1
|
Qian Z, Huang Q, Wu M, Yang W, Wei Z, Cheng X, Li D. Analysis of Antioxidants from Three Parts of Polygonum Chinense based on Online Extraction High Performance Liquid Chromatography Antioxidant Analysis System. Chem Biodivers 2025; 22:e202401771. [PMID: 39392063 DOI: 10.1002/cbdv.202401771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/12/2024]
Abstract
In the current study, a rapid online extraction combined with high-performance liquid chromatography (HPLC) antioxidant analysis approach was developed to explore the antioxidant ingredients in three different parts of Polygonum Chinense. A total of 22 chromatographic peaks were found, among which 8 components were found for the first time. And among these 22 peaks, 19 of them were demonstrated as antioxidants. Furthermore, all three parts from Polygonum Chinense exhibited antioxidant activity (13.19, 3.89, and 19.85 mg CE/g extract, for the leaf, stem, and flower, respectively) and the antioxidant activity values of the leaf and flower were more than 3 times that of the stem. The leaf, flower, and stem of Polygonum Chinense had 17, 13, and 15 antioxidant components, respectively. Among them, neochlorogenic acid (2) and quercetin-3-O-malonylglucoside (18) were considered as the main antioxidants in the leaf of Polygonum Chinense. In terms of flower, geraniin (10) and quercetin-3-O-malonylglucoside (18) were proved as the major antioxidants. This is the first report on the antioxidant components from different parts of Polygonum Chinense. It provides foundational scientific data for the continued exploration of chemical and pharmacological study of Polygonum Chinense, which is beneficial for the future product development and quality evaluation improvement of Polygonum Chinense.
Collapse
Affiliation(s)
- Zhengming Qian
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, Hunan province, 423000, China
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong province, 523000, China
| | - Qi Huang
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong province, 523000, China
| | - Mengqi Wu
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong province, 523000, China
| | - Weiqi Yang
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong province, 523000, China
| | - Zhixiong Wei
- Dongguan Institute for Food and Drug Control, Dongguan, Guangdong province, 523000, China
| | - Xinjie Cheng
- Department of Pharmacy, Langfang Branch, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei province, 065001, China
| | - Deqiang Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei province, 050000, China
| |
Collapse
|
2
|
Sun M, Lei X, Lan X, Lin Z, Xu H, Chen S. Online identification of potential antioxidant components and evaluation of DNA oxidative damage protection ability in Prunus persica flowers. Talanta 2024; 280:126702. [PMID: 39180873 DOI: 10.1016/j.talanta.2024.126702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
A high performance liquid chromatography-ultraviolet-visible detector-electrospray ionization-ion trap-time-of-flight-mass spectrometry-total antioxidant capacity determination (HPLC-UVD-ESI-IT-TOF-MS-TACD) new online technique was developed for efficient screening of potential antioxidant active components in Prunus persica flowers (PPF) from 4 origins. Through this online system, 46 compounds were initially identified, while 20 compounds with DPPH binding activity and 21 compounds with FRAP binding activity were detected. The antioxidant activities of 9 compounds obtained from the screening were then validated in DNA oxidative damage protection study. The results showed that this online system can cope well with the complexity of the samples. This also provides technical basis for rapid screening of antioxidant resources of PPF. In short, this study made the chemical composition of PPF more abundant and its potential antioxidant active compounds more explicit, which provided new ideas for the detection and development of natural antioxidants and provided scientific basis for PPF as functional food.
Collapse
Affiliation(s)
- Mimi Sun
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization By Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Xinyu Lei
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xin Lan
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Hongbo Xu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization By Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Liu S, Fang Z, Li Y, Kang L, Cong H, Shen Y, Yu B. Four Kinds of Polymer Microspheres Prepared by the Seed Swelling Method Used to Purify the Industrial Production of Phytol. J Chromatogr Sci 2024; 62:508-514. [PMID: 36752419 DOI: 10.1093/chromsci/bmad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/11/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Four monodisperse porous polymer microspheres were successfully prepared by seed emulsion polymerization and used as stationary phases for HPLC and preparative high-performance liquid chromatography (Prep-HPLC). All four polymer microspheres(polystyrene-polystyrene (PS-PS), polystyrene-poly(glycidyl methylate) (PS-PGMA), polystyrene-poly(methyl methylate) and poly(glycidyl methylate)-poly(glycidyl methylate) were used for filling HPLC empty columns. According to the analysis results of the HPLC column, PS-PS and PS-PGMA microspheres were screened out as the stationary phase of Prep-HPLC. The industrial-grade phytol was successfully separated and purified, and the purity of the final phytol was as high as 99%. The two types of polymer microspheres have been applied to industrial-grade phytol purification and have been used in factories.
Collapse
Affiliation(s)
- Shixiang Liu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Fang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Linlin Kang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Zhang Y, Zhu X, Wang- Y. Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124136. [PMID: 38467098 DOI: 10.1016/j.saa.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Rapid and scientific quality evaluation is a hot topic in the research of food and medicinal plants. With the increasing popularity of derivative products from Eucommia ulmoides leaves, quality and safety have attracted public attention. The present study utilized multi-source data and traditional machine learning to conduct geographical traceability and content prediction research on Eucommia ulmoides leaves. Explored the impact of different preprocessing methods and low-level data fusion strategy on the performance of classification and regression models. The classification analysis results indicated that the partial least squares discriminant analysis (PLS-DA) established by low-level fusion of two infrared spectroscopy techniques based on first derivative (FD) preprocessing was most suitable for geographical traceability of Eucommia ulmoides leaves, with an accuracy rate of up to 100 %. Through regression analysis, it was found that the preprocessing methods and data blocks applicable to the four chemical components were inconsistent. The optimal partial least squares regression (PLSR) model based on aucubin (AU), geniposidic acid (GPA), and chlorogenic acid (CA) had a residual predictive deviation (RPD) value higher than 2.0, achieving satisfactory predictive performance. However, the PLSR model based on quercetin (QU) had poor performance (RPD = 1.541) and needed further improvement. Overall, the present study proposed a strategy that can effectively evaluate the quality of Eucommia ulmoides leaves, while also providing new ideas for the quality evaluation of food and medicinal plants.
Collapse
Affiliation(s)
- Yanying Zhang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Xinyan Zhu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang-
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
5
|
Liu M, Zhang L, Li J, Xu G, Zong W, Wang L. Effects of lactic acid bacteria on antioxidant activity in vitro and aroma component of Eucommia ulmoides tea. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:169-177. [PMID: 38192710 PMCID: PMC10771573 DOI: 10.1007/s13197-023-05833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 01/10/2024]
Abstract
Eucommia ulmoides tea is a popular functional health drink in Asian countries, but its unique herbal aroma is difficult for consumers to accept. The effects of four lactic acid bacteria strains (Lactobacillus plantarium, Lactobacillus bulgaricus, Lactobacillus acidophilus and Streptococcus thermophilus) fermentation on the physicochemical property, antioxidant activity in vitro and aroma component of E. ulmoides leaves were studied. Within the four strains, the sample by L. bulgaricus fermentation showed the higher concentrations of chlorogenic acid, geniposidic acid and stronger antioxidant activity in vitro. Moreover, the sample by L. bulgaricus fermentation produced a stronger fruity and floral flavor. These results suggested that L. bulgaricus was the best strain for fermentation E. ulmoides tea. The differences between different strains should be considered when selecting lactic acid bacteria for raw material fermentation of fruits and vegetables.
