1
|
White S, Jackson-Davis A, Gordon K, Morris K, Dudley A, Abdallah-Ruiz A, Allgaier K, Sharpe K, Yenduri AK, Green K, Santos F. A Review of Non-thermal Interventions in Food Processing Technologies. J Food Prot 2025; 88:100508. [PMID: 40222655 DOI: 10.1016/j.jfp.2025.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Foodborne pathogens and spoilage microorganisms continue to be a concern throughout the food industry. As a result, these problematic microorganisms are the cause of foodborne outbreaks, foodborne illness, and premature spoilage-related issues. To address these, thermal technologies have been applied and have a documented history of controlling these microorganisms. Although beneficial, some of these technologies may result in adverse quality effects that can interfere with consumer acceptability. Processors of fresh produce also need technologies to mitigate pathogens with the ability to retain raw quality. In addition, thermal technologies can also result in the reduction or depletion of key nutrients. Consumers of today are health conscious and are concerned with key nutrients in food products necessary for their overall health; this reduction and depletion of nutrients could be considered unacceptable in the eyes of consumers. As a result of this, the food industry works to increase the use of nonthermal technologies to control pathogens and spoilage microorganisms in varying sections of the industry. This review paper will focus on the control of foodborne pathogens and spoilage organisms along with the effects on quality in various food products by the use of pulsed electric field, pulsed light, ultraviolet light, ozonation, cold atmospheric plasma, ultrasound, and ionizing radiation.
Collapse
Affiliation(s)
- Shecoya White
- Mississippi State University, Mississippi State, Mississippi 39762, United States.
| | - Armitra Jackson-Davis
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | - Kenisha Gordon
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kala Morris
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Aaron Dudley
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | | | - Katie Allgaier
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kyle Sharpe
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Ajay Kumar Yenduri
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kaylyn Green
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | - Fernanda Santos
- North Carolina State University, Raleigh, NC 27607, United States
| |
Collapse
|
2
|
Çalışkan Koç G, Özkan Karabacak A, Süfer Ö, Adal S, Çelebi Y, Delikanlı Kıyak B, Öztekin S. Thawing frozen foods: A comparative review of traditional and innovative methods. Compr Rev Food Sci Food Saf 2025; 24:e70136. [PMID: 39970035 PMCID: PMC11838820 DOI: 10.1111/1541-4337.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Due to the changing consumer lifestyles, the tendency to adopt foods that require less preparation time and offer both variety and convenience has played a significant role in the development of the frozen food industry. Freezing is one of the fundamental food preservation techniques, as it maintains high product quality. Freezing reduces chemical and enzymatic reactions, lowers water activity, and prevents microbial growth, thereby extending the shelf life of foods. The freezing and thawing procedures directly impact the quality of frozen foods. The degree of tissue damage is determined by the freezing rate and the structure of the ice crystals that form during the freezing process. Generally, thawing occurs more slowly than freezing. During thawing, microorganisms, as well as chemical and physical changes, can cause nutrient damage. Thus, the goal of this review is to identify innovative and optimal thawing strategies. In order to save energy and/or improve quality, new chemical and physical thawing aids are being developed alongside emerging techniques such as microwave-assisted, ohmic-assisted, high pressure, acoustic thawing, and so on. In addition to discussing the possible uses of these technologies for the thawing process and their effects on food quality, the purpose of this study is to present a thorough comparative overview of recent advancements in thawing techniques.
Collapse
Affiliation(s)
- Gülşah Çalışkan Koç
- Eşme Vocational School, Food Processing Department, Food Technology ProgramUşak UniversityUşakTürkiye
| | - Azime Özkan Karabacak
- Gemlik Asim Kocabiyik Vocational School, Food Technology ProgramBursa Uludag UniversityBursaTürkiye
| | - Özge Süfer
- Food Engineering DepartmentOsmaniye Korkut Ata UniversityOsmaniyeTürkiye
| | - Samiye Adal
- Department of Food Engineering, Faculty of Engineering; Food Control, Application and Research CenterAfyon Kocatepe UniversityAfyonkarahisarTürkiye
| | - Yasemin Çelebi
- Eşme Vocational School, Food Processing Department, Food Technology ProgramUşak UniversityUşakTürkiye
| | - Berrak Delikanlı Kıyak
- Deparment of Food Processing/Vocational School of IznikBursa Uludag UniversityBursaTürkiye
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of EngineeringBayburt UniversityBayburtTürkiye
| |
Collapse
|
3
|
Xiang X, Dong S, Chen L, Liu Y, Wu Y, Yu M, Hu G, Li S, Ye L. The improvement of gel properties and volatiles for frozen egg white melted assisted with ultrasound. Food Res Int 2024; 197:115152. [PMID: 39593364 DOI: 10.1016/j.foodres.2024.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
The variation in thawing time, deterioration behavior, secondary structure, surface hydrophobicity, and average particle size of frozen egg whites (EW) thawed with or without ultrasound were characterized to evaluate the effect of ultrasound on the gel properties and volatiles of egg white thermogel (EWG). The texture, water holding capacity, etc., gel properties and microstructure were well maintained in frozen EW thawed by ultrasound (UEW) resulted from the mitigation of deterioration behavior due to shorter melting time (reduced 91.3 %). Moreover, the deterioration of VOCs in fresh EWG due to freeze-thawing could be mitigated when thawed using ultrasound. Meanwhile, the formation of pleasant VOCs and reduction in unpleasant VOCs in EWG were also promoted by ultrasound-assisted thawing. The improvement mechanism of gel properties and volatiles for (frozen) egg white melted assisted with ultrasound were systematically elucidated and this study provided a new insight into improvement of VOCs in frozen food.
Collapse
Affiliation(s)
- Xiaole Xiang
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Shiqin Dong
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Le Chen
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Yongle Liu
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Yingqun Wu
- School of Medicine and Health Management, Guizhou Medical University, Guiyang 550025, China.
