1
|
Kumar Y, Singh S, Saxena DC. A comprehensive review on methods, mechanisms, properties, and emerging applications of crosslinked starches. Int J Biol Macromol 2025; 306:141526. [PMID: 40020831 DOI: 10.1016/j.ijbiomac.2025.141526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Native starches exhibit limitations in terms of low thermal stability, poor paste clarity, and high retrogradation. Crosslinking is a modification method that has been employed to address these shortcomings by introducing intra- and inter-molecular bonds to enhance the properties of starch. Sodium trimetaphosphate (STMP), citric acid (CA), and epichlorohydrin (ECH) are widely used crosslinking agents that enhance the thermal stability, mechanical properties, and resistance to enzymatic degradation of starches. However, the changes in starch properties are highly dependent on the type and concentration of crosslinkers and source of starch. Therefore, the present review comprehensively explores the methods, mechanisms, and parameters affecting the crosslinking process of starches. Additionally, it highlights the potential of crosslinked starches in emerging fields like hydrogels, aerogels, biodegradable films, and adsorbents.
Collapse
Affiliation(s)
- Yogesh Kumar
- Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| | - Sukhcharn Singh
- Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - D C Saxena
- Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| |
Collapse
|
2
|
Devi N, Shayoraj, Geeta, Shivani, Ahuja S, Dubey SK, Sharma S, Kumar S. Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste. Carbohydr Res 2025; 550:109404. [PMID: 39879945 DOI: 10.1016/j.carres.2025.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA). The thermal stability of PS increased to 292 °C due to the formation of starch phosphate ester in comparison to pure starch (281 °C). Moreover, using glycerol as a plasticizer, the solvent casting method was employed to synthesize the PS/PVA biofilms. The synthesized biofilms (PPS) were further characterized using FT-IR, TGA, Mechanical testing, and Scanning electron microscopy (SEM). The result indicated that blend films have higher tensile strength (41.61 MPa) and elongation at break (240 %) than pure PVA film (29.84 MPa, 102 %). The soil burial study showed that the biodegradation of PPS blend films increased to 63.79 %. Nevertheless, the blend film showed decreased solubility, water absorption, water vapor transmission rate, and moisture content with PS, while its surface hydrophobicity increased from 61.2° to 95.6°. PPS blends have stronger antibacterial activity against S. aureus than E. coli. Accordingly, the prepared PPS III biofilm was further used for brown bread packaging. Compared to LDPE packaging, the bread wrapped in PPS III blend film exhibited enhanced visual appearance and extended shelf-life. The novelty of our work lies in the modification of starch using CPPC, which was further used to fabricate biodegradable films. Therefore, the developed biofilm may be a reference for additional research and can potentially replace synthetic, non-degradable polymer-based films in the packaging industry.
Collapse
Affiliation(s)
- Neeru Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Shayoraj
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Geeta
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Shivani
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Simran Ahuja
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Santosh Kumar Dubey
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Sanjay Sharma
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Satish Kumar
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
3
|
Zhang T, Wu M, Wei W, He T, Zhang X, Xu H, Sun D. Multiscale insights into the role of water content in the extrusion-crosslinked starch. Int J Biol Macromol 2025; 307:142118. [PMID: 40101814 DOI: 10.1016/j.ijbiomac.2025.142118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Water content is a key factor in the extrusion-crosslinking process, profoundly influencing the modification and structural properties of starch. The specific effects of water content have not been sufficiently emphasized in the extrusion-crosslinking process, limiting the high-value utilization of starch. This study elucidates the mechanisms of extrusion crosslinking under varying water contents through multiscale analysis, revealing that water content directly affects starch modification. As water content increases, starch crystallinity and molecular degree of order decrease, while the proportion of short-chain structures increases. Higher water content (≥45 %) improves starch melt fluidity and molecular chain mobility, promotes crosslinking, and results in starch gels with superior viscoelastic properties. However, excessive water content (85 %) decreases gel strength and crosslinking efficiency. Molecular simulations complemented the experimental results, showing that water modulates hydrogen bonding and starch molecular mobility. At 65 % moisture content, the crosslinking bonds exhibited the highest and narrowest peak, indicating a higher proportion of crosslinking bonds and greater bond stability. This multiscale analysis highlights the importance of combining molecular simulations and experimental methods to better understand the role of water in starch modification. These results provide insights into the optimization of starch processing and guidance for the sustainable use of starch applications.