Collapse
Affiliation(s)
- Mengpei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450002 People’s Republic of China
| | - Libing Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
| | - Jia Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
| | - Gaigai Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450002 People’s Republic of China
| | - Lu Wang
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003 People’s Republic of China
| |
Collapse
|
6
|
Yang WQ, Huang Q, Wu MQ, Mei QX, Zou YS, Qian ZM, Tang D. Rapid screening and evaluation of natural antioxidants from leaf, stem, and root of Artemisia argyi by online liquid microextraction combined with HPLC-based antioxidant assay system coupled with calibration quantitative analysis. J Sep Sci 2024; 47:e2300616. [PMID: 38095533 DOI: 10.1002/jssc.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
To reveal the utilization value of leaf, stem, and root of Artemisia argyi, a rapid online liquid microextraction combined with a high-performance liquid chromatography coupled with 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay system was established for analysis of antioxidants in the leaf, stem, and root of A. argyi, and a calibration quantitative method of antioxidant activity with equivalent chlorogenic acid was proposed. Thirty-three positive peaks were identified; among them, 12 compounds were found that possess good antioxidant activity including eleven organic acids (components 2-4, 8, 11-14, 17, 19, and 21) and one flavonoids (component 22). The proposed calibration quantitative method avoided the influence of content of compound and compared the extent of radical scavenging capacity of five antioxidant compounds, which were ranked as follow: 3,5-dicaffeoylquinic acid > 3,4-dicaffeoylquinic acid ≈ 4,5-dicaffeoylquinic acid > 1,4-dicaffeoylquinic acid > chlorogenic acid. In conclusion, this study provided composition and biological potential for the future development of the leaf, stem, and root of A. argyi. It is believed that the online liquid microextraction combined with high-performance liquid chromatography based antioxidant assay system can be widely used for the rapid screening of natural antioxidant components in the different parts of natural products.
Collapse
Affiliation(s)
- Wei-Qi Yang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | - Qi Huang
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | - Meng-Qi Wu
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | - Quan-Xi Mei
- Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Yuan-Sheng Zou
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | | | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
7
|
Liang X, Fu Y, Niu K, Zhai Z, Shi H, Wang R, Yin Y. Dietary Eucommia ulmoides leaf extract improves laying performance by altering serum metabolic profiles and gut bacteria in aged laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:307-319. [PMID: 38053802 PMCID: PMC10694046 DOI: 10.1016/j.aninu.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/23/2023] [Indexed: 12/07/2023]
Abstract
The leaves of Eucommia ulmoides are rich in bioactive constituents that have potential gastrointestinal benefits for animals. In aged laying hens, intestinal health issues contribute to a significant decline in egg-laying capacity during intermediate and later stages. It remains unclear whether E. ulmoides leaf extract (ELE) can improve intestinal health and enhance egg production in elderly laying hens, and the underlying mechanisms are yet to be elucidated. Therefore, we conducted a study with 480 laying hens (65 weeks old) randomly allocated into four groups: a control group fed with the basal diet, and three treatment groups supplemented with 500, 1,000, and 2,000 mg/kg of ELE, respectively. The primary active constituents of ELE include flavonoids, polysaccharides, terpenoids, and phenolic acids. Dietary supplementation with ELE at 1,000 mg/kg (ELE1000) significantly improved laying performance and egg quality compared to the other groups. ELE1000 stimulated the maturation of intestinal epithelial cells, increased villus height, and reduced crypt depth. It also influenced the levels of proteins associated with tight junctions (claudin-1 and claudin-2) and intestinal inflammatory factors (IL-6, IL-1β, and IL-2) in different intestinal sections. Integrative analysis of serum metabolomics and gut microbiota revealed that ELE1000 improved nutrient metabolism by modulating amino acid and ubiquinone biosynthesis and influenced the abundance of intestinal microbiota by enriching pivotal genera such as Bacteroides and Rikenellaceae_RC9_gut_group. We identified 15 metabolites significantly correlated with both gut microbiota and laying performance, e.g., DL-methionine sulfoxide, THJ2201 N-valerate metabolite, tetracarbonic acid, etc. In conclusion, ELE1000 improved laying performance in elderly laying hens by affecting intestinal morphology, barrier function, microbiota, and serum metabolite profiles. These findings suggest that ELE can be a beneficial feed additive for extending the peak producing period in aged laying hens.
Collapse
Affiliation(s)
- Xiaoxiao Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yawei Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhenya Zhai
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Hongxun Shi
- Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou 450001, China
| | - Ruxia Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
- Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou 450001, China
| | - Yulong Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
8
|
Guo F, Yang Y, Duan Y, Li C, Gao H, Liu H, Cui Q, Guo Z, Liu X, Wang Z. Quality Marker Discovery and Quality Evaluation of Eucommia ulmoides Pollen Using UPLC-QTOF-MS Combined with a DPPH-HPLC Antioxidant Activity Screening Method. Molecules 2023; 28:5288. [PMID: 37446949 PMCID: PMC10343934 DOI: 10.3390/molecules28135288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Pollen, as an important component of Eucommia ulmoides (EUP), is rich in nutrients and is receiving increasing attention. At present, there are no reports on research related to the chemical composition and quality standards of EUP, and there are significant quality differences and counterfeit phenomena in the market. This study used a UPLC-QTOF-MS system to identify 49 chemical components in EUP for the first time. In the second step, 2,2-diphenyl-1-picrylhydrazyl (DPPH)-HPLC antioxidant activity screening technology was used to identify the main active components of EUP, quercetin-3-O-sophoroside (QSH), quercetin-3-O-sambubioside (QSB), and quercetin 3-O-neohesperidoside (QNH), and their purification, preparation, and structure identification were carried out. Third, molecular docking was used to predict the activity of these components. Fourth, the intracellular ROS generation model of RAW264.7 induced by H2O2 was used to verify and evaluate the activity of candidate active ingredients to determine their feasibility as Q-markers. Finally, a quality control method for EUP was constructed using the three selected components as Q-markers. The identification of chemical components and the discovery, prediction, and confirmation of characteristic Q-markers in EUP provide important references for better research on EUP and the effective evaluation and control of its quality. This approach provides a new model for the quality control of novel foods or dietary supplements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (F.G.); (Y.Y.); (Y.D.); (C.L.); (H.G.); (H.L.); (Q.C.); (Z.G.)