| | - Meijuan Yu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Gan Hu
- Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
4
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Effects of ultrasound-assisted immersion thawing in plasma-activated water on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi. Food Chem 2024; 460:140424. [PMID: 39033636 DOI: 10.1016/j.foodchem.2024.140424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
This work investigated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi using fresh sample as control. The thawing time of UPT samples was significantly reduced by 81.15% compared to AT treatment (P < 0.05). The thawing loss of UPT samples was 1.55% significantly lower than AT samples (4.51%) (P < 0.05). In addition, UPT samples had the least cooking loss and centrifugal loss. UPT treatment reduced the conversion of bound and immobilized water to free water and resulted in more uniform water distribution. UPT treatment significantly decreased the thiobarbituric acid reactive substances (TBARS) value and carbonyl content and increased the total sulfhydryl content of the samples (P < 0.05). In conclusion, UPT treatment increased the thawing rate and retarded the lipid and protein oxidation, resulting in better maintenance of quality characteristics of porcine longissimus dorsi than other thawing methods.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Zhang J, Zhao R, Zhang Y, Wang H, Song Z, Xing R, Lu J, Ding C. Effects of Discharge Parameters on the Thawing Characteristics and Physicochemical Properties of Beef in a Dielectric Barrier Discharge (DBD) System. Foods 2024; 13:3360. [PMID: 39517143 PMCID: PMC11544901 DOI: 10.3390/foods13213360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Traditional thawing techniques can cause certain losses to beef quality. Due to the increasing demand for high-quality beef, there is an urgent need to research new thawing techniques. Dielectric barrier discharge (DBD), as an innovative non-thermal thawing technology, still has a lot of work to be studied. In order to explore the influence of DBD on the thawing characteristics and quality of beef, different discharge parameters were used for thawing. The results show that voltage and needle distance have significant effects on ion wind speed and composition. Ion wind can improve the thawing rate, and the thawing time of DBD is 50% shorter than that of natural thawing. DBD improved the water-holding capacity, nutritional components, and color of beef, and the ordered structure of beef protein could be improved by 6.25% at most. The plasma emission spectrum shows that the plasma produced by DBD is mainly active substances of nitrogen and oxygen, which can reduce the fat oxidation of thawed beef and improve the quality of beef. This work provides the theoretical basis and practical guidance for deeply understanding the influencing parameters and thawing mechanism of DBD thawing technology.
Collapse
Affiliation(s)
- Jie Zhang
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010051, China; (J.Z.); (Z.S.)
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Rui Zhao
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Yaming Zhang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Huixin Wang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Zhiqing Song
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010051, China; (J.Z.); (Z.S.)
| | - Ru Xing
- School of Physical Science and Technology, Baotou Teacher’s College, Baotou 014030, China;
| | - Jingli Lu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China; (R.Z.); (Y.Z.); (H.W.)
| | - Changjiang Ding
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010051, China; (J.Z.); (Z.S.)
| |
Collapse
|
6
|
Li X, Zhou Y, Dong H, Sun T, Liu Y, Cheng S, Chen G. Effects of ultrasonication and freeze-thaw pretreatments on the vacuum freeze-drying process and quality characteristics of apricot ( Prunus armeniaca L. cv. Diaoganxing). Food Chem X 2024; 22:101357. [PMID: 38623517 PMCID: PMC11016973 DOI: 10.1016/j.fochx.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
The combination of pretreatment and vacuum freeze-drying (VFD) technology is an effective technique for extending the shelf life of apricots, reducing costs and energy consumption. However, the impact of pretreatment on the freeze-drying and quality characteristics of apricots is still unclear. The effects of ultrasound (US), freeze-thaw (FT), and their combination (FT-US) on water migration and quality characteristics of apricot slices on VFD were studied. LR-NMR and SEM showed that pretreatment significantly reduced the time (19.05%-33.33%) and energy consumption (17.67%-35.66%) of the VFD process. Compared with the control group, the US, FT, and FT-US improved the color, texture, rehydration ability, and flavor of apricot slices. Among them, FT-US retained the most biologically active substances and antioxidant capacity, with the highest sensory score. Overall, FT-US pretreatment induced changes in the microstructure and chemistry of apricots, which contributed to the production of high-quality VFD apricot slices.
Collapse
Affiliation(s)
- Xin Li
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Yan Zhou
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Hao Dong
- Shihezi Testing Institute of Quality and Metrology, Shihezi 832000, PR China
| | - Tongrui Sun
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Yuxing Liu
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Shaobo Cheng
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Guogang Chen
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| |
Collapse
|
7
|
Rosales Pérez A, Esquivel Escalante K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024; 89:e202300660. [PMID: 38369655 DOI: 10.1002/cplu.202300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Sonochemistry is the use of ultrasonic waves in an aqueous medium, to generate acoustic cavitation. In this context, sonochemistry emerged as a focal point over the past few decades, starting as a manageable process such as a cleaning technique. Now, it is found in a wide range of applications across various chemical, physical, and biological processes, creating opportunities for analysis between these processes. Sonochemistry is a powerful and eco-friendly technique often called "green chemistry" for less energy use, toxic reagents, and residues generation. It is increasing the number of applications achieved through the ultrasonic irradiation (USI) method. Sonochemistry has been established as a sustainable and cost-effective alternative compared to traditional industrial methods. It promotes scientific and social well-being, offering non-destructive advantages, including rapid processes, improved process efficiency, enhanced product quality, and, in some cases, the retention of key product characteristics. This versatile technology has significantly contributed to the food industry, materials technology, environmental remediation, and biological research. This review is created with enthusiasm and focus on shedding light on the manifold applications of sonochemistry. It delves into this technique's evolution and current applications in cleaning, environmental remediation, microfluidic, biological, and medical fields. The purpose is to show the physicochemical effects and characteristics of acoustic cavitation in different processes across various fields and to demonstrate the extending application reach of sonochemistry. Also to provide insights into the prospects of this versatile technique and demonstrating that sonochemistry is an adapting system able to generate more efficient products or processes.
Collapse
Affiliation(s)
- Alicia Rosales Pérez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro Centro Universitario, Santiago de Querétaro, 76010, Mexico
| | - Karen Esquivel Escalante
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, 76010, Mexico
| |
Collapse
|
8
|
Lei W, Zhu Y, Zhu X, Huang Y, Liu L, Lü M, Sun B. Effect of ultrasound treatment on thawing process of frozen tofu prepared with different salt coagulants. ULTRASONICS SONOCHEMISTRY 2023; 99:106578. [PMID: 37678065 PMCID: PMC10494460 DOI: 10.1016/j.ultsonch.2023.106578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
This study investigated the effects of ultrasound-assisted water thawing (UWT) at different power levels (0, 100, 150, 200, and 250 W) on the thawing rate and gel properties of frozen tofu made using three different salt coagulants (CaCl2, CaSO4, and MgCl2). Tofu produced with CaCl2 and CaSO4 elicited gel structures with dense and homogeneous networks, while that with MgCl2 had rough pores and irregular networks. UWT treatment significantly decreased thawing time by 30.9-53.5% compared to the control. Water holding capacity and scanning electron microscopy analyses demonstrated that UWT-100, UWT-150, and UWT-200 should be used to increase the amount of fixed water for CaCl2, CaSO4, and MgCl2. These findings suggest that appropriate ultrasonic treatment could improve the water retention capacity of the tofu network and make the gel network structure more compact. Additionally, protein structural analysis showed a decrease in the exposure of hydrophobic groups and reduced protein denaturation when tofu prepared with all the coagulants were thawed with UWT energies of 100-200 W ultrasonication. These findings offer theoretical support for improving the frozen tofu thawing process while ensuring optimal final product quality.
