: 10.1016/j.niox.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Nitric oxide (NO) is a versatile signaling molecule that plays a crucial role in regulating postharvest fruit quality. The utilization of NO donors to elevate endogenous NO levels and induce NO-mediated responses represents a promising strategy for extending fruit shelf-life after harvest. However, the effectiveness of NO treatment is influenced by various factors, including formulation and application methods. In this review, we investigate the impact of NO supply on different fruits, aiming to prolong postharvest shelf-life and enhance fruit quality. Furthermore, we delve into the underlying mechanisms of NO action, particularly its interactions with ethylene and reactive oxygen species (ROS). Excitingly, we also highlight the emerging field of nanotechnology in postharvest applications, discussing the use of nanoparticles as a novel approach for achieving sustained release of NO and enhancing its effects. By harnessing the potential of nanotechnology, our review is a starting point to help identify gaps and future directions in this important, emerging field.
Collapse
Affiliation(s)
- Julia Claudiane da Veiga
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D of Agricultural Biosystems and Postharvest, Agronomic Institute (IAC), Campinas SP, Brazil
| | - Neidiquele Maria Silveira
- Department of Biodiversity, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Amedea Barozzi Seabra
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Ilana Urbano Bron
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D of Agricultural Biosystems and Postharvest, Agronomic Institute (IAC), Campinas SP, Brazil
| |
Collapse
|
12
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
13
|
Wang Y, Zhang J, Wang D, Wang X, Zhang F, Chang D, You C, Zhang S, Wang X. Effects of cellulose nanofibrils treatment on antioxidant properties and aroma of fresh-cut apples. Food Chem 2023; 415:135797. [PMID: 36868069 DOI: 10.1016/j.foodchem.2023.135797] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Horticultural products tend to deteriorate during postharvest storage and processing. In this study, cellulose nanofibers (CNFs) were prepared from wood to investigate the effects of CNF treatment on the storage quality, aroma composition, and antioxidant system of fresh-cut apple (Malus domestica) wedges. Compared with control treatment, CNF coating treatment significantly improved the appearance of apple wedges; reduced the decay rate of apple wedges; and delayed the decline in weight loss, firmness, and titratable acid during storage. Gas chromatography-mass spectrometry showed that CNF treatment could maintain the aroma components of apple wedges (stored for 4 days). Further investigations showed that CNF treatment increased the antioxidant system level and decreased reactive oxygen species content and membrane lipid peroxidation level of apple wedges. Overall, this study showed that CNF coating could effectively maintain the quality of fresh-cut apples during cold storage.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Daru Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Dayong Chang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China; Yantai Goodly Biological Technology Co., Ltd., Yan'Tai 241003, Shandong, PR China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| |
Collapse
|
14
|
Huang Z, Hu B, Xiang B, Fang H, Zhang B, Wang Y, Zhuo Y, Deng D, Wang X. Biomimetic Biomembrane Encapsulation and Targeted Delivery of a Nitric Oxide Release Platform for Therapy of Parkinson's Disease. ACS Biomater Sci Eng 2023; 9:2545-2557. [PMID: 37040524 DOI: 10.1021/acsbiomaterials.3c00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The existence of the blood-brain barrier (BBB) and the complex inflammatory environment in the brain are two major obstacles in the treatment of Parkinson's disease (PD). As a target group, we modified the red blood cell membrane (RBCM) on the surface of upconversion nanoparticles (UCNPs) in this study to effectively target the brain. Mesoporous silicon, coated with UCNPs (UCM), was loaded with S-nitrosoglutathione (GSNO) as the nitric oxide (NO) donor. Then, UCNPs were excited to emit green light (540 nm) by 980 nm near-infrared (NIR). In addition, it produced a light-responsive anti-inflammatory effect by promoting the release of NO from GSNO and lowering the brain's level of proinflammatory factors. A series of experiments demonstrated that this strategy could effectively mitigate the inflammatory response damage of neurons in the brain.
Collapse
Affiliation(s)
- Zhixin Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Binbin Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The Department of Internal Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Bohan Xiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Huaqiang Fang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Bingzhen Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Ying Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Yi Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Dan Deng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| |
Collapse
|
15
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Wang SY, Herrera-Balandrano DD, Jiang YH, Shi XC, Chen X, Liu FQ, Laborda P. Application of chitosan nanoparticles in quality and preservation of postharvest fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:1722-1762. [PMID: 36856034 DOI: 10.1111/1541-4337.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Chitosan is an interesting alternative material for packaging development due to its biodegradability. However, its poor mechanical properties and low permeability limit its actual applications. Chitosan nanoparticles (CHNPs) have emerged as a suitable solution to overcome these intrinsic limitations. In this review, all studies regarding the use of CHNPs to extend the shelf life and improve the quality of postharvest products are covered. The characteristics of CHNPs and their combinations with essential oils and metals, along with their effects on postharvest products, are compared and discussed throughout the manuscript. CHNPs enhanced postharvest antioxidant capacity, extended shelf life, increased nutritional quality, and promoted tolerance to chilling stress. Additionally, the CHNPs reduced the incidence of postharvest phytopathogens. In most instances, smaller CHNPs (<150 nm) conferred higher benefits than larger ones (>150 nm). This was likely a result of the greater plant tissue penetrability and surface area of the smaller CHNPs. The CHNPs were either applied after preparing an emulsion or incorporated into a film, with the latter often exhibiting greater antioxidant and antimicrobial activities. CHNPs were used to encapsulate essential oils, which could be released over time and may enhance the antioxidant and antimicrobial properties of the CHNPs. Even though most applications were performed after harvest, preharvest application had longer lasting effects.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
17
|
Shan Y, Li T, Qu H, Duan X, Farag MA, Xiao J, Gao H, Jiang Y. Nano‐preservation: An emerging postharvest technology for quality maintenance and shelf life extension of fresh fruit and vegetable. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Giza Egypt
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Vigo Spain
| | - Haiyan Gao
- Key Laboratory of Postharvest Handing of Fruits of Ministry of Agriculture and Rural Affairs, Food Science Institute Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- College of Advanced Agricultural Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
18
|
Jia L, Li Y, Liu G, He J. UV-C delays senescence in 'Lingwu long' jujube fruit by regulating ROS and phenylpropanoid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:383-393. [PMID: 36473328 DOI: 10.1016/j.plaphy.2022.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Ultraviolet (UV-C), a no residual environmentally friendly physical treatment, plays an important role in delaying the senescence in fruit. In this study, 'Lingwu long' jujubes were treated with UV-C (5 kJ m-2) to investigate the impacts of cell wall degrading enzymes (CWDEs) activities, reactive oxygen species (ROS) metabolism, and phenylpropanoid metabolism under storage at 4 ± 1 °C for 30 d. UV-C treatment reduced respiration rate and decay index. Treated fruit exhibited lower polygalacturonase (PG), pectinate lyases (PL), cellulase (Cel), and β-galactosidase (β-gal) activities which ultimately delayed the reduction of firmness. UV-C treatment increased hydrogen peroxide (H2O2), free radical scavenging ability, and superoxide dismutase (SOD) and catalase (CAT) activities, reduced superoxide anion (O2-) and malondialdehyde (MDA) content. In addition, ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activities were activated by UV-C treatment, leading to glutathione (GSH) and ascorbic acid (AsA) increased. Besides, phenolic compounds of jujube fruit treated with UV-C were also increased, which might be due to the enhanced phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) activities. In conclusion, UV-C was recommended for improving overall quality and alleviating senescence in jujube fruit.