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (F.G.); (Y.Y.); (Y.D.); (C.L.); (H.G.); (H.L.); (Q.C.); (Z.G.)
| |
Collapse
|
9
|
Zhao H, Xue D, Zhang L. Electrochemical fingerprints identification of tea based on one-dimensional convolutional neural network. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Extraction and Identification of Antioxidant Ingredients from Cyclocarya paliurus (Batal.) Iljinsk Using UHPLC-Q-Orbitrap-MS/MS-Based Molecular Networking. J CHEM-NY 2022. [DOI: 10.1155/2022/8260379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja (LCP) leaves have been widely employed in food and traditional medicine for treating hyperlipidaemia and its complications, possibly owing to their antioxidant properties. The aim of the present study is to identify the chemical ingredients of antioxidant extracts from LCP by using UHPLC-Q-Orbitrap-MS/MS-based molecular networking, a very recent and useful tool for annotation of chemical constituents in mixtures. The extraction conditions of antioxidant extracts from LCP were optimised by single-factor analysis and response surface methodology (RSM). The optimised conditions were a methanol concentration of 32%, a liquid-to-solid ratio of 0.4 ml/mg, an extraction temperature of 25°C, and an extraction time of 32 min. Under these conditions, the antioxidant yield was 516.20 ± 28.52 μmol TE/ml. The main active ingredients in the antioxidants were identified by UHPLC-Q-Exactive Orbitrap-MS-based molecular networking. In total, 42 compounds were identified, including 20 flavonoids, 16 quinic acid derivatives, 4 caffeoyl derivatives, and 2 coumaroyl derivatives. The findings of the present work suggest that LCP could be a suitable source of natural antioxidant compounds, which might be applicable in the development of potential pharmaceutical drugs targeting diseases related to oxidative stress.
Collapse
|
11
|
Liu X, Zhang J, Li Y, Yao C, An Y, Wei W, Yao S, Yang L, Huang Y, Qu H, Guo DA. In-depth profiling, nontargeted metabolomic and selective ion monitoring of eight chemical markers for simultaneous identification of different part of Eucommia ulmoides in 12 commercial products by UPLC/QDa. Food Chem 2022; 393:133346. [DOI: 10.1016/j.foodchem.2022.133346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/04/2022]
|
12
|
Dong X, Liu J, Guo S, Yang F, Bu R, Lu J, Xue P. Metabolomics comparison of Chemical components and metabolic regulations in different parts of Eucommia ulmoides Oliv. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Zhang Z, Zhang Y, Wang L, Cui T, Wang Y, Chen J, Li W. On-line screening of natural antioxidants and the antioxidant activity prediction for the extracts from flowers of Chrysanthemum morifolium ramat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115336. [PMID: 35568113 DOI: 10.1016/j.jep.2022.115336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Chrysanthemum morifolium Ramat. (Flos Chrysanthemi, FC) the most economically significant "food and drug dual-use" plants, with positive effects on relieving eye fatigue, and reduce internal heat, shows significant activities, such as anti-inflammatory, antioxidant, and neuroprotective, as well as alleviating diabetes effects. AIM OF THE STUDY This study was undertaken to a screening of natural antioxidants in five kinds of medicinal FC and development of an integrated quality control method based on the antioxidant activity. MATERIALS AND METHODS A novel quality control method for FC was established by combining the on-line HPLC-DPPH, ESI-MS, and NIR spectra analysis. Firstly, the on-line HPLC-DPPH-MS system was employed to identify the antioxidants in FC extracts. Then, the relationship between the NIR spectra and antioxidant activities of FC samples was calibrated to evaluate the total antioxidant capacity of FC rapidly. RESULTS The established antioxidant activity-fingerprints contain both chemical information and antioxidant activity characteristics of FC. A total of 16 antioxidants were identified by on-line HPLC-ESI-MS analysis. The results of heat map analysis and cluster analysis showed that the classification method based on antioxidants in FC can be used to identify different cultivars of FC. The optimal pretreatment of the NIR spectra was determined to be row center (RC) 1st der + multiple-scatter correction (MSC) with an optimal LV value of 11. The developed spectral-antioxidant activity model had the excellent predictive ability and was successfully used to evaluate new batches of FC samples, where Rcal = 0.9445 and Rval = 0.8821. CONCLUSIONS This comprehensive strategy may prove to be a powerful technique for the rapid screening, identification, and activity prediction of antioxidants, which could be used for the quality control of FC, and can serve as reference for design of quality control of other herbs and foods samples.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei, 230051, China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxin Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Qingdao Key Lab on Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
14
|
da Silva Santos É, Savam A, Cabral MRP, Castro JC, de Oliveira Collet SA, Mandim F, Calhelha RC, Barros L, da Silva Machado MDFP, de Oliveira AJB, Gonçalves RAC. Low-cost alternative for the bioproduction of bioactive phenolic compounds of callus cultures from Cereus hildmannianus (K.) Schum. J Biotechnol 2022; 356:8-18. [PMID: 35842071 DOI: 10.1016/j.jbiotec.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The aim of this study was to establish a sustainable alternative callus culture of Cereus hildmannianus for the production and bioactive determination of phenolic compounds from this species. The conventional callus was cultivated using agar and Murashige and Skoog (MS) medium, while for the alternative culture the agar was replaced with a cotton support covered with filter paper and MS medium (incubated at 32°C with photoperiod of 16h), and the morphological characteristics and growth index were assessed (8 weeks). Extracts were obtained by maceration followed by partition, characterized by nuclear magnetic resonance - NMR and ultra-high performance liquid chromatography - UHPLC, quantified (phenolic compounds) by UV-Vis methods, and their antioxidant, antitumor activities, as well as cytotoxicity, were evaluated. The establishment of an alternative callus culture was carried out successfully. Characteristic signals of phenolic compounds were determined by NMR, and 46 compounds with fragment ions were identified using UHPLC analysis. The highest concentrations of phenolic compounds, and greatest antioxidant and antitumor activities, were obtained with the dichloromethane fractions of both callus tissue cultures, which were not cytotoxic. The callus culture from C. hildmannianus has shown promise as a source for the sustainable production of phenolic compounds with antioxidant and antiproliferative activities and thus, has potential use as a natural antitumor product.
Collapse
Affiliation(s)
- Éverton da Silva Santos
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Aline Savam
- Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Márcia Regina Pereira Cabral
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Juliana Cristina Castro
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Sandra Aparecida de Oliveira Collet
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | | | - Arildo José Braz de Oliveira
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil; Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Regina Aparecida Correia Gonçalves
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil; Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil.
| |
Collapse
|
15
|
Shi X, Luo S, Zhong K, Hu X, Zhang Z. Chemical profiling, quantitation, and bioactivities of Du-Zhong tea. Food Chem 2022; 394:133552. [PMID: 35753260 DOI: 10.1016/j.foodchem.2022.133552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Du-Zhong tea is a health beverage produced from Eucommia ulmoides leaves (EUL) as raw materials using traditional tea processing and Chinese herbal pieces processing methods. To evaluate the differences between tender leaves and mature leaves of Du-Zhong tea, UPLC-Q-TOF MS was used to analyze the constituents in EUL collected in April and August. A total of 52 compounds, including iridoids, phenylpropanoids, flavonoids, lignans, and other types of compounds were identified. The contents of nine ingredients in the tender and mature leaves of E. ulmoides were determined by HPLC-DAD analysis. The results show that the average contents of the compounds in tender leaves were significantly higher than those in mature leaves. Lastly, the antioxidant and antipancreatic lipase activities of commercial Du-Zhong tea made by leaves of different maturity were evaluated. Du-Zhong tea with d-grade exhibited relatively higher antioxidant, while C-grade exhibited greater lipase inhibitory activities.