Collapse
Affiliation(s)
- Wenhua Lei
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Mingshou Lü
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Binyu Sun
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
9
|
Liu F, Wu W, Chen S, Wang H, Zhou Z. Experimental study on a novel vacuum sublimation-rehydration thawing of frozen potatoes. J Food Sci 2023; 88:4146-4155. [PMID: 37623918 DOI: 10.1111/1750-3841.16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
To realize a quick thawing of frozen potatoes, the experimental investigation of thawing performance was conducted by using a novel vacuum sublimation-rehydration thawing (VSRT) in this study. Frozen diced potatoes (20 mm × 20 mm × 20 mm) with a total mass of 1.5 kg were selected as the thawing object. The center temperature of the frozen diced potato was raised from -18°C to 5°C to assess the beginning and end of thawing. The effects of sublimation time, heating plate temperature, and rehydration temperature on thawing time of frozen potatoes were experimentally studied. The VSRT and vacuum steam thawing (VST) were compared in terms of thawing time, hardness, and specific energy consumption. The results showed that the conditions of sublimation time of 25 min, heating plate temperature of 30°C, and rehydration temperature of 100°C could effectively shorten the thawing time of VSRT for thawing frozen potatoes. The thawing time of VSRT was only 49% of that of VST. Compared to the hardness of frozen potatoes thawed by VST, the hardness of frozen potatoes thawed by VSRT was closer to that of blanched (unfrozen) potatoes. The specific energy consumption of VSRT was lower than that of VST. PRACTICAL APPLICATION: The quality of frozen potatoes is directly affected by the thawing method used. A novel vacuum sublimation-rehydration thawing was conducted in this study, which can provide a new idea for a reasonable, effective, and quick thawing method for frozen potatoes.
Collapse
Affiliation(s)
- Fangran Liu
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weidong Wu
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shanshan Chen
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hao Wang
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhigang Zhou
- Shanghai General Cooling Technology Company Limited, Shanghai, China
| |
Collapse
|
10
|
Li M, Zhou C, Wang B, Zeng S, Mu R, Li G, Li B, Lv W. Research progress and application of ultrasonic- and microwave-assisted food processing technology. Compr Rev Food Sci Food Saf 2023; 22:3707-3731. [PMID: 37350041 DOI: 10.1111/1541-4337.13198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Microwaves are electromagnetic waves of specific frequencies (300 MHz-3000 GHz), whereas ultrasonic is mechanical waves of specific frequencies. Microwave and ultrasonic technology as a new processing method has been widely used in food processing fields. Combined ultrasonic and microwave technology is exploited by researchers as an improvement technique and has been successfully applied in food processing such as thawing, drying, frying, extraction, and sterilization. This paper overviews the principle and characteristics of ultrasonic- and microwave-assisted food processing techniques, particularly their combinations, design of equipment, and their applications in the processing of agricultural products such as thawing, drying, frying, extraction, and sterilization. The combination of ultrasonic and microwave is applied in food processing, where microwave enhances the heating rate, and ultrasonic improves the efficiency of heat and mass transfer. The synergy of the heating effect of microwave and the cavitation effect of ultrasonic improves processing efficiency and damages the cell structure of the material. The degradation of nutrient composition and energy consumption due to the short processing time of combined ultrasonic and microwave technology is decreased. Ultrasonic technology, as an auxiliary means of efficient microwave heating, is pollution-free, highly efficient, and has a wide range of applications in food processing.
Collapse
Affiliation(s)
- Mengge Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, New South Wales, Australia
| | - Shiyu Zeng
- College of Engineering, China Agricultural University, Beijing, China
| | - Rongyi Mu
- College of Engineering, China Agricultural University, Beijing, China
| | - Guohua Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Bingzheng Li
- Guangxi Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Yanclo LA, Belay ZA, Sigge GO, Caleb OJ. Impact of electrolyzed water as pre-treatments on drying properties and total colour difference of fresh-cut 'Tommy Atkins' mangoes. Heliyon 2023; 9:e18555. [PMID: 37560658 PMCID: PMC10407149 DOI: 10.1016/j.heliyon.2023.e18555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Mango fruits are a rich source of nutrients, however, due to their perishability and seasonality, minimal processing and drying offer the potential ensure a shelf stable and safe product. The use of sodium metabisulphite (SMB) as pre-treatment in the dried fruit industry has been widely adopted, but sulphite residue remains a health public concern. Therefore, this study investigated the effects of alkaline and acidic electrolyzed water (AIEW and AEW, mg/mL) as alternative pre-treatments to SMB (1% w/w) for 'Tommy Atkins' mango slices prior to hot air drying at 60 °C. Fresh-cut and untreated samples were used as a control. During the drying process the weight of the slices were monitored every 60 min for 10 h, which was used to calculate moisture ratio (MR), drying rate (DR), and the experimental data of the samples were subjected to eight thin layer models. Colour parameters (L*, a*, and b*) were measured, and use to determine colour intensity (C*), hue angle (h°), and total colour difference (TCD) before and after drying. Based on measured weight, continuous decline in MR was recorded for all dried mango slices over the drying time irrespective on treatment. Out of the eight applied thin layer models Henderson & Pabis and Logarithmic were the best appropriate models describing and predicting the drying behavior of 'Tommy Atkins' mangoes (R2 = 0.94, RMSE ≥ 0.0006). Samples treated with AEW treated samples had lowest L*, h°, and TCD values (p < 0.05). No significant different were found in h° values amongst all pre-treated and dried samples (p > 0.05), but these samples were significantly different from dried untreated (control) and fresh samples (p < 0.05). Pre-treatments maintained the visual quality of dried 'Tommy Atkins' mango slices; SMB > AIEW > AEW > untreated (control). This study provided science-based evidence for the application of acidic and alkaline electrolyzed water as an alternative pre-treatment to sodium metabisulphite for the drying of 'Tommy Atkins' mango.
Collapse
Affiliation(s)
- Loriane A. Yanclo
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- African Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Zinash A. Belay
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Gunnar O. Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Oluwafemi J. Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- African Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
12
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Zhang Z, Shi W, Wang Y, Meng X, Dabbour M, Kumah Mintah B, Chen X, Chen X, He R, Ma H. Mono-frequency ultrasonic-assisted thawing of frozen goose meat: Influence on thawing efficiency, product quality and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 98:106489. [PMID: 37354765 PMCID: PMC10320251 DOI: 10.1016/j.ultsonch.2023.106489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
This study aimed to investigate the influences of mono-ultrasound assisted thawing on the thawing efficiency, product quality and conformational characteristics of frozen goose meat. The thawing time, thawing loss, muscle quality, and microstructure of frozen goose meat were studied. The results displayed that ultrasonic-assisted thawing effectively reduced the thawing time by 45.37-57.58% compared with non-sonicated group, and significantly decreased the thawing loss. For the quality properties of goose meat tissue, ultrasound-assisted thawing with single-frequency of 50 kHz indicated a lower protein turbidity; meanwhile, hardness values were also significantly increased, and displayed a higher springiness, gumminess and chewiness of goose meat tissue. The microstructure analysis exhibited that the conformation of goose myofibrillar protein (MP) was modified following ultrasonic-assisted thawing, and became closer and more irregular. Therefore, ultrasound-assisted thawing treatments at 50 kHz mono-frequency (temperature 25℃) have a high potential application value in the thawing research of frozen goose meat, and lay a theoretical foundation for use in the meat process industries.