Collapse
Affiliation(s)
- Lili Jia
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China
| | - Yan Li
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China.
| | - Jianguo He
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
19
|
Luan F, Xu Z, Wang K, Qi X, Guo Z. Synthesis of Water-Soluble Sulfonated Chitin Derivatives for Potential Antioxidant and Antifungal Activity. Mar Drugs 2022; 20:md20110668. [PMID: 36354991 PMCID: PMC9697452 DOI: 10.3390/md20110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal agents. The target derivatives were characterized by means of elemental analysis, FTIR, 13C NMR, TGA and XRD. Furthermore, the antioxidant activity of the chitin derivatives was estimated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical and superoxide-radical) and ferric reducing power. In addition, inhibitory effects against four fungi were also tested. The findings show that antioxidant abilities and antifungal properties were in order of SPCT > SCT > CT. On the basis of the results obtained, we confirmed that the introduction of sulfonated groups on the CT backbone would help improve the antioxidant and antifungal activity of CT. Moreover, its efficacy as an antioxidant and antifungal agent increased as the chain length of the substituents increased. This derivatization strategy might provide a feasible way to broaden the utilization of chitin. It is of great significance to minimize waste and realize the high-value utilization of aquatic product wastes.
Collapse
Affiliation(s)
- Fang Luan
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| | - Zhenhua Xu
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Kai Wang
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Xin Qi
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| |
Collapse
|
20
|
Pande A, Mun BG, Methela NJ, Rahim W, Lee DS, Lee GM, Hong JK, Hussain A, Loake G, Yun BW. Heavy metal toxicity in plants and the potential NO-releasing novel techniques as the impending mitigation alternatives. FRONTIERS IN PLANT SCIENCE 2022; 13:1019647. [PMID: 36267943 PMCID: PMC9578046 DOI: 10.3389/fpls.2022.1019647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 05/23/2023]
Abstract
Environmental pollutants like heavy metals are toxic, persistent, and bioaccumulative in nature. Contamination of agricultural fields with heavy metals not only hampers the quality and yield of crops but also poses a serious threat to human health by entering the food chain. Plants generally cope with heavy metal stress by regulating their redox machinery. In this context, nitric oxide (NO) plays a potent role in combating heavy metal toxicity in plants. Studies have shown that the exogenous application of NO donors protects plants against the deleterious effects of heavy metals by enhancing their antioxidative defense system. Most of the studies have used sodium nitroprusside (SNP) as a NO donor for combating heavy metal stress despite the associated concerns related to cyanide release. Recently, NO-releasing nanoparticles have been tested for their efficacy in a few plants and other biomedical research applications suggesting their use as an alternative to chemical NO donors with the advantage of safe, slow and prolonged release of NO. This suggests that they may also serve as potential candidates in mitigating heavy metal stress in plants. Therefore, this review presents the role of NO, the application of chemical NO donors, potential advantages of NO-releasing nanoparticles, and other NO-release strategies in biomedical research that may be useful in mitigating heavy metal stress in plants.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu, South Korea
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu, South Korea
| | - Nusrat Jahan Methela
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu, South Korea
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu, South Korea
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu, South Korea
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu, South Korea
| | - Jeum Kyu Hong
- Laboratory of Horticultural Crop Protection, Department of Horticultural Science, Gyeongsang National University, Jinju, South Korea
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Gary Loake
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
21
|
Effects of Ascorbic Acid and Melatonin Treatments on Antioxidant System in Fresh-Cut Avocado Fruits During Cold Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Zhang C, Gong H, Liu Y. Effects of postharvest coating using chitosan combined with natamycin on physicochemical and microbial properties of sweet cherry during cold storage. Int J Biol Macromol 2022; 214:1-9. [PMID: 35705124 DOI: 10.1016/j.ijbiomac.2022.06.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022]
Abstract
Sweet cherry is prone to senesce and decay due to high postharvest respiration rate and fungal infection. The effects of natamycin-chitosan coating on physicochemical and microbial properties of sweet cherries stored at 4 °C were investigated. Scanning electron microscopy results revealed that natamycin was more uniformly distributed on sweet cherry pericarps with the help of chitosan coating. Respiration rate of sweet cherries was suppressed by chitosan coating during the storage and as a result, total soluble solids (13.53 %-13.80 %) and titratable acidity (0.91 %-0.93 %) were remained higher values and weight loss (2.54 %-2.85 %) was decreased in chitosan and natamycin-chitosan groups. Although both natamycin and chitosan were effective in inhibiting yeast and mold, sweet cherries treated with the combination of natamycin and chitosan showed significantly lower yeast and mold count (3.31 log CFU/g) and decay rate (1.67 %) compared with control. Natamycin combined chitosan inhibited the pathogenic fungi of sweet cherries, such as Alternaria, Cladosporium and Penicillium. These results indicated that postharvest natamycin-chitosan coating has great advantages in maintaining fruit quality, inhibiting fungi, and reducing decay rate of sweet cherry.