Collapse
Affiliation(s)
- Xiqing Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Shengbo Luo
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Kan Zhong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Xinhua Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Zijia Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| |
Collapse
|
16
|
Online Extraction–DPPH–HPLC-DAD-QTOF-MS System for Efficient Screening and Identification of Antioxidants from Citrus aurantium L. Var. amara (Rutaceae): Integrating Sample Preparation and Antioxidants Profiling. Antioxidants (Basel) 2022; 11:antiox11051014. [PMID: 35624877 PMCID: PMC9137816 DOI: 10.3390/antiox11051014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
The lack of a direct connection between solid edible or medical natural products and bioactive compound profiling is a bottleneck in natural product research and quality control. Here, a novel integrated system, online extraction (OLE)–2,2′-diphenyl-1-picrylhydrazyl (DPPH)–HPLC−DAD−QTOF-MS, was fabricated to extract, screen, and identify antioxidants from the whole fruit of Citrus aurantium L. var. amara (CAVA, Rutaceae) simply, rapidly, and efficiently. The system consumes less sample (1.0 mg of CAVA powder) and requires a shorter analytical time (45 min for sample extraction, antioxidants screening, separation, and identification). Eight antioxidant flavonoids were screened and identified, and six available flavanones were sensitively, precisely, and accurately quantified. Two major flavanone glycosides, naringin (50.37 ± 0.43 mg/g) and neohesperidin (38.20 ± 0.27 mg/g), exhibit potent DPPH scavenging activities with IC50 values of 111.9 ± 10.06 and 178.55 ± 11.28 μg/mL. A minor flavanone aglycone, hesperitin (0.73 ± 0.06 mg/g), presents stronger DPPH scavenging activity (IC50, 39.07 ± 2.51 μg/mL). Furthermore, density functional theory calculations demonstrated their electron transport ability and chemical reactivity, which confirmed the screened results. The results indicate that the developed OLE–DPPH–HPLC−DAD−QTOF-MS system provides new perspectives for analysis of antioxidants from complex natural products, which also contribute to the quality evaluation of CAVA.
Collapse
|
17
|
Highly specific esterase activated AIE plus ESIPT probe for sensitive ratiometric detection of carbaryl. Talanta 2022; 246:123517. [PMID: 35523022 DOI: 10.1016/j.talanta.2022.123517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/30/2022]
Abstract
Fabrication of facile, sensitive, and accurate pesticide detection strategies plays crucial roles in food safety, environmental protection, and human health. Here, a novel esterase activatable aggregation-induced emission (AIE) plus excited-state intramolecular proton transfer (ESIPT) probe, kaempferol tetraacetate, was designed and synthesized from purified natural kaempferol for ratiometric sensing of carbaryl. Acetate groups are introduced as the esterase reactive sites and AIE plus ESIPT initiator. Kaempferol tetraacetate is an aggregation-caused quenching compound that shows fluorescent (FL) emission at 415 nm. Esterase specifically hydrolyzes kaempferol tetraacetate to kaempferol with AIE plus ESIPT characteristics (distinct FL emission, 530 nm; a large Stokes shift, 165 nm within a short time (8 min). Molecular docking and kinetics performance indicate the high affinity and specific hydrolysis of esterase and kaempferol tetraacetate. Carbaryl inhibits the activity of esterase to efficiently suppress the production of kaempferol. Thus, a facile ratiometric assay strategy is constructed for carbaryl detection. By measuring the FL intensity ratio, the proposed strategy presents high selectivity and reliability with a wide linear range from 0.02 to 2.00 μg L-1 and a very low limit of detection at 0.007 μg L-1. Furthermore, appropriate recovery from 93.75% to 108.67% with a relative standard deviation less than 5.66% for real sample analysis indicates good accuracy and precision. All results indicate that the fabricated strategy offers a new way for facile, sensitive, and accurate detection of carbaryl in real complex samples.
Collapse
|
18
|
Farooq B, Koul B, Mahant D, Yadav D. Phytochemical Analyses, Antioxidant and Anticancer Activities of Ethanolic Leaf Extracts of Moringa oleifera Lam. Varieties. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112348. [PMID: 34834711 PMCID: PMC8625309 DOI: 10.3390/plants10112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 05/25/2023]
Abstract
Moringa oleifera Lam. (Moringaceae) is revered as s 'miracle tree' due to its remarkable nutritional, medicinal and industrial uses. In our study, a comparative analysis of the nutritional parameters (antioxidant activity, sugar content-TSS, total soluble proteins-TSP and mineral contents), phytochemicals (HPLC analysis of four anticancer compounds), and cytotoxicity of M. oleifera leaf extracts (MLEs) of five selected varieties (conventional, PKM-1, PKM-2, ODC, and Jaffna), was performed. Jaffna variety possessed the highest antioxidant activity (FRAP) followed by other four varieties. The trend observed was: Jaffna (9.47 µg/mL, 18.48 µg/mL, 29.39 µg/mL, and 35.37 µg/mL) > PKM-1 (4.82 µg/mL, 7.63 µg/mL, 22.33 µg/mL, and 27.71 µg/mL) > PKM-2 (2.10 µg/mL, 7.04 µg/mL, 13.18 µg/mL, and 21.78 µg/mL) > ODC (0.17 µg/mL, 2.10 µg/mL, 4.41 µg/mL and 13.94 µg/mL) > Conventional (0.05 µg/mL, 1.08 µg/mL, 2.86 µg/mL, and 5.40 µg/mL), total soluble proteins (TSP) [0.69 ± 0.01 and 0.94 ± 0.01 µg/mL (young and mature stage, respectively)], sugar content (TSS) [0.39 ± 0.01 and 0.51 ± 0.01 µg/mL (young and mature stage, respectively)], chlorophyll content [1.07 ± 0.01 (plantlet stage), 1.36 ± 0.003 (vegetative-stage), 0.82 ± 0.004 (reproductive stage) mg/g], followed by the other four varieties. The trend observed for cytotoxic activities of ethanolic MLEs on HepG2 cell line, based on the IC50 values, was conventional (1.22 mg/mL) > ODC (0.90 mg/mL) > PKM-2 (0.65 mg/mL) > PKM-1 (0.35 mg/mL) > Jaffna (0.15 mg/mL). The results of HPLC quantification of anticancer compounds [beta-sitosterol (0.244%), quercetin (0.216%), kaempferol (0.013%), and moringin (0.063%)] was also in consonance with that of MTT assay. In summary, the trend observed in all the parameters tested was Jaffna > PKM-1 > PKM-2 > ODC > conventional. Thus, Jaffna variety has a better potential to combat malnutrition and cancer and must be recommended for commercial plantations.