Collapse
Affiliation(s)
- Zhaoli Zhang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wangbin Shi
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yang Wang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xiangren Meng
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Xingyu Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xi Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
14
|
Jiang Q, Zhang M, Mujumdar AS. Application of physical field-assisted freezing and thawing to mitigate damage to frozen food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2223-2238. [PMID: 36208477 DOI: 10.1002/jsfa.12260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Freezing is an effective technique to prolong the storage life of food. However, the freeze-thaw process also brings challenges to the quality of food, such as mechanical damage and freeze cracks. Increasingly, physical fields have been preferred as a means of assisting the freezing and thawing (F/T) processes to improve the quality of frozen food because of their high efficiency and simplicity of application. This article systematically reviews the application of high-efficiency physical field techniques in the F/T of food. These include ultrasound, microwave, radio frequency, electric fields, magnetic fields, and high pressure. The mechanisms, application effects, advantages and disadvantages of these physical fields are discussed. To better understand the role of various physical fields, the damage to food caused by the F/T process and traditional freezing is discussed. The evidence shows that the physical fields of ultrasound, electric field and high pressure have positive effects on the F/T of food. Proper application can control the size and distribution of ice crystals effectively, shorten the freezing time, and maintain the quality of food. Microwave and radio frequency exhibit positive effects on the thawing of food. Dipole rotation and ion oscillation caused by electromagnetic waves can generate heat inside the product and accelerate thawing. The effects of magnetic field on F/T are controversial. Although some physical field techniques are effective in assisting F/T of food, negative phenomena such as uneven temperature distribution and local overheating often occur at the same time. The generation of hotspots during thawing can damage the product and limit application of these techniques in industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Chen B, Zhang M, Wang Y, Mujumdar AS, Yu D, Luo Z. Freezing of green peppers assisted by combined electromagnetic fields: Effects on juice loss, moisture distribution, and microstructure after thawing. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Bing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University Wuxi Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing and Preservation Jiangnan University Wuxi Jiangsu China
| | - Yuchuan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University Wuxi Jiangsu China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald Campus McGill University Quebec Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd. Qingdao Shandong China
| | | |
Collapse
|
16
|
Wang YY, Wang H, Zhou F, Wu Y, Ma H, Zhao R, He J, Gu Z. Effect of ultrasonic thawing temperature on the quality of quick-frozen small yellow croaker (Larimichthys polyactis) and its possible mechanisms. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
18
|
Bassey EJ, Cheng JH, Sun DW. Thermoultrasound and microwave-assisted freeze-thaw pretreatments for improving infrared drying and quality characteristics of red dragon fruit slices. ULTRASONICS SONOCHEMISTRY 2022; 91:106225. [PMID: 36375374 PMCID: PMC9661387 DOI: 10.1016/j.ultsonch.2022.106225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/11/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The effects of thermoultrasound (US-FT), microwave (MW-FT), and room temperature (RT-FT) freeze-thaw pretreatments were evaluated for improving drying kinetics and quality during infrared drying (IRD) of red dragon fruit slices (RDFS). Results indicated that microstructural alterations induced by the different pretreatments improved the moisture removal rate and effective diffusivity, and significantly reduced the drying time. US-FT pretreatments prompted more efficient drying and presented an overall enhancement in the quality of RDFS, particularly at low temperatures of 25 and 50 ℃, while enhancements in TFC, FRAP, and CUPRAC were associated with RT-FT. High-power (500 W) MW-FT pretreatments improved colour and structural properties, while low-power (100, 300 W) improved TPC, TFC, ascorbic acid, betalains, and antioxidant activity. Overall, cellular and chemical alterations prompted by pretreatments improved the drying process but presented adverse effects on betaxanthin. The study presented the fundamental background for improving the IRD of foods from the use of improved thawing approaches during freeze-thaw pretreatments.
Collapse
Affiliation(s)
- Edidiong Joseph Bassey
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Xu C, Zang M, Qiao X, Wang S, Zhao B, Shi Y, Bai J, Wu J. Effects of ultrasound-assisted thawing on lamb meat quality and oxidative stability during refrigerated storage using non-targeted metabolomics. ULTRASONICS SONOCHEMISTRY 2022; 90:106211. [PMID: 36327923 PMCID: PMC9619372 DOI: 10.1016/j.ultsonch.2022.106211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the changes of ultrasound-assisted thawing on lamb meat quality and differential metabolite profiles during refrigerated storage. Compared with flow water thawing (FW), pH, a*, C*, and sulfhydryl content of lamb were significantly increased, while L*, drip loss and cooking loss were significantly decreased after ultrasound-assisted thawing (UT). On day 1 (UT1 and FW1) and day 7 (UT7 and FW7) in the UT and FW groups, principal component analysis explained 42.22% and 39.25% of the total variance. In this study, 44 (UT1 and FW1) and 47 (UT7 and FW7) differentially expressed metabolites were identified, including amino acids, carbohydrates and their conjugates, nucleic acids, carbonyl compounds and others. The results of this study provide data to clarify the differences between UT and FW, and lay a foundation for the application of ultrasound-assisted thawing in the meat industry.
Collapse
Affiliation(s)
- Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jiajia Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| |
Collapse
|
20
|
Aslam R, Alam MS, Kaur J, Panayampadan AS, Dar OI, Kothakota A, Pandiselvam R. Understanding the effects of ultrasound processng on texture and rheological properties of food. J Texture Stud 2022; 53:775-799. [PMID: 34747028 DOI: 10.1111/jtxs.12644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
The demand for the production of high quality and safe food products has been ever increasing. Consequently, the industry is looking for novel technologies in food processing operations that are cost-effective, rapid and have a better efficiency over traditional methods. Ultrasound is well-known technology to enhance the rate of heat and mass transfer providing a high end-product quality, at just a fraction of time and energy normally required for conventional methods. The irradiation of foods with ultrasound creates acoustic cavitation that has been used to cause desirable changes in the treated products. The technology is being successfully used in various unit operations such as sterilization, pasteurization, extraction, drying, emulsification, degassing, enhancing oxidation, thawing, freezing and crystallization, brining, pickling, foaming and rehydration, and so forth. However, the high pressure and temperature associated with the cavitation process is expected to induce some changes in the textural and rheological properties of foods which form an important aspect of product quality in terms of consumer acceptability. The present review is aimed to focus on the effects of ultrasound processing on the textural and rheological properties of food products and how these properties are influenced by the process variables.
