1
|
Sudheesh C, Pillai S. A review on research advances in efficient approaches to augment hydrothermal techniques for starch functionalization: Mechanisms, properties and potential food applications. Carbohydr Polym 2025; 357:123441. [PMID: 40158978 DOI: 10.1016/j.carbpol.2025.123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The applications of hydrothermally modified starches in conventional water media, such as distilled water (DW), are limited due to their poor performance. Therefore, researchers are introducing innovative techniques in various environments, including ethanol solutions, salt solutions, acidic or alkaline conditions, plasma-activated water (PAW), and hydrogen-infused water (HW), to enhance the efficiency of annealing (ANN) and heat moisture treatment (HMT). The present review discusses these new approaches aimed at improving the performance of ANN and HMT, their potential mechanisms for starch modification, the resulting changes in the functional properties of starch, and their role in various food applications. Additionally, it systematically elucidates the challenges, opportunities, and future directions in this field. Unlike classical water-based ANN or HMT, innovative and sustainable approaches adopted for hydrothermal methods drastically enhance the structural stability, resistance to digestive enzymes, and low-temperature storage stability of starch. However, these changes depend on controlled parameters, such as the concentration of ethanol or salt, pH of the medium, incubation time, moisture level, treatment temperature, and starch properties (e.g., amylose/amylopectin ratio) during treatment. This consolidated report on cutting-edge techniques designed to enhance the effectiveness of hydrothermal modifications seeks to expand the potential applications of ANN and HMT in food-grade products.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India.
| | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Kim MY, Oh SM, Shin JS, Bae JE, Ye SJ, Choi HW, Baik MY. Effect of Debranching Enzymes on Self-Assembly Kinetics and Physicochemical Characteristics of Short-Chain Glucan Aggregates (SCGAs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9157-9164. [PMID: 40173309 DOI: 10.1021/acs.jafc.4c12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Characteristics of short-chain glucan aggregates (SCGAs) prepared with two different debranching enzymes, isoamylase (I-SCGA) and pullulanase (P-SCGA), were investigated. In terms of self-assembly and crystallization kinetics, I-SCGA exhibited a faster SCGA formation rate, while P-SCGA demonstrated a rapid crystallization rate. P-SCGA had a higher amount of glucan chains with DP ≤ 12, whereas I-SCGA showed a significantly higher amount of B1 chains (13 ≤ DP ≤ 24). Both SCGAs formed aggregates with average sizes of 990 nm (P-SCGA) and 810 nm (I-SCGA), respectively. P-SCGA displayed a wider double-helical melting transition temperature range and higher melting enthalpy than I-SCGA. Although both SCGAs revealed similar amounts of RDS content, P-SCGA showed significantly higher RS and lower SDS contents than I-SCGA. These results highlight the potential of using specific debranching enzymes to develop SCGA with targeted nutritional and functional properties, supporting the creation of customized starch ingredients for health-oriented food products.
Collapse
Affiliation(s)
- Min-Young Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, South Korea
| | - Seon-Min Oh
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, South Korea
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
| | - Jae-Sung Shin
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, South Korea
| | - Ji-Eun Bae
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, South Korea
| | - Sang-Jin Ye
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, South Korea
| | - Hyun-Wook Choi
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, South Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, South Korea
| |
Collapse
|
3
|
Kunyanee K, Van Ngo T, Kusumawardani S, Luangsakul N. Enhancing Banana Flour Quality through Physical Modifications and Its Application in Gluten-Free Chips Product. Foods 2024; 13:593. [PMID: 38397570 PMCID: PMC10887583 DOI: 10.3390/foods13040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to analyze the effects of different single or dual physical treatments, including pre-gelatinization (PBF), annealing (ANN), PBF+ANN, and ANN+PBF, on banana flour's characteristics and its application in gluten-free chip production. The study involved determining the color, swelling capacity, solubility, oil absorption index, and pasting properties of both the native and modified banana flour samples. The results showed a significant change in color, particularly in the pre-gelatinized samples. There was a noticeable decrease in the values of the pasting parameters in the modified samples. PBF samples exhibited a remarkable reduction in the breakdown value compared to the native and ANN treated samples. Furthermore, PBF-treated banana flour displayed higher oil absorption and swelling power than the other samples, along with lower solubility in the PBF-treated sample. These characteristics appear to be responsible for enabling the pre-gelatinized sample to form the dough required for producing banana chips, resulting in distinct texture profiles. Finally, our research emphasizes the useful application of modified banana flour in the food industry and emphasizes how crucial it is to choose the right modification method to achieve the desired effects on the product.