Collapse
Affiliation(s)
- Bilques Farooq
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (B.F.); (D.M.)
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (B.F.); (D.M.)
| | - Deveshi Mahant
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (B.F.); (D.M.)
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
19
|
Shen QH, Huang Q, Xie JY, Wang K, Qian ZM, Li DQ. A rapid analysis of antioxidants in Sanghuangporus baumii by online extraction-HPLC-ABTS. RSC Adv 2021; 11:25646-25652. [PMID: 35478912 PMCID: PMC9037008 DOI: 10.1039/d1ra04300e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
In the present study, a simple and efficient approach based on the online extraction-high performance liquid chromatography coupled with ABTS antioxidant assay (OLE-HPLC-ABTS) was established to quickly and directly analyze the antioxidants in S. baumii. Through this system, the HPLC mobile phase via a guard column packed with a S. baumii sample was used for online extraction (OLE). The separation was performed on an Agilent Poroshell EC-C18 column with a gradient elution using 0.1% formic acid (A) and 0.1% formic acid-acetonitrile (B) as mobile phase systems and detected at a wavelength of 254 nm. Then, the separated compounds were reacted with the antioxidant solution (ABTS), and the response was recorded at a wavelength of 400 nm. The developed analytical method was successfully applied to S. baumii samples, and eight antioxidants were identified. The established system integrated the online extraction, separation and online antioxidant detection, which is rapid, efficient, and suitable for the rapid screening of antioxidant compounds from solid sample mixtures.
Collapse
Affiliation(s)
- Qian-Hui Shen
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Rapid Testing Technology of Drugs Guangzhou 510663 Guangdong Province China
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd No. 368, Zhen'an Middle Road, Chang'an Town Dongguan 523850 Guangdong Province China
| | - Qi Huang
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd No. 368, Zhen'an Middle Road, Chang'an Town Dongguan 523850 Guangdong Province China
| | - Ju-Ying Xie
- School of Rehabilitation, Xiangnan University Chenzhou 423000 Hunan Province China
| | - Kun Wang
- Jinzhai Shangzhen Biotechnology Co., Ltd. Liuan 237300 Anhui Province China
| | - Zheng-Ming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd No. 368, Zhen'an Middle Road, Chang'an Town Dongguan 523850 Guangdong Province China
- School of Rehabilitation, Xiangnan University Chenzhou 423000 Hunan Province China
| | - De-Qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University No. 215, Heping West Road Shijiazhuang 050000 Hebei Province China
| |
Collapse
|
20
|
Fan W, Zhou J, Wu Z, Tan G, Li H, Mei Q, Qian Z. Analysis of antioxidants in Chrysanthemum indici flos by online gradient extraction and HPLC-FRAP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2283-2289. [PMID: 33969831 DOI: 10.1039/d1ay00548k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chrysanthemum indici flos (CIF), a traditional functional beverage, has been used in China for thousands of years. However, research on the antioxidant properties and compounds in CIF is insufficient. In the current study, an online gradient extraction (OGE) coupled with a high performance liquid chromatography-ferric reducing antioxidant power (HPLC-FRAP) system for rapid identification of antioxidants in CIF was proposed. The CIF sample (0.3 mg) was extracted online by a gradient mobile phase (acetonitrile and 0.1% formic acid), separated on a Poroshell 120 SB-Aq column, and then detected for the anti-oxidative activity with the online FRAP assay. 36 peaks were found and 28 compounds were identified. Among them, 18 peaks showed antioxidant activity, six of which were detected in CIF for the first time. The total analytical time was less than 45 min, including sample extraction, separation, and antioxidant identification. The results indicate that the OGE-HPLC-FRAP system is a simple, efficient and rapid tool for screening antioxidants in CIF, which provides the scientific data of CIF's antioxidant research and is helpful to improve the quality evaluation of CIF.
Collapse
Affiliation(s)
- Weifeng Fan
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China. and Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan 523850, China.
| | - Jianqiao Zhou
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan 523850, China.
| | - Zi Wu
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan 523850, China.
| | - Guoying Tan
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan 523850, China.
| | - Haoxiang Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Quanxi Mei
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China. and Bao'an Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Zhengming Qian
- Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan 523850, China. and Xiangnan University, Chenzhou 423000, China
| |
Collapse
|
21
|
Tang C, Long R, Tong X, Guo Y, Tong C, Shi S. Dual-emission biomass carbon dots for near-infrared ratiometric fluorescence determination and imaging of ascorbic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Ye Z, Chen X, He Y, Jin M, Ye M. Antidiabetic effects of fermented milk contained with
Gardenia jasminoides
water extracts on streptozotocin‐induced mice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ziyang Ye
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| | - Xue Chen
- Department of Chemical Engineering and Food Processing Hefei University of Technology Xuancheng P.R. China
| | - Yaling He
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| | - Mingzhi Jin
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| | - Ming Ye
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| |
Collapse
|
23
|
Rapid and comprehensive profiling of α-glucosidase inhibitors in Buddleja Flos by ultrafiltration HPLC-QTOF-MS/MS with diagnostic ions filtering strategy. Food Chem 2020; 344:128651. [PMID: 33243557 DOI: 10.1016/j.foodchem.2020.128651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Buddleja Flos is used as yellow rice colorant and a well-known traditional Chinese medicine. But its biochemical profiling is still lack due to complex matrix. Here, ultrafiltration high-performance liquid chromatograph-quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS/MS) with diagnostic ions filtering strategy was proposed for rapid and comprehensive investigation of its α-glucosidase inhibitors. As a result, 33 bioactive compounds (13 phenylethanoid glycosides and 20 flavonoids) were successfully screened and identified. In addition, α-glucosidase inhibitory activities of twenty-two references were verified. Six flavonoid aglycones (4, 28, and 30-33) showed excellent α-glucosidase inhibitory activities (IC50, from 5.11 ± 0.85 to 32.49 ± 9.76 μg/mL), much higher than that of acarbose (IC50, 195.49 ± 10.05 μg/mL). Five flavonoid-monoglycosides (7, 12, 13, 20, and 22) presented moderate inhibitory activities with IC50 from 160.98 ± 23.19 to 249.37 ± 35.83 μg/mL. Results showcased the high efficiency of proposed strategy in profiling of bioactive compounds from natural products.
Collapse
|
24
|
Yan G, Zhou Y, Hu Y, Zhao L, Wang W. Rapid screening and isolation of antioxidants from Eupatorium lindleyanum DC. using CCC target-guided by on-line HPLC-DPPH assay. Prep Biochem Biotechnol 2020; 51:530-535. [PMID: 33135958 DOI: 10.1080/10826068.2020.1836653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Counter-current chromatography (CCC) target-guided by on-line HPLC with post-column DPPH assay was established for efficient screening and isolation of large amount of antioxidants from Eupatorium lindleyanum DC. On-line HPLC with post-column DPPH reaction was used to screen the antioxidants and optimize the biphasic solvent system of CCC, then the targeted peaks were purified using CCC. In the present study, three compounds, nepetin, cirsiliol and jaceosidin, were targeted and successively separated from n-butanol fraction of E. lindleyanum DC. by this strategy. All three compounds showed strong DPPH radical scavenging activity. These results confirmed that the strategy would be an efficient and effective method to isolate antioxidants from complex mixtures.