Collapse
Affiliation(s)
- Caili Zhang
- School of Food Engineering, Ludong University, Yantai 264025, Shandong Province, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, Shandong Province, China
| | - Yanlong Liu
- School of Food Engineering, Ludong University, Yantai 264025, Shandong Province, China.
| |
Collapse
|
23
|
Wang Y, Zhang J, Wang X, Zhang T, Zhang F, Zhang S, Li Y, Gao W, You C, Wang X, Yu K. Cellulose Nanofibers Extracted From Natural Wood Improve the Postharvest Appearance Quality of Apples. Front Nutr 2022; 9:881783. [PMID: 35634411 PMCID: PMC9136226 DOI: 10.3389/fnut.2022.881783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
To prolong the shelf life of perishable food with a simple and environmentally friendly postharvest preservation technology is one of the global concerns. This study aimed to explore the application value of biological macromolecule natural cellulose nanofibers (CNFs) in extending the postharvest fruit shelf life. In this study, 0.5% (wt%) CNFs were prepared from natural wood and coated on the surface of early-ripening apple fruits. After 10 days of storage at room temperature, the results revealed that the shelf life of apple fruits with CNF coating was significantly prolonged, and the fruit appearance quality improved. The invisible network structure of CNFs in the fruit epidermis was observed under an atomic force microscope (AFM). The gas chromatography and mass spectrometry (GC-MS) analysis showed that CNFs significantly promoted the formation of epidermal wax, especially fatty alcohols, during storage. In addition, the CNFs remarkably promoted the upregulation of genes related to the synthesis of cuticular wax of apple. In conclusion, this study provides an environmentally sustainable nanomaterial for post-harvest preservation of horticultural products, and also provides a new insight into the effect of CNFs on postharvest storage of apple fruits.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wensheng Gao
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- *Correspondence: Xiaofei Wang
| | - Kun Yu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- Kun Yu
| |
Collapse
|
24
|
Seabra AB, Silveira NM, Ribeiro RV, Pieretti JC, Barroso JB, Corpas FJ, Palma JM, Hancock JT, Petřivalský M, Gupta KJ, Wendehenne D, Loake GJ, Durner J, Lindermayr C, Molnár Á, Kolbert Z, Oliveira HC. Nitric oxide-releasing nanomaterials: from basic research to potential biotechnological applications in agriculture. THE NEW PHYTOLOGIST 2022; 234:1119-1125. [PMID: 35266146 DOI: 10.1111/nph.18073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels and to activate NO-related responses, but this strategy is often hindered by the relative instability of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to plants, as NO-releasing nanomaterials (e.g. S-nitrosothiol-containing chitosan nanoparticles) have many beneficial physicochemical and biochemical properties compared to non-encapsulated NO donors. Nano NO donors are effective in increasing tissue NO levels and enhancing NO effects both in animal and human systems. The authors believe, and would like to emphasize, that new trends and technologies are essential for advancing plant NO research and nanotechnology may represent a breakthrough in traditional agriculture and environmental science. Herein, we aim to draw the attention of the scientific community to the potential of NO-releasing nanomaterials in both basic and applied plant research as alternatives to conventional NO donors, providing a brief overview of the current knowledge and identifying future research directions. We also express our opinion about the challenges for the application of nano NO donors, such as the environmental footprint and stakeholder's acceptance of these materials.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, SP, 09210-580, Brazil
| | - Neidiquele M Silveira
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, 13075-630, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Joana C Pieretti
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, SP, 09210-580, Brazil
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Department of Experimental Biology, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, 23071, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada, 18008, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada, 18008, Spain
| | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Marek Petřivalský
- Faculty of Science, Department of Biochemistry, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Kapuganti J Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - David Wendehenne
- Agroécologie, CNRS, INRA, Institut Agro Dijon, Univ. Bourgogne Franche-Comté, Dijon, 21000, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Jorg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Szeged, 6726, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Szeged, 6726, Hungary
| | - Halley C Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), Londrina, PR, 86057-970, Brazil
| |
Collapse
|
25
|
Ahmad A, Hashmi SS, Palma JM, Corpas FJ. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. CHEMOSPHERE 2022; 290:133329. [PMID: 34922969 DOI: 10.1016/j.chemosphere.2021.133329] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 05/10/2023]
Abstract
Nanotechnology is a research area that has experienced tremendous development given the enormous potential of nanoparticles (NPs) to influence almost all industries and conventional processes. NPs have been extensively used in agriculture to improve plant physiology, production, and nutritional values of plant-based products. The large surface area and small size are some of the desired attributes for NPs that can substantially ameliorate plants' physiological processes, thereby improving crop production. Nevertheless, the results derived from such research have not always been positive as NPs have been shown, in some cases, to negatively affect plants due to their potentially toxic nature. These toxic effects depend upon the size, concentration, nature, zeta potential, and shape of nanoparticles, as well as the used plant species. The most common response of plants under NPs toxicity is the activation of antioxidant systems and the production of secondary metabolites. The mitigation of such NPs-induced stress highly varies depending on the amount of NPs applied to the plant growth stage and the environmental conditions. On the contrary, higher photosynthetic rates, higher chlorophyll, and proline content, improved homeostasis, hormonal balance, and nutrient assimilation are the favorable physiological changes after NPs applications. Alternatively, NPs do not always exhibit positive or negative impacts on plants, and no physiological influences are sometimes observed. Considering such diversity of responses after the use of NPs on plants, this review summarizes the progress made in nanotechnology on the influence of different NPs in plant physiology through the use of indexes like seed germination, root and shoot morphology, photosynthesis, and their impact when used as carriers of cell signaling molecules such as nitric oxide (NO). Understanding the intimate dynamics of nanoparticle toxicity in plants can prove to be fruitful for the development of areas like agronomy, horticulture, plant pathology, plant physiology, etc. That, in return, can assist to ensure agricultural sustainability. Similarly, this may also help to pave the way to combat the drastic climate change and satisfy growing food demands for the ever-increasing world population. Further studies on molecular and genetic levels can certainly broaden the current understanding of NPs-plant interactions and devise the respective mitigation strategies for environmental safety.