Collapse
Affiliation(s)
| | | | | | - Naphatrapi Luangsakul
- Department of Food Science, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.K.)
| |
Collapse
|
4
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
5
|
Chung JC, Lai LS. Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch. Foods 2023; 12:3551. [PMID: 37835205 PMCID: PMC10572123 DOI: 10.3390/foods12193551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The effects of treatment time of continuous annealing (ANN) and cycle numbers of cycled ANN on the structural, physicochemical, and digestive properties of water caltrop starch were studied under 70% moisture at 65 °C. It was found that continuous and cycled ANN have no significant effects on the morphology of starch granules. However, the relative crystallinity and content of resistant starch increased pronouncedly, possibly due to crystalline perfection, which also led to the rise in gelatinization temperature and the narrowed gelatinization temperature range of starch. The treatment time in continuous ANN generally showed a pronounced effect on the rheological properties of water caltrop starch. During pasting, the breakdown viscosity and setback viscosity of all treatment decreased, implying that ANN modified starch was less susceptible to the condition in heating and continuous shearing, and less likely to cause short-term retrogradation. In contrast, peak viscosity decreased with increasing treatment time of continuous ANN, indicating crystalline perfection restricted the swelling of starch granules and viscosity development during pasting process, which was consistent with the results of steady and dynamic rheological evaluation. All ANN-modified samples showed pseudoplastic behavior with weak gel viscoelastic characteristic. Under a total annealing time of 96 h, the pasting and rheological properties of water caltrop starch were essentially less affected by annealing cycle numbers. However, multistage ANN showed stronger resistance to enzyme hydrolysis.
Collapse
Affiliation(s)
| | - Lih-Shiuh Lai
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan;
| |
Collapse
|
6
|
Zhang H, Johnson AM, Hua Q, Wu J, Liang Y, Karaaslan MA, Saddler JN, Renneckar S. Size-controlled synthesis of xylan micro / nanoparticles by self-assembly of alkali-extracted xylan. Carbohydr Polym 2023; 315:120944. [PMID: 37230607 DOI: 10.1016/j.carbpol.2023.120944] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Valorization of underutilized biobased feedstocks like hetero-polysaccharides is critical for the development of the biorefinery concept. Towards this goal, highly uniform xylan micro/nanoparticles with a particle size ranging from 400 nm to 2.5 μm in diameter were synthesized by a facile self-assembly method in aqueous solutions. Initial concentration of the insoluble xylan suspension was utilized to control the particle size. The method utilized supersaturated aqueous suspensions formed at standard autoclaving conditions without any other chemical treatments to create the resulting particles as solutions cooled to room temperature. Processing parameters of the xylan micro/nanoparticles were systematically studied and correlated with both the morphology and size of xylan particles. By adjusting the crowding of the supersaturated solutions, highly uniform dispersions of xylan particles were synthesized of defined size. The xylan micro/nanoparticles prepared by self-assembly have a quasi-hexagonal shape, like a tile, and depending upon solution concentrations xylan nanoparticles with a thickness of <100 nm were achieved at high concentrations. Based on the usefulness of polysaccharide nanoparticles, like cellulose nanocrystals, these particles have potential for unique structures for hydrogels, aerogels, drug delivery, and photonic materials. This study highlights the formation of a diffraction grating film for visible light with these size-controlled particles.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Amanda M Johnson
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Muzaffer A Karaaslan
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jack N Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
7
|
Self-assembly kinetics of short-chain glucan aggregates (SCGA). Food Chem 2023; 403:134361. [DOI: 10.1016/j.foodchem.2022.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
8
|
Gautam G, Talukdar D, Mahanta CL. Sonochemical effect on the degree of substitution of octenyl-succinic anhydride into waxy rice starch nanoparticles and study of gastro-intestinal hydrolysis using INFOGEST in vitro digestion method. Food Res Int 2023; 165:112348. [PMID: 36869444 DOI: 10.1016/j.foodres.2022.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Octenyl succinylation of starch nanoparticles has been proven to be effective in a variety of food industry applications such as fat replacement, thickening agents, emulsion formation, and delivery of bioactive compounds. In this study, waxy rice starch was debranched with pullulanase to obtain short glucans, which were then modified with octenyl succinic anhydride (OSA) to obtain amphiphilic short glucans (ASG) using high (400 W) and low (200 W) ultrasonic power intensity at 30 and 60 cycles. Developed ASG were characterized by nanoparticle size (ca. < 50 nm), surface hydrophobicity and gastro-intestinal stability. Ultrasonic intervention progressively increased the degree of substitution (DS) of OSA into hydrolysed starch. A significant molecular exchange between starch and OSA was confirmed with shoulder peak at 1.07 ppm by 1H NMR, and 1560 and 1727 cm-1 peaks in FTIR spectral image, and broad band at 1260 cm-1 by Raman spectroscopy. The XRD analysis confirmed the change in crystalline structure, and the emergence of new peaks at 2θ angles of around 5.81° which represent the development of B-type structure following pullulanasehydrolysis, and minor peaks at 13.92° and 19.83°, which imply the production of Vh type structures in ASG. Gastro-intestinal hydrolysis of starch after modification was analyzed in a sequential digestion process using INFOGEST method. The gastro-kinetic studies unveiled the reduction in the digestibility constant in the oral-gastric phase, with significantly enhanced value of kinetic constants in the intestinal phase, proving a sustained gastro-intestinal stability. The OSA-modified starches with greater DS havemore rigid and compact surface structure, which provides superior protection against biochemical conditions in the stomach fluid.