Collapse
Affiliation(s)
- Guilong Yan
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuzhen Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Yonghong Hu
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Liqin Zhao
- School of Life Sciences, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Wei Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| |
Collapse
|
25
|
Sinan KI, Mahomoodally MF, Eyupoglu OE, Etienne OK, Sadeer NB, Ak G, Behl T, Zengin G. HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp. J Pharm Biomed Anal 2020; 192:113678. [PMID: 33120308 DOI: 10.1016/j.jpba.2020.113678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Cajanus cajan. (L.) Millsp. (C. cajan) (Family: Fabaceae) also known as pigeon pea, is a famous food and cover/forage crop bearing a high amount of key amino acids (methionine, lysine and tryptophan). This study investigated into the total phenolic (TPC), flavonoid content (TFC), antioxidant [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity, total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating] activities and enzyme [α-amylase, α-glucosidase, tyrosinase, acetyl-(AChE), butyryl-(BChE) cholinesterase] inhibitory effects of four extracts (methanol, hexane, ethyl acetate, aqueous) prepared from C. cajan stem bark. Direct identification of antioxidants was also conducted using the high performance liquid chromatography-ferric reducing antioxidant power (HPLC-FRAP) system. The highest TPC and TFC were recorded with the methanolic (23.22 ± 0.17 mg GAE/g) and ethyl acetate extracts (19.43 ± 0.24 mg RE/g), respectively. The methanolic extract exhibited important antioxidant activity with DPPH (38.41 ± 0.05 mg Trolox equivalent (TE)/g), ABTS (70.49 ± 3.62 mg TE/g), CUPRAC (81.86 ± 2.40 mg TE/g), FRAP (42.96 ± 0.59 mg TE/g) and metal chelating (17.00 ± 1.26 mg ethylenediaminetetraacetic acid equivalent/g). p-coumaric and caffeic acid were the predominant antioxidants in the samples. Results from enzymatic assays showed the potential abilities of hexane extract in inhibiting the AChE, BChE, α-amylase and α-glucosidase enzymes. From the results obtained in this study, it can be concluded that C. cajan can be considered as a promising source of antioxidants and key enzyme inhibitors that can be exploited for future bioproduct development.
Collapse
Affiliation(s)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius.
| | - Ozan Emre Eyupoglu
- Department of Biochemistry, School of Pharmacy, Istanbul Medipol University, Turkey
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey.
| |
Collapse
|
26
|
Wu L, Long R, Li T, Tang C, Tong X, Guo Y, Shi S, Xiang H, Tong C. One-pot fabrication of dual-emission and single-emission biomass carbon dots for Cu 2+ and tetracycline sensing and multicolor cellular imaging. Anal Bioanal Chem 2020; 412:7481-7489. [PMID: 32833074 DOI: 10.1007/s00216-020-02882-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Dual-emission and single-emission carbon dots (DCDs and SCDs) have been simultaneously synthesized by one-pot solvothermal treatment of leek. Different graphitization and surface functionalization were responsible for their distinction in fluorescence characteristics. DCDs with an average size of 5.6 nm exhibited two emissions at 489 and 676 nm under 420-nm excitation. Complexation between DCDs' surface porphyrins and Cu2+ led to quenching of the 676-nm emission, which resulted in the ratiometric determination of Cu2+ with a limit of detection (LOD) of 0.085 μM. SCDs, containing additional sulfur element (0.50%) with an average size of 7.7 nm, presented a single emission at 440 nm under 365-nm excitation. The static quenching and inner filter effects between SCDs and tetracyclines (TCs) made SCDs a fluorescence nanoprobe for TCs' determination with LODs of 0.26-0.48 μM. Applications of DCDs and SCDs for respective determination of Cu2+ and TCs in milk and pig liver samples were successfully demonstrated. Moreover, good photostability, low toxicity, and outstanding biocompatibility made DCDs and SCDs suitable for multicolor cellular imaging. Results indicate that natural products are excellent raw materials to controllably synthesize CDs with prominent physicochemical and fluorescence properties.Graphical abstract.
Collapse
Affiliation(s)
- Lihui Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ruiqing Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Te Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Cui Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Haiyan Xiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
27
|
Qin L, Guo L, Xu B, Hsueh CC, Jiang M, Chen BY. Exploring community evolutionary characteristics of microbial populations with supplementation of Camellia green tea extracts in microbial fuel cells. J Taiwan Inst Chem Eng 2020; 113:214-222. [PMID: 32904523 PMCID: PMC7455116 DOI: 10.1016/j.jtice.2020.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
This first-attempt study deciphered combined characteristics of species evolution and bioelectricity generation of microbial community in microbial fuel cells (MFCs) supplemented with Camellia green tea (GT) extracts for biomass energy extraction. Prior studies indicated that polyphenols-rich extracts as effective redox mediators (RMs) could exhibit significant electrochemical activities to enhance power generation in MFCs. However, the supplementation of Camellia GT extract obtained at room temperature with significant redox capabilities into MFCs unexpectedly exhibited obvious inhibitory effect towards power generation. This systematic study indicated that the presence of antimicrobial components (especially catechins) in GT extract might significantly alter the distribution of microbial community, in particular a decrease of microbial diversity and evenness. For practical applications to different microbial systems, pre-screening criteria of selecting biocompatible RMs should not only consider their promising redox capabilities (abiotic), but also possible inhibitory potency (biotic) to receptor microbes. Although Camellia tea extract was well-characterized as GRAS energy drink, some contents (e.g., catechins) may still express inhibition towards organisms and further assessment upon biotoxicity may be inevitably required for practice.
Collapse
Affiliation(s)
- Lianjie Qin
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Lili Guo
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| |
Collapse
|
28
|
Shi F, Xie L, Lin Q, Tong C, Fu Q, Xu J, Xiao J, Shi S. Profiling of tyrosinase inhibitors in mango leaves for a sustainable agro-industry. Food Chem 2020; 312:126042. [PMID: 31911351 DOI: 10.1016/j.foodchem.2019.126042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023]
Abstract
Although mango leaves are the main ingredients in some traditional Chinese medicine preparations and folk tea, they with considerable quantities are usually discarded as agricultural waste. Thus, to extend their potential, reverse ultrafiltration-HPLC-DAD-QTOF-MS/MS combining with key ion filtering strategy was proposed to efficiently fish and systematically identify tyrosinase inhibitors in ethyl acetate fraction of mango leaves, which has the highest total phenolic content (40.00 ± 0.84 mg GAE/g DW) and tyrosinase inhibition activity (IC50, 17.62 ± 1.26 μg/mL). Finally, 36 polyphenolic tyrosinase inhibitors were unambiguously characterized or tentatively identified, and three of them were found in mango leaves for the first time. Results suggested that the proposed strategy was powerful for effective identification of bioactive compounds in complex mixtures (e.g. food, agricultural and sideline products), and the findings would lay a foundation for potential applications of mango leaves in pharmaceutical, cosmetic, and food industrial fields.