Collapse
Affiliation(s)
- Ali Ahmad
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.
| | - Syed Salman Hashmi
- Department of Biotechnology, Quaid I Azam University, Islamabad, 45320, Pakistan.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.
| |
Collapse
|
26
|
FU X, SUN J, LYU C, MENG X, GUO H, YANG D. Evaluation on simulative transportation and storage quality of sweet cherry by different varieties based on principal component analysis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.30420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiqing FU
- Shenyang Agricultural University, China
| | | | | | | | - He GUO
- Shenyang Agricultural University, China
| | - Dan YANG
- Shenyang Agricultural University, China
| |
Collapse
|
27
|
Chen Y, Deng H, Zhang J, Tiemur A, Wang J, Wu B. Effect of nitric oxide fumigation on microorganisms and quality of dried apricots during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Chen
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou People’s Republic of China
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi People’s Republic of China
| | - Hao Deng
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi People’s Republic of China
| | - Jian Zhang
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
| | - Atawula Tiemur
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
| | - Jide Wang
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi People’s Republic of China
| | - Bin Wu
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
| |
Collapse
|
28
|
Qian Y, Kumar R, Chug MK, Massoumi H, Brisbois EJ. Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52250-52273. [PMID: 34714640 PMCID: PMC9050970 DOI: 10.1021/acsami.1c10964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As a gasotransmitter, nitric oxide (NO) regulates physiological pathways and demonstrates therapeutic effects such as vascular relaxation, anti-inflammation, antiplatelet, antithrombosis, antibacterial, and antiviral properties. However, gaseous NO has high reactivity and a short half-life, so NO delivery and storage are critical questions to be solved. One way is to develop stable NO donors and the other way is to enhance the delivery and storage of NO donors from biomaterials. Most of the researchers studying NO delivery and applications are using synthetic polymeric materials, and they have demonstrated significant therapeutic effects of these NO-releasing polymeric materials on cardiovascular diseases, respiratory disease, bacterial infections, etc. However, some researchers are exploring saccharide-based materials to fulfill the same tasks as their synthetic counterparts while avoiding the concerns of biocompatibility, biodegradability, and sustainability. Saccharide-based materials are abundant in nature and are biocompatible and biodegradable, with wide applications in bioengineering, drug delivery, and therapeutic disease treatments. Saccharide-based materials have been implemented with various NO donors (like S-nitrosothiols and N-diazeniumdiolates) via both chemical and physical methods to deliver NO. These NO-releasing saccharide-based materials have exhibited controlled and sustained NO release and demonstrated biomedical applications in various diseases (respiratory, Crohn's, cardiovascular, etc.), skin or wound applications, antimicrobial treatment, bone regeneration, anticoagulation, as well as agricultural and food packaging. This review aims to highlight the studies in methods and progress in developing saccharide-based NO-releasing materials and investigating their potential applications in biomedical, bioengineering, and disease treatment.
Collapse
Affiliation(s)
- Yun Qian
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Rajnish Kumar
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hamed Massoumi
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
29
|
Sun M, Yang XL, Zhu ZP, Xu QY, Wu KX, Kang YJ, Wang H, Xiong AS. Comparative transcriptome analysis provides insight into nitric oxide suppressing lignin accumulation of postharvest okra (Abelmoschus esculentus L.) during cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:49-67. [PMID: 34332254 DOI: 10.1016/j.plaphy.2021.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
In plants, NO has been proved the function of improving abiotic stress resistance. However, the role of NO in the lignin metabolism of okra under cold stress has not been clarified. Here, histochemical staining and lignin content analysis showed that cold stress promoted the lignin accumulation of cold stored okra pods, and NO inhibited the lignin accumulation and delayed lignification process. To better understand the roles of NO in okra cold stress resistance mechanism, the full-length transcriptome data of 'Hokkaido' was analyzed. The SNP-treated okra transcriptome and cPTIO-treated okra transcriptome were obtained. A total of 41957 unigenes were screened out from three groups at 10 d, among which, 33, 78 and 18 DEGs were found in ddH2O-treat, SNP-treat and cPTIO-treat group, respectively. Transcriptomic data suggested that the genes involved in lignin biosynthesis showed downregulation under SNP treatment. Transcriptomic data and enzyme activity showed that exogenous NO significantly promoted the biosynthesis of endogenous NO by enhancing NOS activity. Transcriptomic data and plant hormone data showed that NO played an important role in the process of inhibiting the ethylene and ABA synthesis mechanism of okra and thereby reducing the endogenous ethylene and ABA content under chilling stress. Relevant physiological data showed that NO helped to the protection of ROS scavenging system and removed the MDA and H2O2 induced by cold stress. These results provided a reference for studying the molecular mechanism of nitric oxide delaying the lignification of okra, and also provided a theoretical basis for postharvest storage of vegetables.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, Jiangsu, 224002, China
| | - Xiao-Lan Yang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, Jiangsu, 224002, China
| | - Zhi-Peng Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Qin-Yi Xu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Ke-Xin Wu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Yi-Jun Kang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Hao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
30
|
Qiu H, Su L, Wang H, Zhang Z. Chitosan elicitation of saponin accumulation in Psammosilene tunicoides hairy roots by modulating antioxidant activity, nitric oxide production and differential gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:115-127. [PMID: 34098155 DOI: 10.1016/j.plaphy.2021.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Elicitation is one of the most effective strategies for enhancing plant bioactive compounds, such as triterpenoid saponins. Chitosan gained worldwide attention for biostimulant activity, but little is known about its roles in the elicitation of triterpenoid saponin in medicinal plants. Here, we explored the regulatory network of chitosan on saponin accumulation in hairy root cultures of Psammosilene tunicoides, a valuable medicinal herb known for its pain-relieving properties endemic to China. Compared with control, the highest total saponin accumulation exhibited a 4.55-fold enhancement in hairy roots elicited by 200 mg L-1 chitosan for nine days. High-performance liquid chromatography (HPLC) revealed the yields of quillaic acid, gypsogenin and gypsogenin-3-O-β-D-glucuronopyranoside were significantly increased after chitosan treatments. Moreover, exogenous chitosan application dramatically triggered the reactive oxygen species (ROS) scavenging enzyme activities and nitric oxide (NO) content in hairy roots. Comparative transcriptome analysis from chitosan-treated (1 and 9 d) or control groups revealed that differentially expressed genes (DEGs) were greatly enriched in plant-pathogen interaction and metabolic processes. The transcriptions of candidate DEGs involved in chitosan-elicited saponin metabolism were increased, especially genes encoding antioxidant enzymes (SOD, POD and GR), stress-responsive transcription factors (WRKYs and NACs) and terpenoid biosynthetic enzymes (DXS, GPPS and SE). Taken together, these results indicate that chitosan elicitor promotes triterpenoid saponin biosynthesis by enhancing antioxidant activities, NO production and differential gene expression in P. tunicoides hairy roots.