Collapse
Affiliation(s)
- Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohammed Shafiq Alam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jaspreet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Afthab Saeed Panayampadan
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
21
|
Kutlu N, Pandiselvam R, Kamiloglu A, Saka I, Sruthi NU, Kothakota A, Socol CT, Maerescu CM. Impact of ultrasonication applications on color profile of foods. ULTRASONICS SONOCHEMISTRY 2022; 89:106109. [PMID: 35939925 PMCID: PMC9364028 DOI: 10.1016/j.ultsonch.2022.106109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 05/20/2023]
Abstract
Food color is a feature that provides preliminary information about their preference or consumption. There are dominant pigments that determine the color of each food; the most important pigments are anthocyanins (red-purple color), chlorophylls (green color), carotenoids (yellow-orange color), and betalains (red color). These pigments can be easily affected by temperature, light, oxygen, or pH, thereby altering their properties. Therefore, while processing, it is necessary to prevent the deterioration of these pigments to the maximum possible extent. Ultrasonication, which is one of the emerging non-thermal methods, has multidimensional applications in the food industry. The present review collates information on various aspects of ultrasonication technology, its mechanism of action, influencing factors, and the competence of different ultrasonication applications (drying, irradiation, extraction, pasteurization, cooking, tempering, etc.) in preserving the color of food. It was concluded that ultrasonication treatments provide low-temperature processing at a short time, which positively influences the color properties. However, selecting optimum ultrasonic processing conditions (frequency, power, time, etc.) is crucial for each food to obtain the best color. The key challenges and limitations of the technique and possible future applications are also covered in the paper, serving as a touchstone for further research in this area.
Collapse
Affiliation(s)
- Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Bayburt 69500, Turkey
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, Kerala, India.
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Irem Saka
- Department of Food Engineering, Ankara University, Ankara 06830, Turkey
| | - N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | | | | |
Collapse
|
22
|
Kong D, Quan C, Xi Q, Han R, Koseki S, Li P, Du Q, Yang Y, Forghani F, Wang J. Study on the quality and myofibrillar protein structure of chicken breasts during thawing of ultrasound-assisted slightly acidic electrolyzed water (SAEW). ULTRASONICS SONOCHEMISTRY 2022; 88:106105. [PMID: 35921713 PMCID: PMC9352963 DOI: 10.1016/j.ultsonch.2022.106105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 05/11/2023]
Abstract
The effects of air thawing (AT), water thawing (WT), slightly acidic electrolyzed water (ET), ultrasound-assisted water thawing (WUT) and ultrasound-assisted slightly acidic electrolyzed water (EUT) on the quality and myofibrillar protein (MP) structure of chicken breasts were investigated. The results showed that WUT and EUT could significantly improve the thawing rate compared with AT, WT, and ET groups. The EUT group not only had lower thawing loss, but also their immobilized and free water contents were similar to fresh sample according to the low-field nuclear magnetic resonance (LF NMR) results. The EUT treatment had no adverse effect on the primary structure of the protein. The secondary and tertiary structures of MP were more stable in the EUT group according to Raman and fluorescence spectra. The muscle fibers microstructure from EUT group was neater and more compact compared with other thawing methods. Therefore, EUT treatment could be considered as a novel potential thawing method in the food industry.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunli Quan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shige Koseki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Peng Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fereidoun Forghani
- Molecular Epidemiology, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
23
|
Ojeda GA, Sgroppo SC, Sánchez Moreno C, de Ancos Siguero B. Mango 'criollo' by-products as a source of polyphenols with antioxidant capacity. Ultrasound assisted extraction evaluated by response surface methodology and HPLC-ESI-QTOF-MS/MS characterization. Food Chem 2022; 396:133738. [PMID: 35872495 DOI: 10.1016/j.foodchem.2022.133738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023]
Abstract
Ultrasound assisted extraction (UAE) was evaluated as a green procedure for the recovery of phenolic compounds with antioxidant capacity from underutilized mango 'criollo' (peel, pulp and seed). Magnetic stirred was performed as conventional extraction. Response surface methodology using a three-factor (% ethanol, amplitude and time) central composite design was used to maximize the extraction for total phenolic compounds (TPC), total flavonoids and antioxidant capacity. The operational conditions to maximize extraction were: peel, 46% ethanol/amplitude 60% (36 µm)/6.5 min; pulp, 25% ethanol/amplitude 75% (45 µm)/30 min; seed 49% ethanol/100% (60 µm) amplitude/20 min. The phenolic composition of the optimized extracts was characterized by HPLC-QTOF-MS/MS and 45 compounds were tentatively identified as xanthones (mangiferin), flavonoids (quercetin), ellagic acid, benzophenones (maclurin), gallate derivatives and gallotannins. UAE increased TPC extraction (33%); interestingly mangiferin extraction increased 53% in peel, similarly, ellagic acid increased up to 2.5 and 4.4 times in peel and seed extracts.
Collapse
Affiliation(s)
- Gonzalo Adrián Ojeda
- Laboratorio de Tecnología Química y Bromatología, FaCENA, Universidad Nacional del Nordeste, Av. Libertad 5400, Corrientes, Argentina.
| | - Sonia Cecilia Sgroppo
- Laboratorio de Tecnología Química y Bromatología, FaCENA, Universidad Nacional del Nordeste, Av. Libertad 5400, Corrientes, Argentina
| | - Concepción Sánchez Moreno
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, Madrid, Spain
| | - Begoña de Ancos Siguero
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, Madrid, Spain
| |
Collapse
|
24
|
Ultrasonic-assisted flowing water thawing of frozen beef with different frequency modes: Effects on thawing efficiency, quality characteristics and microstructure. Food Res Int 2022; 157:111484. [DOI: 10.1016/j.foodres.2022.111484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
|
25
|
Ultrasound-assisted immersion thawing of prepared ground pork: Effects on thawing time, product quality, water distribution and microstructure. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Wang B, Bai X, Du X, Pan N, Shi S, Xia X. Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods 2022; 11:1368. [PMID: 35564090 PMCID: PMC9099600 DOI: 10.3390/foods11091368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of vacuum thawing (VT), ultrasound thawing (UT) and microwave thawing (MT) on the quality, protein and lipid oxidation, internal temperature distribution and microstructure of porcine longissimus lumborum were compared. The results showed that a significant decrease (p < 0.05) in quality compared with those of fresh meat (FM) occurred for all of the thawing samples, especially for the MT samples. Changes in quality of the VT and UT samples were less significant than those of the MT samples. The increases in carbonyl content and TBARS value indicated that proteins and lipids in the thawing samples were oxidized. The decreases in uniform degrees of internal temperature distributions of muscles from the thawing samples were analysed by infrared thermography. Scanning electron microscopy images showed that the myofibril arrangements of thawing samples were looser than those of the FM samples with compact and ordered structure, which was proven by the obvious increase in the myofibril gap value of the thawing samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.W.); (X.B.); (X.D.); (N.P.); (S.S.)