Collapse
Affiliation(s)
- Fangying Shi
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Lianwu Xie
- College of Sciences; College of Food Science and Engineering; Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Qinlu Lin
- College of Sciences; College of Food Science and Engineering; Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Chaoying Tong
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Qiachi Fu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuyun Shi
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
29
|
Deng X, Xu J, Tong C, Shi F, Shi S. Homoisoflavonoids profiling of Ophiopogon japonicus by off-line coupling high-speed countercurrent chromatography with high-performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry. J Sep Sci 2020; 43:1406-1414. [PMID: 31999027 DOI: 10.1002/jssc.201901222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Roots of Ophiopogon japonicus have been used as a functional food ingredient and traditional Chinese medicine for a long time in China. Homoisoflavonoids are one of the major kinds of bioactive compounds in O. japonicus; however, literature data about its homoisoflavonoids profile are scarce because of the complex ingredients with low abundance. Here, homoisoflavonoid fraction was prepared by petroleum ether extraction. Then, a high-speed countercurrent chromatography off-line coupling with high-performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry was developed for systematic identification of homoisoflavonoids. After that, 39 homoisoflavonoids, including 29 homoisoflavanone and 10 homoisoflavone, were unambiguously or tentatively identified, while 12 of them were reported in O. japonicus for the first time. Finally, eight available homoisoflavonoids were sensitively, precisely, and accurately determined by standard calibration curves, with limit of detection and limit of quantification in the range of 0.05-0.30 μg/mL and 0.12-0.66 μg/mL, relative standard deviation less than 7.3% for intra- and interday variations, and recovery at 94.5-105.2%. Collectively, our developed method is efficient, reliable, and valuable to profile chemical components of complex natural products.
Collapse
Affiliation(s)
- Xu Deng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Fangying Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| |
Collapse
|
30
|
Yu W, Liu X, Zhang Y, Lin Y, Qiu J, Kong F. Simultaneous Determination of Pigments in Tea by Ultra-Performance Convergence Chromatography (UPC2). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1715420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Weisong Yu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Xue Liu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Yizhi Zhang
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Yingnan Lin
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Jun Qiu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Fanyu Kong
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| |
Collapse
|
31
|
Selected in vitro methods to determine antioxidant activity of hydrophilic/lipophilic substances. ACTA CHIMICA SLOVACA 2020. [DOI: 10.2478/acs-2019-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
The topic of free radicals and related antioxidants is greatly discussed nowadays. Antioxidants help to neutralize free radicals before damaging cells. In the absence of antioxidants, a phenomenon called oxidative stress occurs. Oxidative stress can cause many diseases e.g. Alzheimer’s disease and cardiovascular diseases. Therefore, antioxidant activity of various compounds and the mechanism of their action have to be studied. Antioxidant activity and capacity are measured by in vitro and in vivo methods; in vitro methods are divided into two groups according to chemical reactions between free radicals and antioxidants. The first group is based on the transfer of hydrogen atoms (HAT), the second one on the transfer of electrons (ET). The most frequently used methods in the field of antioxidant power measurement are discussed in this work in terms of their principle, mechanism, methodology, the way of results evaluation and possible pitfalls.
Collapse
|
32
|
Long R, Guo Y, Xie L, Shi S, Xu J, Tong C, Lin Q, Li T. White pepper-derived ratiometric carbon dots for highly selective detection and imaging of coenzyme A. Food Chem 2020; 315:126171. [PMID: 31991253 DOI: 10.1016/j.foodchem.2020.126171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
A new-style white pepper derived dual-emission carbon dots (CDs) with a quantum yield of 10.4% was designed and facile constructed with one-pot solvothermal method. The green emission (520 nm) had an efficient and special "turn-on" fluorescence sensing of coenzyme A (CoA) with the aid of Cu2+, while red emission (668 nm) barely changed and worked as reference. In the concentration range (0-150 µM), relative fluorescence intensity ratios (F520/F668) showed excellent linear correlation with concentrations of CoA, and detection limit was as low as 8.75 nm. Moreover, the strategy has been successfully applied for label-free detection of CoA in real pig liver samples with good recoveries (93.3-108.0%). Notably, the synthesized CDs had durable fluorescence, low cytotoxicity, and good biocompatibility for cellular imaging, which demonstrated wide and promising applicability for biosensing and bioimaging in the future.
Collapse
Affiliation(s)
- Ruiqing Long
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078 Changsha, PR China.
| | - Lianwu Xie
- College of Sciences, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; College of Sciences, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Qinlu Lin
- College of Sciences, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Te Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
33
|
Fu Q, Tong C, Guo Y, Xu J, Shi F, Shi S, Xiao Y. Flavonoid aglycone-oriented data-mining in high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry: efficient and targeted profiling of flavonoids in Scutellaria barbata. Anal Bioanal Chem 2019; 412:321-333. [PMID: 31786643 DOI: 10.1007/s00216-019-02238-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
The high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS/MS) technique is a powerful tool for compound identification in complex natural products. However, untargeted MS/MS data analysis needs skillful experience and sometimes neglects minor compounds, which are co-eluted with major ones or overshadowed by the matrix. Flavonoids are the main bioactive components in Scutellaria barbata, and the total flavonoid content is 47.02 ± 3.23 mg QE/g DW. Although some flavonoid aglycones and their O-glycosides have been found in S. barbata, comprehensive profiling of flavonoids is unknown. Therefore, we report a flavonoid aglycone-oriented data-mining strategy for efficient and targeted profiling of flavonoids in S. barbata. The strategy includes four steps: (1) HPLC-QTOF-MS analysis of S. barbata; (2) construction of a flavonoid aglycone-based database according to biosynthetic pathway analysis and reported data; (3) extraction of through flavonoid aglycone-based ion chromatography; (4) identification of targeted flavonoids by MS/MS analysis. As a result, 45 flavonoids, including 24 flavones, 1 flavonol, 13 flavanones, and 7 flavanonols, were unambiguously or tentatively identified, while 20 of them were reported in S. barbata for the first time. Moreover, 14 available flavonoids were sensitively, precisely, and accurately determined by standard calibration curves, with limit of detection at 0.06 to 1.55 μg/g, limit of quantification at 0.16 to 3.70 μg/g, relative standard deviation (RSD) less than 9.0% for intra- and inter-day variations, and recovery at 92.6-108.1%. The matrix did not obviously suppress or enhance the ionization of 14 flavonoids, and finally their contents ranging from 0.04 to 4.49 mg/g in S. barbata were successfully achieved. Collectively, our results demonstrate that an efficient, reliable, and valuable strategy has been provided to rapidly and sensitively screen, profile, and quantify chemical components of complex natural products. Graphical abstract.