Collapse
Affiliation(s)
- Hanhan Qiu
- School of Biology Engineering, Dalian Polytechnic University, Dalian, China; Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Lingye Su
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Hongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Zongshen Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
31
|
Sivakumar D, Tuna Gunes N, Romanazzi G. A Comprehensive Review on the Impact of Edible Coatings, Essential Oils, and Their Nano Formulations on Postharvest Decay Anthracnose of Avocados, Mangoes, and Papayas. Front Microbiol 2021; 12:711092. [PMID: 34394060 PMCID: PMC8360855 DOI: 10.3389/fmicb.2021.711092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Subtropical fruit such as avocados (Persea americana), mangoes (Mangifera indica L.), and papayas (Carica papaya L.) are economically important in international trade and predominantly exported to European destinations. These fruits are highly consumed due to their health benefits. However, due to long-distance shipping and the time required to reach the retail department stores, postharvest losses, due to postharvest decay occurring during the supply chain, affect the fruit quality on arrival at the long-distance distribution points. Currently, the use of synthetic fungicide, Prochloraz®, is used at the packing line to reduce postharvest decay and retain the overall quality of mangoes and avocados. Due to the ban imposed on the use of synthetic fungicides on fresh fruit, several studies have focused on the development of alternative technologies to retain the overall quality during marketing. Among the developed alternative technologies for commercial adoption is the use of edible coatings, such as chitosan biocontrol agents and essential oil vapors. The objective of this review is to summarize and analyze the recent advances and trends in the use of these alternative postharvest treatments on anthracnose decay in avocados, mangoes, and papayas.
Collapse
Affiliation(s)
- Dharini Sivakumar
- Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Nurdan Tuna Gunes
- Department of Horticulture, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
32
|
Jin T, Liu T, Lam E, Moores A. Chitin and chitosan on the nanoscale. NANOSCALE HORIZONS 2021; 6:505-542. [PMID: 34017971 DOI: 10.1039/d0nh00696c] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In a matter of decades, nanomaterials from biomass, exemplified by nanocellulose, have rapidly transitioned from once being a subject of curiosity to an area of fervent research and development, now reaching the stages of commercialization and industrial relevance. Nanoscale chitin and chitosan, on the other hand, have only recently begun to raise interest. Attractive features such as excellent biocompatibility, antibacterial activity, immunogenicity, as well as the tuneable handles of their acetylamide (chitin) or primary amino (chitosan) functionalities indeed display promise in areas such as biomedical devices, catalysis, therapeutics, and more. Herein, we review recent progress in the fabrication and development of these bio-nanomaterials, describe in detail their properties, and discuss the initial successes in their applications. Comparisons are made to the dominant nanocelluose to highlight some of the inherent advantages that nanochitin and nanochitosan may possess in similar application.
Collapse
Affiliation(s)
- Tony Jin
- Center in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | |
Collapse
|
33
|
Dudley RWR, Comtois AS, St-Pierre DH, Danialou G. Early administration of L-arginine in mdx neonatal mice delays the onset of muscular dystrophy in tibialis anterior (TA) muscle. FASEB Bioadv 2021; 3:639-651. [PMID: 34377959 PMCID: PMC8332474 DOI: 10.1096/fba.2020-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 12/04/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that results in the absence of dystrophin, a cytoskeletal protein. Individuals with this disease experience progressive muscle destruction, which leads to muscle weakness. Studies have been conducted to find solutions for the relief of individuals with this disease, several of which have shown that utrophin, a protein closely related to dystrophin, when overexpressed in mdx neonatal mice (the murine model of DMD), is able to prevent the progressive muscle destruction observed in the absence of dystrophin. Furthermore, recent studies have shown that L‐arginine induces utrophin upregulation in adult mdx mice. We hypothesized that L‐arginine treatment also induces utrophin upregulation to prevent the development of muscle weakness in neonatal mdx mice. Hence, L‐arginine should also prevent progressive muscle destruction via utrophin upregulation in mdx neonatal mice. Mdx neonatal mice were injected intraperitoneally daily with 800 mg/kg of L‐arginine for 6 weeks, whereas control mice were injected with a physiological saline. The following experiments were performed on the tibialis anterior (TA) muscle: muscle contractility and resistance to mechanical stress; central nucleation and peripheral nucleation, utrophin, and creatine kinase quantification as well as a nitric oxide (NO) assay. Our findings show that early administration of L‐arginine in mdx neonatal mice prevents the destruction of the tibialis anterior (TA) muscle. However, this improvement was related to nitric oxide (NO) production rather than the expected utrophin upregulation.
Collapse
Affiliation(s)
- Roy W R Dudley
- Meakins Christie Laboratories McGill University Montreal QC Canada
| | - Alain S Comtois
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada
| | - David H St-Pierre
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada.,Centre de Recherche du CHU Sainte-Justine Montréal QC Canada
| | - Gawiyou Danialou
- Meakins Christie Laboratories McGill University Montreal QC Canada.,Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Royal Military College Saint-Jean Saint-Jean-sur-Richelieu QC Canada
| |
Collapse
|
34
|
Adiletta G, Di Matteo M, Petriccione M. Multifunctional Role of Chitosan Edible Coatings on Antioxidant Systems in Fruit Crops: A Review. Int J Mol Sci 2021; 22:2633. [PMID: 33807862 PMCID: PMC7961546 DOI: 10.3390/ijms22052633] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/02/2022] Open
Abstract
Chitosan-based edible coatings represent an eco-friendly and biologically safe preservative tool to reduce qualitative decay of fresh and ready-to-eat fruits during post-harvest life due to their lack of toxicity, biodegradability, film-forming properties, and antimicrobial actions. Chitosan-based coatings modulate or control oxidative stress maintaining in different manner the appropriate balance of reactive oxygen species (ROS) in fruit cells, by the interplay of pathways and enzymes involved in ROS production and the scavenging mechanisms which essentially constitute the basic ROS cycle. This review is carried out with the aim to provide comprehensive and updated over-view of the state of the art related to the effects of chitosan-based edible coatings on anti-oxidant systems, enzymatic and non-enzymatic, evaluating the induced oxidative damages during storage in whole and ready-to-eat fruits. All these aspects are broadly reviewed in this review, with particular emphasis on the literature published during the last five years.