| |
Collapse
|
27
|
Xu B, Sylvain Tiliwa E, Yan W, Roknul Azam S, Wei B, Zhou C, Ma H, Bhandari B. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Res Int 2022; 152:110744. [DOI: 10.1016/j.foodres.2021.110744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023]
|
28
|
Cheng H, Bian C, Chu Y, Mei J, Xie J. Effects of Dual-Frequency Ultrasound-Assisted Thawing Technology on Thawing Rate, Quality Properties, and Microstructure of Large Yellow Croaker ( Pseudosciaena crocea). Foods 2022; 11:226. [PMID: 35053958 PMCID: PMC8775265 DOI: 10.3390/foods11020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
This research evaluated the effects of dual-frequency ultrasound-assisted thawing (UAT) on the thawing time, physicochemical quality, water-holding capacity (WHC), microstructure, and moisture migration and distribution of large yellow croaker. Water thawing (WT), refrigerated thawing (RT), and UAT (single-frequency: 28 kHz (SUAT-28), single-frequency: 40 kHz (SUAT-40), dual-frequency: 28 kHz and 40 kHz (DUAT-28/40)) were used in the current research. Among them, the DUAT-28/40 treatment had the shortest thawing time, and ultrasound significantly improved the thawing rate. It also retained a better performance from the samples, such as color, texture, water-holding capacity and water distribution, and inhibited disruption of the microstructure. In addition, a quality property analysis showed that the pH, total volatile basic nitrogen (TVB-N), and K value were the most desirable under the DUAT-28/40 treatment, as well as this being best for the flavor of the samples. Therefore, DUAT-28/40 treatment could be a possible thawing method because it improves the thawing rate and maintains the quality properties of large yellow croaker.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Chuhan Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Yuanming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
29
|
Ma Y, Li X, Sun P, Li J. Effect of ultrasonic thawing on gel properties of tuna myofibrillar proteins. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yingying Ma
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| | - Xiu‐xia Li
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| | - Pan Sun
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| | - Jian‐rong Li
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| |
Collapse
|
30
|
Chu Y, Tan M, Bian C, Xie J. Effect of ultrasonic thawing on the physicochemical properties, freshness, and protein-related properties of frozen large yellow croaker (Pseudosciaena crocea). J Food Sci 2021; 87:52-67. [PMID: 34897680 DOI: 10.1111/1750-3841.15983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Ultrasonic treatment (UT) was used to thaw large yellow croaker in this study, and the effect of various ultrasonic power levels on the quality of large yellow croaker was evaluated after thawing. The effects of ultrasonic on water holding capacity (WHC), moisture distribution, thiobarbituric acid-reactive substance (TBARs), total volatile base nitrogen (TVB-N), ATP degradation (related to K value), surface color change, free amino acid (FAA) content, total sulfhydryl group (SH) content, Fourier transform infrared absorption spectra (FT-IR), fluorescence emission spectra, and microscopic observations of large yellow croaker myofibrillar proteins were investigated. The thawing times of the control sample, 200UT, 240UT, 280UT, and 320UT samples were 1750, 1190, 810, 580, and 570 s, respectively, which indicated that ultrasonic radiation could improve thawing efficiency. Additionally, ultrasonic thawing maintained better freshness and color and inhibited lipid oxidation. Compared with fresh samples, the TVB-N of large yellow croaker thawed by ultrasonication increased by 12.68%, and the K value increased by 0.9%. The 240UT sample had tightly arranged myofibrils and fewer changes in the structures of myogenic fibrillar proteins than the fresh samples, and the SH content of 240UT was decreased by 8.17%. Use of excessive ultrasonic power (320 W) damaged the protein microstructure and the microstructure of large yellow croaker. In conclusion, sample 240UT maintained the quality of large yellow croaker better with minimal damage, which is recommended for rapid thawing. PRACTICAL APPLICATION: Ultrasonic waves improve the thawing efficiency of large yellow croaker and maintain the freshness and color of the fish. According to results, sample 240UT exhibited slight changes in the structure of the myofibril protein, but excessive ultrasonic power destroyed the microstructure and protein structure. Appropriate ultrasonic treatment to the thawing of fish has good prospects.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Mingtang Tan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Chuhan Bian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
31
|
Ultrasound thawing of mushroom (Agaricus bisporus): Effects on thawing rate, protein denaturation and some physical properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Flat dual-frequency sweeping ultrasound enhances the inactivation of polyphenol oxidase in strawberry juice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01202-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Khadhraoui B, Ummat V, Tiwari BK, Fabiano-Tixier AS, Chemat F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. ULTRASONICS SONOCHEMISTRY 2021; 76:105625. [PMID: 34147916 PMCID: PMC8225985 DOI: 10.1016/j.ultsonch.2021.105625] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Ultrasound has a significant effect on the rate of various processes in food, perfume, cosmetic, pharmaceutical, bio-fuel, materials, or fine chemical industries, despite some shortcomings. Combination with other conventional or innovative techniques can overcome these limitations, enhance energy, momentum and mass transfer, and has been successfully demonstrated in many recent studies. Various ultrasound combined hybrid and innovative techniques are systematically summarized in this review for the first time. Ultrasound can be combined with diverse conventional techniques including Soxhlet, Clevenger, enzyme, hydrotropes, ionic liquids, Deep Eutectic Solvents (DES) or Natural Deep Eutectic Solvents (NADES), to enhance mixing and micro-mixing, reduced thermal and concentration gradients, and selective extraction. Moreover, combinations of ultrasound with other innovative techniques such as microwave, extrusion, supercritical fluid, subcritical and pressure liquids, Instant controlled pressure drop (DIC), Pulsed Electric Field (PEF), Ultra-Violet (UV) or Infra-Red (IR) radiations, Counter-current chromatography (CCC), or centrifugal partition chromatographs (CPC) can enable reduced equipment size, faster response to process control, faster start-up, increased production, and elimination of process steps. The theories and applications of these ultrasound combined hybrid and innovative techniques as well as their advantages and limitations are compared, and further perspectives are proposed. This review provides new insights into advances in ultrasound combined techniques and their application at research, educational, and industrial level in modern food and plant-based chemistry.
Collapse
Affiliation(s)
- B Khadhraoui
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - V Ummat
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland
| | - B K Tiwari
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland.
| | - A S Fabiano-Tixier
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - F Chemat
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France.
| |
Collapse
|
34
|
Chen HZ, Zhang M, Rao Z. Effect of ultrasound-assisted thawing on gelling and 3D printing properties of silver carp surimi. Food Res Int 2021; 145:110405. [PMID: 34112408 DOI: 10.1016/j.foodres.2021.110405] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
The effects of ultrasound-assisted thawing (at ultrasonic frequencies of 45, 80 and 100 kHz) and water immersion thawing on gelling and 3D printing properties of silver carp surimi were examined. Ultrasound-assisted thawing (UT) can save 13.5%~40.4% time, and high ultrasonic frequency (80 kHz and 100 kHz) did not cause high thawing loss. Thawing at higher ultrasonic frequency could reduce the damage of the secondary and tertiary structure of myofibrillar proteins. No significant differences were observed for the main relaxation component (T22) and its peak area proportion (P22), and rheological properties, resulting in similar printing performance. After steam heating, cuboid samples in UT-100 kHz group kept the best geometrical shapes and had the highest hardness, springiness, and chewiness. Thus, ultrasound-assisted thawing provides a promising thawing method in food materials of 3D printing.