Collapse
Affiliation(s)
- Gitanjali Gautam
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India
| | - Dhrubajyoti Talukdar
- Department of Chemical Sciences, School of Sciences, Tezpur University, 784028, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India.
| |
Collapse
|
9
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
10
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
11
|
A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers (Basel) 2022; 14:polym14245447. [PMID: 36559814 PMCID: PMC9786624 DOI: 10.3390/polym14245447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Starch and flour from various plants have been widely used for sundry applications, especially in the food and chemical industries. However, native starch and flour have several weaknesses, especially in functional, pasting, and physicochemical properties. The quality of native starch and flour can be improved by a modification process. The type of modification that is safe, easy, and efficient is physical modification using hydrothermal treatment techniques, including heat moisture treatment (HMT) and annealing (ANN). This review discusses the hydrothermal modifications of starch and flour, especially from various tubers and cereals. The discussion is mainly on its effect on five parameters, namely functional properties, morphology, pasting properties, crystallinity, and thermal properties. Modification of HMT and ANN, in general, can improve the functional properties, causing cracking of the granule surface, stable viscosity to heat, increasing crystallinity, and increasing gelatinization temperature. However, some modifications of starch and flour by HMT and ANN had no effect on several parameters or even had the opposite effect. The summary of the various studies reviewed can be a reference for the development of hydrothermal-modified starch and flour applications for various industries.
Collapse
|
12
|
Xiang G, Li J, Han W, Yang Y, Lin Q, Yang Y, Liu Q, Guo X, Pan Q, Huang Z, Cao L. The Influence of Temperature Changes on the Rice Starch Structure and Digestive Characteristics: One and Two-Step Annealing. Foods 2022; 11:3641. [PMID: 36429234 PMCID: PMC9688990 DOI: 10.3390/foods11223641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of annealing on the structural and physicochemical properties of rice starch below the onset temperature (To) by 5 °C and 15 °C. The results revealed that annealing improved the gelatinization temperature of rice starch, decreased the swelling power, solubility, and paste viscosity of rice starch, and had no significant effects on the morphological structure and crystal configuration of rice starch. In one-step annealing, the annealing temperature of 60 °C is more conducive to the rearrangement of starch molecules, so its crystallinity, short-range ordered structure, and gelatinization temperature are higher than at 50 °C; however, its RDS, SDS, and RS contents will be increased. During the two-step annealing treatment, the temperature change is not conducive to the molecular chain rearrangement and to the formation of perfect crystalline structure, which increases the sensitivity of enzymes to starch, so the RDS content of starch increases significantly, while the RS content decreases.