Collapse
Affiliation(s)
- Tianqi Zhang
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenguang Wei
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao He
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xun Zhang
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Dongyu Sun
- School of Food and Bioengineering, Beijing Vocational College of Agriculture, No. 5, the South of Daotian, Haidian District,102442, China
| |
Collapse
|
4
|
Liu Y, Pan Q, Liang Z, Li J, Wu R. Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch. Biopolymers 2025; 116:e70004. [PMID: 39873347 DOI: 10.1002/bip.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased. Under the cross-linking action of STMP, the porous starch particles are cross-linked and agglomerated together. The crystalline form of porous starch presents A + V type, and crystallinity increased after crosslinking. The crosslinked porous starches have higher short-range ordering comparing to the porous without crosslinked porous starch. The crosslinking degree, melting enthalpy and melting peak of starch increased with the increase of STMP content. The bulk density and the vibrated density of the porous starch increased after crosslinking. With the increase of the content of STMP, the water and oil absorption of porous starch increased and then decreased. The MB adsorption capacity of crosslinked porous starch has the maximum value with the STMP 20 wt% content. MB adsorption behavior of porous starch is more consistent with the pseudo-second-order kinetic model, and the equilibrium adsorption increased after crosslinking.
Collapse
Affiliation(s)
- Yuxin Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Qinghua Pan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Zesheng Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Jingqiao Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Rulong Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| |
Collapse
|
5
|
Shan Y, Li J, Nie M, Li D, Zhang Y, Li Y, Wang L, Liu L, Wang F, Tong LT. A comprehensive review of starch-based technology for encapsulation of flavor: From methods, materials, and release mechanism to applications. Carbohydr Polym 2025; 348:122816. [PMID: 39562091 DOI: 10.1016/j.carbpol.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
Encapsulation of flavor and aroma compounds in appropriate materials and forms has long been an important issue. Encapsulation of flavor in inexpensive, stable, and widely used starch-based materials could preserve or mask characteristic aroma compounds, improve flavor thermal and oxidative stability, control release, and increase bioavailability. However, several technical challenges still hinder the application of starch-based encapsulated flavor complexes in the food industry. This study comprehensively and systematically the encapsulation technology of starch-based materials, the properties and applications of starch-based materials, and the flavor release mechanism of encapsulated compounds, aiming to provide insights into the rational design of starch-encapsulated flavor. While choosing flavor encapsulation materials for industries, starch, cyclodextrins, maltodextrin, octenyl succinic anhydride starches, and porous starch are worthy of consideration. On this basis, future research directions for the nutritional value of starch-encapsulated flavor compounds and their application in the food industry are proposed. To elucidate the release mechanisms and application efficiencies of various starch-based flavor complexes, it is necessary to investigate the conformational interactions as well as applications in various food and gastrointestinal systems.
Collapse
Affiliation(s)
- Yimeng Shan
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dezhi Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Zhang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Li
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China.
| |
Collapse
|
6
|
Cao F, Lu S. OSA modified porous starch acts as an efficient carrier for loading and sustainedly releasing naringin. Food Chem 2025; 463:141176. [PMID: 39276539 DOI: 10.1016/j.foodchem.2024.141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
To select an efficient carrier for loading and sustainedly releasing naringin (NAR), complexes of porous starch (PS) and NAR (PS-NAR) as well as those of octenyl succinic anhydride (OSA) esterified PS and NAR (OSAPS-NAR) with different degree of substitution (DS) were prepared by an ultrasonic method with an ethanol solution. The micro-morphological features, structural and thermal properties of complexes and their constituents were characterized, and in vitro release rate and kinetic of NAR from complexes were investigated. The findings revealed that NAR was successfully loaded in PS/OSAPS in an amorphous form, and the NAR's loading efficiency improved as DS increased, reaching 86.85 % at DS 0.0427. NAR cumulative release rate from the complexes in simulated digestion fluids was much higher than that of free (unloaded) NAR, but decreased as DS increased. NAR's in vitro release from complexes mainly depended on the carrier rather than NAR itself, and OSAPS with higher DS had stronger protection and slower release effect on NAR. The results would provide a new means for starch-based carrier construction to develop an efficient delivery and sustainedly releasing system for NAR, thus broadening the application ranges both for modified starch and citrus flavonoids such as NAR.