Collapse
Affiliation(s)
- Hui-Zhi Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
35
|
Xu B, Chen J, Yuan J, Azam SR, Zhang M. Effect of different thawing methods on the efficiency and quality attributes of frozen red radish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3237-3245. [PMID: 33222213 DOI: 10.1002/jsfa.10953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The thawing process is regarded as an essential step before the consumption of frozen foods. This study aimed to evaluate the possibility of ultrasound thawing of frozen red radish and to explore the characteristics of ultrasound thawing. The influence of low-frequency ultrasound (LFU) on the thawing efficiency of frozen red radish cylinders in air and water mediums was investigated. The effects of different ways of thawing, including air thawing (AT), water thawing (WT), refrigeration thawing (RT), ultrasound-assisted water thawing (UWT), and microwave thawing (MT) on the thawing time and quality of radish samples was studied. RESULTS The results showed that thawing time decreased remarkably in air and water mediums assisted by LFU. As the LFU power level increased, the thawing time decreased and the value of the drip loss increased. The firmness of thawed radish samples also decreased significantly compared with the fresh samples. Microwave thawing had the highest thawing rate, but the microstructure of MT radish samples was damaged severely, resulting in the highest drip loss, and the lowest firmness, and vitamin C content. In comparison with the AT, WT, and RT, a significant reduction in thawing time could be achieved for UWT (P < 0.05). Ultrasound-assisted water thawing exhibited the highest retention of color and vitamin C, and a lower destructive effect on the microstructure. CONCLUSION The results showed that LFU could be used as an efficient method to facilitate the thawing process of frozen red radishes, and better preserve the color, vitamin C, and microstructure of the final product. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoguo Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianan Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, China
| | - Sm Roknul Azam
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
Zhang C, Liu H, Xia X, Sun F, Kong B. Effect of ultrasound-assisted immersion thawing on emulsifying and gelling properties of chicken myofibrillar protein. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Nie J, Chen D, Lu Y, Dai Z. Effects of various blanching methods on fucoxanthin degradation kinetics, antioxidant activity, pigment composition, and sensory quality of Sargassum fusiforme. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Zhang C, Sun Q, Chen Q, Liu Q, Kong B. Effectiveness of ultrasound-assisted immersion thawing on the thawing rate and physicochemical properties of chicken breast muscle. J Food Sci 2021; 86:1692-1703. [PMID: 33884630 DOI: 10.1111/1750-3841.15699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
This study evaluated the effect of air thawing (AT), water thawing (WT), and ultrasound-assisted immersion thawing (UT) at different power levels (200, 300, 400, and 500 W) on the thawing rate, physicochemical properties, and protein structure of chicken breast muscle (pectoralis), and the weight of each sample was approximately 106 ± 3 g. UT shortened the total thawing time and decreased the cutting force with increasing ultrasound power. Additionally, UT at 300 W (UT-300) remarkably reduced the thawing and cooking losses of the samples compared to AT, WT, and other UT powers (p < 0.05). Low-field nuclear magnetic resonance spectroscopy showed that the T21 and T22 of the UT-300 samples were shorter than those of the AT and WT samples (p < 0.05), which revealed that UT-300 reduced the mobility and losses of both immobilized and free water. Moreover, UT-300 remarkably reduced the damage to the myofibrillar protein (MP) structure. Overall, with appropriate ultrasonic power, the thawing rate increased and changes in the MP structure were reduced. PRACTICAL APPLICATION: This study found that compared to that of AT samples, the thawing time of the UT-300 samples markedly decreased by 57%. In addition, UT-300 could reduce the damage to the myofibrillar protein structure, which was very beneficial for further processing of frozen foods.
Collapse
Affiliation(s)
- Chao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
39
|
Xu B, Ren A, Chen J, Li H, Wei B, Wang J, Azam SR, Bhandari B, Zhou C, Ma H. Effect of multi-mode dual-frequency ultrasound irradiation on the degradation of waxy corn starch in a gelatinized state. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106440] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Sun Q, Kong B, Liu S, Zheng O, Zhang C. Ultrasound-assisted thawing accelerates the thawing of common carp (Cyprinus carpio) and improves its muscle quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111080] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Dual-frequency sequential ultrasound thawing for improving the quality of quick-frozen small yellow croaker and its possible mechanisms. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Xu X, Zhang L, Feng Y, Zhou C, Yagoub AEA, Wahia H, Ma H, Zhang J, Sun Y. Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra (Abelmoschus esculentus (L.) Moench) and the quality characteristics of the dried product. ULTRASONICS SONOCHEMISTRY 2021; 70:105300. [PMID: 32763750 PMCID: PMC7786574 DOI: 10.1016/j.ultsonch.2020.105300] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 05/06/2023]
Abstract
Vacuum freeze-drying is a new and high technology on agricultural product dehydrating dry, but it faces the high cost problem caused by high energy consumption. This study investigated the effect of ultrasound (US), freeze-thawing (including the freeze-air thawing (AT), freeze-water thawing (WT), freeze-ultrasound thawing (UST), and freeze-air ultrasound thawing (AT + US)) pretreatments on the vacuum freeze-drying efficiency and the quality of dried okra. The results indicated that the application of ultrasound and different freeze-thawing pretreatments reduced the drying time by 25.0%-62.50% and the total energy consumption was 24.28%-62.35% less. The AT pretreatment reduced the time by of okra slices by 62.50% and the total energy consumption was 62.35% less. The significant decrease in drying time was due to a change in the microstructure caused by pretreatment. Besides, the okra pretreated with the US retained most of the quality characteristics (flavor, color, hardness, and frangibility) among all methods, while, AT + US had the most changeable characteristics in quality, which is deprecated in our study. The okra pretreated with the US and AT, separately, had the best dry matter content loss (9.008%, 5.602%), lower chlorophyll degradation (5.05%, 5.44% less), and higher contents of total phenolics, total flavonoids, and pectin, with strong antioxidant capacity, compared to other methods. The pretreatments did not have a large effect on the functional groups and the structure of pectin, but slightly affected the viscosity. It can be concluded that AT and US pretreatment methods are better than others.
Collapse
Affiliation(s)
- Xin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yabin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, People's Republic of China.