Collapse
Affiliation(s)
- Qiachi Fu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Fangyin Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China. .,Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Yecheng Xiao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.,Lianyuan Kanglu Biotech Co., Ltd., Lianyuan, 417100, Hunan, China
| |
Collapse
|
34
|
Peng M, Wang Z, Peng S, Zhang M, Duan Y, Li F, Shi S, Yang Q, Zhang C. Dietary supplementation with the extract from Eucommia ulmoides leaves changed epithelial restitution and gut microbial community and composition of weanling piglets. PLoS One 2019; 14:e0223002. [PMID: 31557247 PMCID: PMC6762056 DOI: 10.1371/journal.pone.0223002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
This study was conducted to compare the effects of Eucommia ulmoides leaves (EL) in different forms (EL extract, fermented EL, and EL powder) with antibiotics on growth performance, intestinal morphology, and the microbiota composition and diversity of weanling piglets. Compared to the control group, the antibiotics and EL extract significantly increased the average daily gain and decreased the feed: gain ratio as well as the diarrhea rate (P < 0.05). The EL extract significantly decreased the crypt depth and increased the ratio of villus height to crypt depth (P < 0.05), while the fermented EL group did the opposite (P < 0.05). The crypt depth in the antibiotics group was of similar value to the EL extract group, and was lower than the fermented EL and EL powder groups (P < 0.05). Compared to the control and antibiotics groups, the jejunul claudin-3 mRNA expression and the concentrations of total VFA, Chao 1, and ACE were significantly augmented in the EL extract group of piglets (P < 0.05). The EL extract groups also showed elevated Shannon (P < 0.05) and Simpson (P = 0.07) values relative to the control and antibiotics groups. At the phylum level, the EL extract group exhibited a reduced abundance of Bacteroidetes and an enhanced abundance of Firmicutes. At the genus level, the abundance of Prevotella was augmented in the EL extract group. Moreover, compared with the antibiotic group, the acetate concentration was enhanced in the EL extract and fermented EL groups. Overall, dietary supplementation with the EL extract, but not the fermented EL or EL powder, improved growth performance, jejunul morphology and function, as well as changed colonic microbial composition and diversity, which might be an alternative to confer protection against weanling stress in weanling piglets.
Collapse
Affiliation(s)
- Mijun Peng
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou, P. R. China
- * E-mail:
| | - Zhihong Wang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou, P. R. China
| | - Sheng Peng
- National & Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, P. R. China
| | - Minglong Zhang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou, P. R. China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, P. R. China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineer, Central South University, Changsha, Hunan, China
| | - Qiuling Yang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou, P. R. China
| | - Changwei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, P. R. China
| |
Collapse
|
35
|
Wang Z, Long R, Peng M, Li T, Shi S. Molecularly Imprinted Polymers-Coated CdTe Quantum Dots for Highly Sensitive and Selective Fluorescent Determination of Ferulic Acid. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1505878. [PMID: 31360577 PMCID: PMC6644248 DOI: 10.1155/2019/1505878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Ferulic acid (FA), an important phenolic acid, is widely distributed in higher plants and presents many pharmacological effects. Therefore, sensitive determination of FA in complex matrix is necessary. Molecularly imprinted polymers-coated CdTe quantum dots (CdTe-QDs@MIPs) exhibited incomparable advantages because of their combination of excellent selectivity of MIPs and high sensitivity of QDs. Here, a fluorescent probe based on CdTe-QDs@MIPs was successfully fabricated for selective and sensitive determination of FA. MIPs shell was obtained by the reverse microemulsion method using FA, 3-(aminopropyl) triethoxysilane (APTES), and tetraethyl orthosilicate (TEOS), as template, functional monomer, and crosslinker. In optimal conditions, the fluorescence CdTe-QDs@MIPs sensor exhibited fast response (within only 3 min), high sensitivity (limit of detection, LOD at 0.85 μg/l), excellent linear ranges (2-100 μg/l) with a correlation coefficient of 0.9996, and distinguished selectivity for FA. Satisfactory recoveries from 91.8% to 110.3% were achieved with precisions below 6.6% for FA analysis in real pineapple juice and apple juice by developed CdTe-QDs@MIPs. The fluorescence results coincided well with those obtained by high-performance liquid chromatography (HPLC). It could be concluded that the resultant CdTe-QDs@MIPs offered a new way for rapid and sensitive analysis of FA in the complex matrix.
Collapse
Affiliation(s)
- Zhihong Wang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China
| | - Ruiqing Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| | - Mijun Peng
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Te Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| |
Collapse
|
36
|
Guo K, Tong C, Fu Q, Xu J, Shi S, Xiao Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC‒DAD‒QTOF-MS/MS. J Pharm Biomed Anal 2019; 170:153-160. [PMID: 30925272 DOI: 10.1016/j.jpba.2019.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
An effective strategy based on high-speed counter-current chromatography (HSCCC) knockout combination with HPLC-DAD-QTOF-MS/MS analysis were developed to identify minor lignans, alkaloids, and phenylpropanoid glycosides in M. officinalis. Petroleum ether/ethyl acetate/methanol/water (8:4:7:5, v/v/v/v) as solvent system was firstly selected to separate the crude extract of M. officinalis. Two major lignans, honokiol and magnolol were knocked out, and minor components were enriched. Then, five standards (honokiol, magnolol, magnocurarine, magnoflorine and acteoside) were used as examples to discuss their fragmentation patterns for structural identification. By comprehensive screening, sixteen lignans, nine alkaloids, six phenylpropanoid glycosides were unambiguously or tentatively identified by comparing their retention time, UV spectra, accurate mass and fragmentation patterns with standards or reported components. Eight of them, as far as was known, were discovered from M. officinalis for the first time. The proposed method might provide a model for the effective identification of minor components from complex herbs. Additionally, this study laid a foundation for the study of quality control, and clinical applications of M. officinalis.
Collapse
Affiliation(s)
- Keke Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China
| | - Qiachi Fu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China.
| | - Yecheng Xiao
- Lianyuan Kanglu Biotech Co., Ltd., Lianyuan, 417100, PR China
| |
Collapse
|
37
|
Long R, Tang C, Xu J, Li T, Tong C, Guo Y, Shi S, Wang D. Novel natural myricetin with AIE and ESIPT characteristics for selective detection and imaging of superoxide anions in vitro and in vivo. Chem Commun (Camb) 2019; 55:10912-10915. [DOI: 10.1039/c9cc05212g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel reversible AIE + ESIPT probe, myricetin, easily obtained from vine tea, for detection and imaging of O2•−.
Collapse
Affiliation(s)
- Ruiqing Long
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Cui Tang
- Department of Clinical Pharmacology
- Xiangya Hospital
- Hunan Key Laboratory of Pharmacogenetics
- Central South University
- 410078 Changsha
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Te Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Ying Guo
- Department of Clinical Pharmacology
- Xiangya Hospital
- Hunan Key Laboratory of Pharmacogenetics
- Central South University
- 410078 Changsha
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Daijie Wang
- Key Laboratory of TCM Quality Control
- Shandong Analysis and Test Center
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250014
- China
| |
Collapse
|