Collapse
Affiliation(s)
- Giuseppina Adiletta
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.A.); (M.D.M.)
| | - Marisa Di Matteo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.A.); (M.D.M.)
| | - Milena Petriccione
- CREA-Centre for Olive, Fruit and Citrus Crops, Via Torrino 3, 81100 Caserta, Italy
| |
Collapse
|
35
|
Effects of pre-treatment with S-nitrosoglutathione-chitosan nanoparticles on quality and antioxidant systems of fresh-cut apple slices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Zhang X, Zhang Z, Wu W, Yang J, Yang Q. Preparation and characterization of chitosan/Nano-ZnO composite film with antimicrobial activity. Bioprocess Biosyst Eng 2021; 44:1193-1199. [PMID: 33590334 DOI: 10.1007/s00449-021-02521-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Chitosan is promising material for making food packaging film with antimicrobial activity. However, chitosan film usually has limited mechanical and antimicrobial properties and higher water solubility. To improve the performance of chitosan film, in this work, chitosan composite films were prepared by incorporating different sizes of zinc oxide particles of 5 μm, 100 nm, and 50 nm. The films were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and mechanical analysis. Antimicrobial assay of the chitosan and CTS/nano-ZnO composite films against Escherichia coli and Staphylococcus aureus show that the composite chitosan films have better antibacterial activity. The film containing 0.3% of 50 nm zinc oxide particles showed the best inhibition rate, suggesting that smaller sizes of nano-ZnO particles have better bacteriostatic activity and potent application as an antibacterial additive ingredient.
Collapse
Affiliation(s)
- Xiyue Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenyi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China. .,Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
37
|
Cu-chitosan nano-net improves keeping quality of tomato by modulating physio-biochemical responses. Sci Rep 2020; 10:21914. [PMID: 33318539 PMCID: PMC8097068 DOI: 10.1038/s41598-020-78924-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Minimizing the post-harvest losses in fruits and vegetables is one of the challenging tasks in agriculture. To address this issue, we report nano-net of Cu-chitosan nanoparticles (Cu-chitosan NPs) which has the ability to extend the shelf-life of stored tomato. The application of Cu-chitosan NPs (0.01–0.04%) significantly curtailed microbial decay (< 5 versus > 50% in control), physiological loss in weight (14.36 versus 28.13% in control), respiration rate (0.01173 versus 0.01879 g CO2 kg−1 h−1) and maintained fruit firmness (34.0 versus 17.33 N in control) during storage. Further, these NPs significantly retarded loss of titratable acidity, retained total soluble solids, total and reducing sugars, lycopene, ascorbic acid and inhibited polyphenol oxidase. Likewise, NPs effectively preserved L* (lightness), a* (red/green) and b* (blue/yellow) values and maintained organoleptic score. Scanning electron microscopy study confirmed that Cu-chitosan NPs orchestrate into an invisible-intangible nano-net over tomato surface which may plausibly act as a potential barrier at all possible openings (stem scar, cuticle wax, lenticels, and aquaporins) to control microbial infection, moisture loss, gas exchanges and respiration rate. Overall, nano-net extended keeping quality of tomatoes up to 21 days at room temperature (27 ± 2 °C, 55 ± 2% relative humidity).
Collapse
|
38
|
Mi Y, Tan W, Zhang J, Guo Z. Modification of Hydroxypropyltrimethyl Ammonium Chitosan with Organic Acid: Synthesis, Characterization, and Antioxidant Activity. Polymers (Basel) 2020; 12:polym12112460. [PMID: 33114217 PMCID: PMC7690870 DOI: 10.3390/polym12112460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
A novel and green method for the preparation of chitosan derivatives bearing organic acids was reported in this paper. In order to improve the antioxidant activity of chitosan, eight different hydroxypropyltrimethyl ammonium chitosan derivatives were successfully designed and synthesized via introducing of organic acids onto chitosan by mild and non-toxic ion exchange. The data of Fourier Transform Infrared (FTIR), 13C Nuclear Magnetic Resonance (NMR), 1H NMR, and elemental analysis for chitosan derivatives indicated the successful conjugation of organic acid salt with hydroxypropyltrimethyl ammonium chloride chitosan (HACC). Meanwhile, the antioxidant activity of the chitosan derivatives was evaluated in vitro. The results indicated that the chitosan derivatives possessed dramatic enhancements in DPPH-radical scavenging activity, superoxide-radical scavenging activity, hydroxyl radical scavenging ability, and reducing power. Furthermore, the cytotoxicity of the synthesized compounds was investigated in vitro on L929 cells and showed low cytotoxicity. Thus, the enhanced antioxidant property of all novel chitosan products might be a great advantage, while applied in a wide range of applications in the form of antioxidant in biomedical, food, and cosmetic industry.
Collapse
Affiliation(s)
- Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.M.); (W.T.); (J.Z.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.M.); (W.T.); (J.Z.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.M.); (W.T.); (J.Z.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.M.); (W.T.); (J.Z.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: , Tel.: +86-535-210-9171; Fax: +86-535-210-9000
| |
Collapse
|
39
|
Pechanova O, Dayar E, Cebova M. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System. Molecules 2020; 25:molecules25153322. [PMID: 32707934 PMCID: PMC7435870 DOI: 10.3390/molecules25153322] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies document an increased production of reactive oxygen species (ROS) with a subsequent decrease in nitric oxide (NO) bioavailability in different cardiovascular diseases, including hypertension, atherosclerosis, and heart failure. Many natural polyphenols have been demonstrated to decrease ROS generation and/or to induce the endogenous antioxidant enzymatic defense system. Moreover, different polyphenolic compounds have the ability to increase the activity/expression of endothelial nitric oxide synthase (eNOS) with a subsequent enhancement of NO generation. However, as a result of low absorption and bioavailability of natural polyphenols, the beneficial effects of these substances are very limited. Recent progress in delivering polyphenols to the targeted tissues revealed new possibilities for the use of polymeric nanoparticles in increasing the efficiency and reducing the degradability of natural polyphenols. This review focuses on the effects of different natural polyphenolic substances, especially resveratrol, quercetin, curcumin, and cherry extracts, and their ability to bind to polymeric nanoparticles, and summarizes the effects of polyphenol-loaded nanoparticles, mainly in the cardiovascular system.