Collapse
Affiliation(s)
- Guiyuan Xiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiangtao Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenfang Han
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaqin Yang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Yang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiongxiang Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Guo
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qianru Pan
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhengyu Huang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lingxue Cao
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
13
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Wang D, Zhao M, Wang Y, Mu H, Sun C, Chen H, Sun Q. Research Progress on Debranched Starch: Preparation, Characterization, and Application. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2126854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Deda Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Mei Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Cong Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Haihua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Adewale P, Yancheshmeh MS, Lam E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr Polym 2022; 291:119590. [DOI: 10.1016/j.carbpol.2022.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
16
|
Effect of annealing treatment on the physicochemical properties and enzymatic hydrolysis of different types of starch. Food Chem 2022; 403:134153. [DOI: 10.1016/j.foodchem.2022.134153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/07/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
|
17
|
Mirzaaghaei M, Nasirpour A, Keramat J, Goli SAH, Dinari M, Desobry S, Durand A. Chemical modification of waxy maize starch by esterification with saturated fatty acid chlorides: Synthesis, physicochemical and emulsifying properties. Food Chem 2022; 393:133293. [PMID: 35653992 DOI: 10.1016/j.foodchem.2022.133293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/04/2022]
Abstract
In the current study, the physicochemical and emulsifying properties of modified waxy maize starch obtained through a new environmentally friendly method of esterification were evaluated. The starch modification was carried out in NaOH solution with different levels of octanoyl, myristoyl, and stearoyl chlorides. Increasing the fatty acid chlorides concentration led to the degree of substitution increment, while reaction efficiency and yield decreased. Based on fourier transform infrared spectroscopy results, the presence of two new bands of carbonyl (1740-1750 cm-1) and carboxyl (1570 cm-1) groups in the ester bond confirmed the successful starch esterification process. The level of 0.1 mL fatty acid chlorides/g of starch demonstrated the highest emulsifying properties. Upon esterification, the crystalline structure of amylopectin was destroyed, indicating no gelatinization features. Therefore, using the fatty acid chlorides in an alkaline condition could be suggested as a feasible way to modify waxy maize starch toward hydrophobicity increment with desirable properties.
Collapse
Affiliation(s)
- Marzieh Mirzaaghaei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Ali Nasirpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran.
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Stephane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Univeristé de Lorraine, 2 Avenue de la Forêt de Haye TSA40602, F-54518 Vandoeuvre-lès-Nancy, France
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
18
|
Chen X, Zhang Z, Ji N, Li M, Wang Y, Xiong L, Sun Q. The effect of ethanol solution annealing on the physicochemical properties of pea and potato starches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Parra DO, Daza Ramírez LD, Sandoval‐Aldana A, Eim VS, Váquiro HA. Annealing treatment of ulluco starch: Effect of moisture content and time on the physicochemical properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela O. Parra
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
| | - Luis Daniel Daza Ramírez
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
- Departamento de Química Universidad de las Islas Baleares Palma de Mallorca Spain
| | - Angélica Sandoval‐Aldana
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
| | - Valeria S. Eim
- Departamento de Química Universidad de las Islas Baleares Palma de Mallorca Spain
| | - Henry A. Váquiro
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
| |
Collapse
|
20
|
Xu H, Fu X, Ding Z, Kong H, Ding S. Effect of ozone and high‐pressure homogenization on the physicochemical, functional, and in vitro digestibility properties of lily starch. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haishan Xu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Xincheng Fu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Zemin Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Hui Kong
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Shenghua Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| |
Collapse
|
21
|
Fonseca LM, Halal SLME, Dias ARG, Zavareze EDR. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr Polym 2021; 274:118665. [PMID: 34702484 DOI: 10.1016/j.carbpol.2021.118665] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Heat-moisture treatment (HMT) and annealing are hydrothermal starch modifications. HMT is performed using high temperature and low moisture content range, whereas annealing uses excess of water, a long period of time, and temperature above the glass transition and below the gelatinization temperature. This review focuses on: research advances; the effect of HMT and annealing on starch structure and most important properties; combined modifications; and HMT-starch and annealed-starch applications. Annealing and HMT can be performed together or combined with other modifications. These combinations contribute to new applications in different areas. The annealed and HMT-starches can be used for pasta, candy, bakery products, films, nanocrystals, and nanoparticles. HMT has been studied on starch digestibility and promising data have been reported, due to increased content of slowly digestible and resistant starches. The starch industry is in constant expansion, and modification processes increase its versatility, adapting it for different purposes in food industries.