Collapse
Affiliation(s)
- Feng Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Costa TB, Matias PMC, Sharma M, Murtinho D, Rosa DS, Valente AJM. Recent Advances on Starch-Based Adsorbents for Heavy Metal and Emerging Pollutant Remediation. Polymers (Basel) 2024; 17:15. [PMID: 39795417 PMCID: PMC11723384 DOI: 10.3390/polym17010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Starch is one of the most abundant polysaccharides in nature and has a high potential for application in several fields, including effluent treatment as an adsorbent. Starch has a unique structure, with zones of different crystallinity and a glycosidic structure containing hydroxyl groups. This configuration allows a wide range of interactions with pollutants of different degrees of hydrophilicity, which includes from hydrogen bonding to hydrophobic interactions. This review article aims to survey the use of starch in the synthesis of diverse adsorbents, in forms from nanoparticles to blends, and evaluates their performance in terms of amount of pollutant adsorbed and removal efficiency. A critical analysis of the materials developed, and the results obtained is also presented. Finally, the review provides an outlook on how this polysaccharide can be used more effectively and efficiently in remediation efforts in the near future.
Collapse
Affiliation(s)
- Talles B. Costa
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Pedro M. C. Matias
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
| | - Mohit Sharma
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal;
| | - Dina Murtinho
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
| | - Derval S. Rosa
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
| |
Collapse
|
8
|
Garg A, Lavania K. Recent opportunities and application of gellan gum based drug delivery system for intranasal route. Daru 2024; 32:947-965. [PMID: 39361194 PMCID: PMC11555193 DOI: 10.1007/s40199-024-00543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/24/2024] [Indexed: 11/12/2024] Open
Abstract
OBJECTIVES In the recent years, in-situ hydrogel based on gellan gum has been investigated for delivery of various drug molecules particularly to treat neurological disorders via intranasal route. The major objective of the present manuscript is to review the recent research studies exploring gellan gum as ionic triggered in-situ gel for intranasal administration to enhance absorption of drugs and to increase their therapeutic efficacy. METHODS This review include literature from 1982 to 2023 and were collected from various scientific electronic databases like Scopus, PubMed and Google Scholar to review source, chemistry, ionotropic gelation mechanism, and recent research studies for gellan gum based in-situ hydrogel for intransasl administration.Keywords such as gellan gum, in-situ hydrogel, intranasal administration and brain targeting were used to search literature. The present review included the research studies which explored gellan gum based in-situ gel for intranasal drug delivery. RESULTS The findings have shown enhanced biavailability of various drugs upon intranasal administration using gellan-gum based in-situ hydrogel.Moreover, the review indicated that intranasal administration of in-situ hydrogel facilitate to overcome blood brain barrier effectively. Hence, significantly higher drug concentration was found to be achieved in brain tissues upon intranasal administration than that of other routes like oral and intravenous. CONCLUSION The present work conducted a comprehensive review for gellan gum based in-situ hydrogel particularly for intransal administration to overcome BBB. The study concluded that gellan gum based in-situ hydrogel could be potential promising delivery system for intranasal administration to improve bioavailability and efficacy of drugs specifically to treat neurological disorders.
Collapse
Affiliation(s)
- Anuj Garg
- Institute of Pharmaceutical Research, GLA University, NH-2 Mathura Delhi Road P.O- Chaumuhan, Mathura, 281406, U.P, India.