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yanhui Sun
- School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, People's Republic of China
| |
Collapse
|
43
|
Guo Z, Ge X, Yang L, Ma G, Ma J, Yu QL, Han L. Ultrasound-assisted thawing of frozen white yak meat: Effects on thawing rate, meat quality, nutrients, and microstructure. ULTRASONICS SONOCHEMISTRY 2021; 70:105345. [PMID: 32932225 PMCID: PMC7786592 DOI: 10.1016/j.ultsonch.2020.105345] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/05/2020] [Indexed: 05/04/2023]
Abstract
The objective of this study was to assess the effects of ultrasound-assisted thawing (UAT) on the quality of longissimus dorsi muscles from white yak meat (WYM). Ultrasonic power levels of 0, 200, 400, and 600 W (frequency of 20 kHz) were used to assist thawing. The thawing rate, meat quality, nutrient substances, volatile compounds, and microstructure of the WYM were determined. The results showed that ultrasonic thawing treatment reduced thawing times by 30.95-64.28% compared to control. The meat quality results revealed that the thawing loss, cooking loss, L* and b* values, and pH values decreased significantly while the a* value and cutting force increased significantly (P < 0.05) at the lower 400 W power level compared with the control. In addition, the free amino acid (FAA), mineral, and vitamin (especially water-soluble vitamins) contents were significantly (P < 0.05) increased with the ultrasound treatment. UAT significantly (P < 0.05) increased the content of volatile compounds, an effect that was highest in the UAT-400 W group. Partial least squares discrimination analysis (PLS-DA) showed that 2,4-heptadienal was critical in distinguishing the UAT groups from the control. When the ultrasonic power was lower than 400 W, the muscle cell area was significantly (P < 0.05) increased but decreased when higher power was used. Therefore, UAT improves the thawing efficiency and quality of frozen WYM, particularly at a power level of 400 W, and these findings have potential applications in the meat industry.
Collapse
Affiliation(s)
- Zonglin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lihua Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qun-Li Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
44
|
Wang YY, Tayyab Rashid M, Yan JK, Ma H. Effect of multi-frequency ultrasound thawing on the structure and rheological properties of myofibrillar proteins from small yellow croaker. ULTRASONICS SONOCHEMISTRY 2021; 70:105352. [PMID: 32979636 PMCID: PMC7786597 DOI: 10.1016/j.ultsonch.2020.105352] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 05/03/2023]
Abstract
The influence of multi-frequency combined ultrasound thawing on primary, secondary, and tertiary structures, electrophoresis pattern, particle size distribution, zeta potential values, thermal stability, rheological behavior, and microstructure of small yellow croaker myofibrillar proteins (MPs) were studied. Four treatments were used for thawing small yellow croakers: flow water thawing (FWT), mono-frequency ultrasonic thawing (MUT), dual-frequency ultrasonic thawing (DUT), and tri-frequency ultrasonic thawing (TUT). Compared with fresh samples (FS), the MPs of the sample pretreated by DUT had non-significant effect on protein primary (including free amino groups and surface hydrophobicity), secondary, tertiary structures, electrophoresis pattern, and microstructure. MPs pretreated by DUT had less aggregation and degradation. Besides, DUT treatment increased the thermal stability of MPs. The ultrasound had significant effects on the rheological properties of MPs. Overall, DUT effectively minimized the changes in MPs structure and protected the protein thermal stability and rheological behavior during the thawing process.
Collapse
Affiliation(s)
- Yao-Yao Wang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Tayyab Rashid
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jing-Kun Yan
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
45
|
Li Y, Wang X, Li C, Huang W, Gu K, Wang Y, Yang B, Li Y. Exploration of chemical markers using a metabolomics strategy and machine learning to study the different origins of Ixeris denticulata (Houtt.) Stebb. Food Chem 2020; 330:127232. [PMID: 32535318 DOI: 10.1016/j.foodchem.2020.127232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 04/05/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023]
Abstract
As a generally edible plant, Ixeris denticulata (Houtt.) Stebb is widely distributed in China. Its medicinal value has attracted much attention in recent years. However, the chemical markers that cause quality and taste differences in I. denticulata from different regions are currently unclear. In this study, samples from 8 different origins were collected and analysed by UPLC-Q-TOF/MS. A metabolomics data processing strategy and machine learning method were established to explore the reasons for the difference in quality and taste of different origins from the perspective of chemical composition. With the established strategy, 10 characteristic chemical markers were identified that could be used to distinguish the origins of I. denticulata. The strategy proposed in this study could provide a certain basis for quality control and reasonable consumption of I. denticulata and additional food and medicinal homologous species.
Collapse
Affiliation(s)
- Ying Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Xing Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Chunyan Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Wei Huang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Kun Gu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Bin Yang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
46
|
Qiu L, Zhang M, Chitrakar B, Bhandari B. Application of power ultrasound in freezing and thawing Processes: Effect on process efficiency and product quality. ULTRASONICS SONOCHEMISTRY 2020; 68:105230. [PMID: 32623024 DOI: 10.1016/j.ultsonch.2020.105230] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Freezing is one of the most efficient preservation approaches applied to food products and thawing is the reverse process of freezing. However, traditional freezing / thawing methods have low process efficiency. The application of ultrasound is a potential supplementary technique to improve the performance of both freezing and thawing processes of foods. Application of power ultrasound is able to better maintain the microstructure, reduce drip loss, decrease color and texture changes and retain some natural nutrients of foods during freezing. Meanwhile, quality improvement is also observed in food items thawed by ultrasound-assisted thawing methods. The fundamentals and the influences of ultrasound on the freezing and thawing processes of foods are demonstrated in this review article, from the aspects of efficiency enhancement and quality improvement.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bimal Chitrakar
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Döner D, Çokgezme ÖF, Çevik M, Engin M, İçier F. Thermal Image Processing Technique for Determination of Temperature Distributions of Minced Beef Thawed by Ohmic and Conventional Methods. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02530-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM. Influence of high-intensity ultrasound on color, chemical composition and antioxidant properties of araçá-boi pulp. Food Chem 2020; 338:127747. [PMID: 32858434 DOI: 10.1016/j.foodchem.2020.127747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Abstract
In this study, we evaluated the influence of the ultrasound application on five levels of energy density (1000; 3000; 5000 and 7000 J g-1) compared to two pasteurization techniques (70 °C/5 min and 94 °C/0.5 min) on color parameters, polyphenoloxidase activity, chemical composition, and antioxidant properties of araçá-boi pulp. Ultrasound caused changes in the parameters brightness/darkness, hue angle, and total color difference, but did not change chroma, yellowness/blueness, color index, and yellow index. Moreover, this technique was efficient for inactivating polyphenoloxidase. Ultrasound at 7000 J g-1 was responsible for an increase in soluble solids (16%), vitamin C (46.5%), phenolics (15.65%), flavonoids (50%) and antioxidant capacity in relation to untreated pulp, while ultrasound at 5000 J g-1 increased the relative intensity of compounds of biological interest. Thus, ultrasound can be considered as a promising technique to maintain the shelf life, without drastically affecting the nutritional and functional qualities of this fruit.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Florisvaldo Gama de Souza
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
49
|
Li D, Zhao H, Muhammad AI, Song L, Guo M, Liu D. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chem 2020; 320:126614. [DOI: 10.1016/j.foodchem.2020.126614] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 01/01/2023]
|
50
|
Wang B, Kong B, Li F, Liu Q, Zhang H, Xia X. Changes in the thermal stability and structure of protein from porcine longissimus dorsi induced by different thawing methods. Food Chem 2020; 316:126375. [DOI: 10.1016/j.foodchem.2020.126375] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/31/2019] [Accepted: 02/05/2020] [Indexed: 01/07/2023]
|