Collapse
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Shanise Lisie Mello El Halal
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
22
|
Cui C, Ji N, Wang Y, Xiong L, Sun Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Kayode BI, Kayode RM, Salami KO, Obilana AO, George TT, Dudu OE, Adebo OA, Njobeh PB, Diarra SS, Oyeyinka SA. Morphology and physicochemical properties of starch isolated from frozen cassava root. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Caldonazo A, Almeida SL, Bonetti AF, Lazo REL, Mengarda M, Murakami FS. Pharmaceutical applications of starch nanoparticles: A scoping review. Int J Biol Macromol 2021; 181:697-704. [PMID: 33766602 DOI: 10.1016/j.ijbiomac.2021.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Starch nanoparticles (SNPs) have been applied to different areas of material sciences, especially in pharmaceuticals due to their characteristics such as small particle size, high surface ratio-volume, and biological compatibility. However, in pharmaceutical sciences, there are no records of a scoping review that had extensively mapped all available information about SNPs. A scoping review was performed here by searching electronic databases (Pubmed and Science Direct) to identify studies published previous to June 2020. From 699 total records, 37 matched the criteria for inclusion. The findings showed that SNPs have been used, not only for the development of different active pharmaceutical ingredient delivery systems, but also as an enzyme inhibitor, adsorption, and DNA precipitation agent. In conclusion, by combining different starch sources and methods SNPs show a remarkable diversity in pharmaceutical applications. Future studies should explore SNPs safety and provide information about variables that may affect important properties for this kind of application.
Collapse
Affiliation(s)
- Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil.
| | - Susana Leao Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Aline F Bonetti
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Fabio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
25
|
Oyeyinka SA, Oyedeji AB, Ogundele OM, Adebo OA, Njobeh PB, Kayitesi E. Infrared heating under optimized conditions enhanced the pasting and swelling behaviour of cowpea starch. Int J Biol Macromol 2021; 184:678-688. [PMID: 34174303 DOI: 10.1016/j.ijbiomac.2021.06.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/15/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Native starches are not suitable for industrial use and must be modified for improved functionality. In this study, the effect of moisture preconditioning and infrared heating time on physicochemical properties of cowpea starch was investigated using a two-factor central composite rotatable design. Factors (moisture levels:10-40 g/100 g starch and infrared heating time:10-60 min) with their corresponding α mid-point values resulted in 13 experimental runs. Selected functional and pasting properties were determined as response variables. Starch samples produced under optimized conditions were compared with corn starch and their physicochemical properties determined. Except for pasting temperature, cowpea starch prepared using the optimal conditions (moisture: 46.21 g/100 g starch, dry basis and heating time of 32.88 min) had higher functional and pasting properties compared with the native cowpea starch. Infrared heating significantly reduced the gelatinization temperatures of cowpea starch but did not significantly change that of the corn starch. The crystallinity and double-helical order structure of moisture conditioned cowpea starch also reduced after modification. Cowpea starch showed a bigger granule size, higher swelling power but lower water absorption capacities and pasting properties compared with the control. The infrared heating process is a novel and promising modification method for improving the swelling properties of starch.
Collapse
Affiliation(s)
- Samson A Oyeyinka
- Departement of Biotechnology and Food Technology, University of Johannesburg, Doornfontein, Johannesburg, South Africa.
| | - Ajibola B Oyedeji
- Departement of Biotechnology and Food Technology, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Opeolu M Ogundele
- Departement of Biotechnology and Food Technology, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Oluwafemi A Adebo
- Departement of Biotechnology and Food Technology, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Patrick B Njobeh
- Departement of Biotechnology and Food Technology, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Eugénie Kayitesi
- Department of Consumer and Food Sciences, University of Pretoria, South Africa.
| |
Collapse
|
26
|
Liang S, Hong Y, Gu Z, Cheng L, Li C, Li Z. Effect of debranching on the structure and digestibility of octenyl succinic anhydride starch nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Chang R, Lu H, Bian X, Tian Y, Jin Z. Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization. Int J Biol Macromol 2020; 155:598-604. [DOI: 10.1016/j.ijbiomac.2020.03.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023]
|
29
|
Oh SM, Lee BH, Seo DH, Choi HW, Kim BY, Baik MY. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans. Food Sci Biotechnol 2020; 29:585-598. [PMID: 32419957 PMCID: PMC7221041 DOI: 10.1007/s10068-020-00768-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Enzymatic hydrolysis and self-assembly are considered promising methods for preparation of starch nanoparticles (SNPs) because they are environmentally friendly, and time- and cost-effective. These methods are based on the self-assembly of short-chain glucans released from the α-1,6 bonds in amylopectin. Since their discovery, many studies have described the structural and physicochemical properties of self-assembled SNPs. Self-assembled SNPs can be prepared by two methods: using only the soluble portion containing the short-chain glucans, or using the whole hydrolyzate including both insoluble and soluble fractions. Although the structural and physical properties of self-assembled SNPs can be attributed to the composition of the hydrolyzates that participate in self-assembly, this aspect has not yet been discussed. This review focuses on SNPs self-assembled with only soluble short-chain glucans and addresses their characteristics, including formation mechanisms as well as structural and physicochemical properties, compared with SNPs prepared with total hydrolyzates.