Collapse
|
40
|
Effect of chitosan coatings on the evolution of sodium carbonate-soluble pectin during sweet cherry softening under non-isothermal conditions. Int J Biol Macromol 2020; 154:267-275. [PMID: 32179112 DOI: 10.1016/j.ijbiomac.2020.03.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022]
Abstract
The inhibiting effect of chitosan coating (2%) on the softening and sodium carbonate-soluble pectin (SSP) evolution of sweet cherries during non-isothermal storage was investigated. Chitosan coating significantly extend the softening (6.4% greater than the control group), maintained the SSP content (6.6% greater than the control group), and reduced the degradation of SSP by inhibiting the expression of the paPME1-5 genes, which regulating pectin methylesterase activity of sweet cherries under temperature variation. In addition, the results of methylation and monosaccharide composition indicated that the chitosan coating reduced demethylation of SSP and the loss of RG-I main and side chain neutral sugars. Atomic force microscopy images revealed that the coated sweet cherries contained more linked, branched, and long SSP chains and maintained the width of the pectin backbone (>140 nm). These results indicated that a chitosan coating is feasible to preserve postharvest fruit under non-isothermal conditions.
Collapse
|
41
|
Saleem MS, Ejaz S, Anjum MA, Nawaz A, Naz S, Hussain S, Ali S, Canan İ. Postharvest application of gum arabic edible coating delays ripening and maintains quality of persimmon fruits during storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14583] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Shaghef Ejaz
- Department of Horticulture Bahauddin Zakariya University Multan Pakistan
| | | | - Aamir Nawaz
- Department of Horticulture Bahauddin Zakariya University Multan Pakistan
| | - Safina Naz
- Department of Horticulture Bahauddin Zakariya University Multan Pakistan
| | - Sajjad Hussain
- Department of Horticulture Bahauddin Zakariya University Multan Pakistan
| | - Sajid Ali
- Department of Horticulture Bahauddin Zakariya University Multan Pakistan
| | - İhsan Canan
- Department of Horticulture Faculty of Agriculture and Natural Sciences Abant İzzet Baysal University Bolu Turkey
| |
Collapse
|
42
|
Beconcini D, Felice F, Fabiano A, Sarmento B, Zambito Y, Di Stefano R. Antioxidant and Anti-Inflammatory Properties of Cherry Extract: Nanosystems-Based Strategies to Improve Endothelial Function and Intestinal Absorption. Foods 2020; 9:E207. [PMID: 32079234 PMCID: PMC7074069 DOI: 10.3390/foods9020207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cherry fruit has a high content in flavonoids. These are important diet components protecting against oxidative stress, inflammation, and endothelial dysfunction, which are all involved in the pathogenesis of atherosclerosis, which is the major cause of cardiovascular diseases (CVD). Since the seasonal availability of fresh fruit is limited, research has been focused on cherry extract (CE), which also possesses a high nutraceutical potential. Many clinical studies have demonstrated the nutraceutical efficacy of fresh cherries, but only a few studies on CE antioxidant and anti-inflammatory activities have been carried out. Here, the results concerning the antioxidant and anti-inflammatory activities of CE are reviewed. These were obtained by an in vitro model based on Human Umbilical Vein Endothelial Cells (HUVEC). To clarify the CE mechanism of action, cells were stressed to induce inflammation and endothelial dysfunction. Considering that antioxidants' polyphenol compounds are easily degraded in the gastrointestinal tract, recent strategies to reduce the degradation and improve the bioavailability of CE are also presented and discussed. In particular, we report on results obtained with nanoparticles (NP) based on chitosan derivatives (Ch-der), which improved the mucoadhesive properties of the chitosan polymers, as well as their positive charge, to favor high cellular interaction and polyphenols intestinal absorption, compared with a non-mucoadhesive negative surface charged poly(lactic-co-glycolic) acid NP. The advantages and safety of different nanosystems loaded with natural CE or other nutraceuticals are also discussed.
Collapse
Affiliation(s)
- Denise Beconcini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, via Paradisa 2, 56100 Pisa, Italy;
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56100 Pisa, Italy; (A.F.); (Y.Z.)
| | - Francesca Felice
- Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, via Paradisa 2, 56100 Pisa, Italy;
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56100 Pisa, Italy; (A.F.); (Y.Z.)
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-153 Porto, Portugal;
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56100 Pisa, Italy; (A.F.); (Y.Z.)
- Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, via Borghetto 80, 56100 Pisa, Italy
| | - Rossella Di Stefano
- Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, via Paradisa 2, 56100 Pisa, Italy;
- Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, via Borghetto 80, 56100 Pisa, Italy
| |
Collapse
|
43
|
Miranda S, Vilches P, Suazo M, Pavez L, García K, Méndez MA, González M, Meisel LA, Defilippi BG, Del Pozo T. Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chem 2020; 319:126360. [PMID: 32151896 DOI: 10.1016/j.foodchem.2020.126360] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
Sweet cherry is a valuable non-climacteric fruit with elevated phytonutrients, whose fruit quality attributes are prone to rapid deterioration after harvest, especially peel damage and water loss of stem. Here the metabolic and transcriptional response of exogenous melatonin was assessed in two commercial cultivars of sweet cherry (Santina and Royal Rainier) during cold storage. Gene expression profiling revealed that cuticle composition and water movement may underlie the effect of melatonin in delaying weight loss. An effect of melatonin on total soluble solids and lower respiration rate was observed in both cultivars. Melatonin induces overexpression of genes related to anthocyanin biosynthesis, which correlates with increased anthocyanin levels and changes in skin color (Chroma). Our results indicate that along with modulating antioxidant metabolism, melatonin improves fruit quality traits by triggering a range of metabolic and gene expression changes, which ultimately contribute to extend sweet cherry postharvest storability.