Collapse
Affiliation(s)
- Seon-Min Oh
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyun-Wook Choi
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Republic of Korea
| | - Byung-Yong Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
30
|
Niu W, Pu H, Liu G, Fang C, Yang Q, Chen Z, Huang J. Effect of repeated heat-moisture treatments on the structural characteristics of nanocrystals from waxy maize starch. Int J Biol Macromol 2020; 158:732-739. [PMID: 32360966 DOI: 10.1016/j.ijbiomac.2020.04.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
The effect of repeated heat-moisture treatment (RHMT) on the structural characteristics of waxy maize starch nanocrystals was investigated. Compared with native waxy maize starch (WMS), waxy maize starch nanocrystals (WMSNs) changed the crystalline pattern from A-type to B-type, and displayed the lower crystallinity (RC), molecular order (MO), enthalpy (∆H) and double-helix (DH) content, indicating a reduction in the long- and short-range orders of starch molecules. Single heat-moisture treatment significantly increased values, including RC, MO, α (power law exponent obtained by SAXS), ∆H, DH, and the melting temperatures (To, Tp and Tc), while repeated heat-moisture treatment further increased values of these parameters except ∆H, indicating the reinforcement of the long- and short-range orders of WMSNs. In addition, repeated heat-moisture treatment also caused a gradual conversion from B-type to "A + B"-type (Cb, Cc to Ca polymorphs in sequence) and finally to A-type crystallites.
Collapse
Affiliation(s)
- Wei Niu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China; Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China
| | - Huayin Pu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China; Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China.
| | - Gemei Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China; Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China
| | - Chenlu Fang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China; Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China
| | - Qi Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China; Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China
| | - Zhiguang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China; Department of Agricultural Technology, Neijiang Vocational and Technical College, Dongxing District, 641000 Neijiang, Sichuan Province, China; Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China
| | - Junrong Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China; Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Weiyang District, 710021 Xi'an, Shaanxi Province, China.
| |
Collapse
|
31
|
Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release 2019; 313:1-13. [PMID: 31622690 DOI: 10.1016/j.jconrel.2019.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
Non-invasive means of insulin administration circumvent some of the inconveniences of injections. Oral administration in particular is convenient, pain-free, and allows favorable glucose homeostasis, but is subject to chemical instability, enzymatic degradation, and poor gastrointestinal absorption. Natural polymeric nanoparticles have emerged as a promising oral delivery system for peptide therapeutics due their safety, biocompatibility, and stability. In this study, self-assembled nanocomposites from chitosan (CS) and insulin-loaded, zein-carboxymethylated short-chain amylose (IN-Z-CSA) nanocomposites were synthesized to improve oral bioavailability of insulin. The optimized IN-Z-CSA/CS0.2% nanocomposites exhibited an average size of 311.32±6.98 nm, a low polydispersity index (0.227±0.01), a negative zeta potential (43.77±1.36 mV), an encapsulation efficiency of 89.6±0.9%, and a loading capacity of 6.8±0.4%. The IN-Z-CSA/CS0.2% nanocomposites were stable in storage conditions. The transepithelial permeability of the N-Z-CSA/CS0.2% nanocomposites was 12-fold higher than that of insulin. Cellular uptake studies revealed that the IN-Z-CSA/CS0.2% nanocomposites were internalized into Caco-2 cells by both endocytosis and a paracellular route. Additionally, in pharmacological studies, orally administered IN-Z-CSA/CS0.2% nanocomposites had a stronger hypoglycemic effect with a relative bioavailability of 15.19% compared with that of IN-Z-CSA1.0% nanocomposites. Furthermore, cell toxicity and in vivo tests revealed that the IN-Z-CSA/CS0.2% nanocomposites were biocompatible. Overall, these results indicate that the IN-Z-CSA/CS0.2% nanocomposites can improve oral bioavailability of insulin and are a promising delivery system for insulin or other peptide/protein drugs.
Collapse
|
32
|
A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Iuga M, Mironeasa S. A review of the hydrothermal treatments impact on starch based systems properties. Crit Rev Food Sci Nutr 2019; 60:3890-3915. [DOI: 10.1080/10408398.2019.1664978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|