Collapse
Affiliation(s)
- Simón Miranda
- Centro Tecnológico de Recursos Vegetales, Escuela de Agronomía, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile; Laboratorio de Genética Molecular Vegetal, INTA, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago 7830490, Chile
| | - Paulina Vilches
- Centro Tecnológico de Recursos Vegetales, Escuela de Agronomía, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile; Laboratorio de Genética Molecular Vegetal, INTA, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago 7830490, Chile
| | - Miriam Suazo
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastian, General Lagos 1163, Valdivia 5110693, Chile
| | - Leonardo Pavez
- Instituto de Ciencias Naturales, Universidad de las Américas, Av. Manuel Montt 948, Providencia, Santiago 7500972, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Marco A Méndez
- Laboratorio de Genética y Evolución, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa 7800003, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Santiago 7830490, Chile; FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago 8370415, Chile
| | - Lee A Meisel
- Laboratorio de Genética Molecular Vegetal, INTA, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago 7830490, Chile
| | - Bruno G Defilippi
- Unidad de Postcosecha, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa 11610, Santiago 8831314, Chile
| | - Talía Del Pozo
- Centro Tecnológico de Recursos Vegetales, Escuela de Agronomía, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| |
Collapse
|
44
|
Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery. Sci Rep 2019; 9:17371. [PMID: 31758079 PMCID: PMC6874562 DOI: 10.1038/s41598-019-54030-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
Polymeric nanoparticles have emerged as carrier systems for molecules that release nitric oxide (NO), a free radical involved in plant stress responses. However, to date, nanoencapsulated NO donors have not been applied to plants under realistic field conditions. Here, we verified the effects of free and nanoencapsulated NO donor, S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), on growth, physiological and biochemical parameters of neotropical tree seedlings kept under full sunlight in the nursery for acclimation. S-nitroso-MSA incorporation into chitosan nanoparticles partially protected the NO donor from thermal and photochemical degradation. The application of nanoencapsulated S-nitroso-MSA in the substrate favoured the growth of seedlings of Heliocarpus popayanensis, a shade-intolerant tree. In contrast, free S-nitroso-MSA or nanoparticles containing non-nitrosated mercaptosuccinic acid reduced photosynthesis and seedling growth. Seedlings of Cariniana estrellensis, a shade-tolerant tree, did not have their photosynthesis and growth affected by any formulations, despite the increase of foliar S-nitrosothiol levels mainly induced by S-nitroso-MSA-loaded nanoparticles. These results suggest that depending on the tree species, nanoencapsulated NO donors can be used to improve seedling acclimation in the nursery.
Collapse
|
45
|
Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants (Basel) 2019; 8:E556. [PMID: 31731704 PMCID: PMC6912614 DOI: 10.3390/antiox8110556] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials releasing nitric oxide have attracted significant attention for therapeutic use in recent years. As one of the gaseous signaling agents in eukaryotic cells, endogenously generated nitric oxide (NO) is also capable of regulating the behavior of bacteria as well as biofilm formation in many metabolic pathways. To overcome the drawbacks caused by the radical nature of NO, synthetic or natural polymers bearing NO releasing moiety have been prepared as nano-sized materials, coatings, and hydrogels. To successfully design these materials, the amount of NO released within a certain duration, the targeted pathogens and the trigger mechanisms upon external stimulation with light, temperature, and chemicals should be taken into consideration. Meanwhile, NO donors like S-nitrosothiols (RSNOs) and N-diazeniumdiolates (NONOates) have been widely utilized for developing antimicrobial polymeric agents through polymer-NO donor conjugation or physical encapsulation. In addition, antimicrobial materials with visible light responsive NO donor are also reported as strong and physiological friendly tools for rapid bacterial clearance. This review highlights approaches to delivery NO from different types of polymeric materials for combating diseases caused by pathogenic bacteria, which hopefully can inspire researchers facing common challenges in the coming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Fan Rong
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yizhang Tang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tengjiao Wang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tao Feng
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Jiang Song
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- School of Electronics & Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Peng Li
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Wei Huang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
46
|
Geng B, Huang D, Zhu S. Regulation of Hydrogen Sulfide Metabolism by Nitric Oxide Inhibitors and the Quality of Peaches during Cold Storage. Antioxidants (Basel) 2019; 8:E401. [PMID: 31527494 PMCID: PMC6770425 DOI: 10.3390/antiox8090401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Both nitric oxide (NO) and hydrogen sulfide (H2S) have been shown to have positive effects on the maintenance of fruit quality during storage; however, the mechanisms by which NO regulates the endogenous H2S metabolism remain unknown. In this experiment, peaches were immersed in solutions of NO, potassium 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, as an NO scavenger), N-nitro-l-arginine methyl ester (l-NAME, as an inhibitor of nitric oxide synthase (NOS)-like activity), and sodium tungstate (as an inhibitor of nitrate reductase), and the resulting changes in the H2S metabolism of peaches were studied. The results showed that exogenous NO reduced the contents of endogenous H2S, Cys, and sulfite; decreased the activities of l-/d-cysteine desulfhydrase (l-/d-CD), O-acetylserine (thiol)lyase (OAS-TL), and sulfite reductase (SiR); and increased the activity of β-cyanoalanine synthase (β-CAS). Both c-PTIO and sodium tungstate had similar roles in increasing the H2S content by sustaining the activities of l-/d-CDs, OAS-TL, and SiR. l-NAME increased the H2S content, mainly by maintaining the d-CD activity. The results suggest that NO, c-PTIO, l-NAME, and sodium tungstate differently regulate the H2S metabolism of peaches during storage.
Collapse
Affiliation(s)
- Biao Geng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Dandan Huang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
47
|
González-Gordo S, Bautista R, Claros MG, Cañas A, Palma JM, Corpas FJ. Nitric oxide-dependent regulation of sweet pepper fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4557-4570. [PMID: 31046097 PMCID: PMC6736391 DOI: 10.1093/jxb/erz136] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
Ripening is a complex physiological process that involves changes in reactive nitrogen and oxygen species that govern the shelf-life and quality of fruits. Nitric oxide (NO)-dependent changes in the sweet pepper fruit transcriptome were determined by treating fruits at the initial breaking point stage with NO gas. Fruits were also harvested at the immature (green) and ripe (red) stages. Fruit ripening in the absence of NO resulted in changes in the abundance of 8805 transcripts whose function could be identified. Among these, functional clusters associated with reactive oxygen/nitrogen species and lipid metabolism were significantly modified. NO treatment resulted in the differential expression of 498 genes framed within these functional categories. Biochemical analysis revealed that NO treatment resulted in changes in fatty acid profiling, glutathione and proline contents, and the extent of lipid peroxidation, as well as increases in the activity of ascorbate peroxidase and lipoxygenase. These data provide supporting evidence for the crucial role of NO in the ripening of pepper fruit.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática and Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática and Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | - Amanda Cañas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- Correspondence:
| |
Collapse
|