| | - Khushboo Lavania
- College of Pharmacy, BSA College of Engineering and Technology, Mathura, India
| |
Collapse
|
9
|
Liu M, Yao W, Shan J, Zheng H, Yang Y, Cao L, Qi B, Tan H, Sun C, Zhang X, Zhang Y. Preparation of high-performance antibacterial/antifungal citric acid-starch adhesives based on physical entanglement and chemical crosslinking. Int J Biol Macromol 2024; 279:135560. [PMID: 39349325 DOI: 10.1016/j.ijbiomac.2024.135560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Starch-based wood adhesives are widely used as environmentally friendly and formaldehyde-free alternatives in the manufacturing of wood products. However, their poor water resistance and inability to inhibit bacterial/fungal growth limit their practicality. To address this issue, a physicochemical double-crosslinked network structure between citric acid, starch, and wood was prepared in this study by physically entangling the wood structure and chemically crosslinking the starch molecules, with citric acid preventing the activity of various enzymes and denatured proteins within microbial cells, thereby inhibiting bacterial and fungal growth. In water resistance cycling tests, the resulting esterified starch plywood demonstrated a 47.6 % and 13.2 % increase in water resistance compared with starch plywood and commercially available phenolic resin plywood, respectively. In addition, the tighter intermolecular bonding in the crosslinked structure results in a 31 % increase in heat resistance. The physical "nailing" and chemical crosslinking between the adhesive and the wood improved considerably the bonding strength to 98.36 %. The dual role of the physicochemical crosslinking of starch adhesives provides a straightforward strategy for the preparation of inexpensive, water-resistant, and fungal/bacterial-resistant starch adhesives, thus contributing to the promotion of starch adhesives.
Collapse
Affiliation(s)
- Mengyao Liu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Wenrui Yao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Junyue Shan
- College of Mechanical and Electrical Engineering (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Hao Zheng
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yueqiang Yang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Lijun Cao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Bei Qi
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Haiyan Tan
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Ce Sun
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| | - Xianquan Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
10
|
Liu C, Zhan A, Liu P, Li R, Li K, Li J. Cross-linking affecting properties and in-vitro digestibility of starch-sucrose ester complexes. Int J Biol Macromol 2024; 276:133808. [PMID: 39004257 DOI: 10.1016/j.ijbiomac.2024.133808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
This study investigated the effects of cross-linking on the characteristics and in-vitro digestibility of starch-sucrose ester (SE) complexes. To achieve this, corn starch (CS) was cross-linked with various concentrations of sodium trimetaphosphate /sodium tripolyphosphate (5 %, 10 %, and 15 %). Subsequently, cross-linked starches (CLS) were complexed with SE through hydrothermal treatment. X-ray diffraction analysis revealed that V-type amylose-lipid complexes formed by the interaction between CS and SE. The resultant CS-SE complex significantly reduced CS digestibility, increasing its resistant starch (RS) content from 10.19 % to 22.71 %. The cross-linking modification did not alter the crystalline pattern of the CS-SE complex. Several CLS-SE complexes demonstrated higher enzymatic resistance compared to the CS-SE complex. The CLS10-SE complex exhibited the highest RS content of 39.37 % when the cross-linking agent concentration was 10 %. This phenomenon may be attributable to the cross-linking reaction having enhanced the interaction between starch molecular chains, reducing the solubility and swelling power, thereby hindering the accessibility of starch chains to digestive enzymes. These findings indicate that cross-linking modification is a practical approach to improving the anti-digestion performance of starch-lipid complexes.
Collapse
Affiliation(s)
- Cancan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ahui Zhan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peihua Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ruoxuan Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Li C, An F, Sun S, Huang Q, He H, Song H. Micro-encapsulation of garlic oil using esterified-wheat porous starch and whey protein isolate: Physicochemical properties, release behavior during in vitro digestion. Int J Biol Macromol 2024; 272:132843. [PMID: 38830489 DOI: 10.1016/j.ijbiomac.2024.132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The study aimed to inhibit the stimulating impact of garlic oil (GO) on the stomach and attain high release in the intestine during digestion. So, wheat porous starch (WPS) was modified with octenyl succinic acid (OSA) and malic acid (MA) to obtain esterified WPS, OWPS and MWPS, respectively. The differences in physicochemical, encapsulation, and digestive properties of two GO microcapsules, WPI/OWPS/GO and WPI/MWPS/GO microcapsules produced by using OWPS and MWPS as variant carrier materials and whey protein isolate (WPI) as the same coating agent, were compared. The results found that OWPS had greater amphiphilicity, while MWPS had better hydrophobicity and anti-digestive ability than WPS. Encapsulation efficiency of WPI/OWPS/GO (94.67 %) was significantly greater than WPI/MWPS/GO (91.44 %). The digestion inhibition and low GO release (approximately 23 %) of WPI/OWPS/GO and WPI/MWPS/GO microcapsules in the gastric phase resulted from the protective effect of WPI combined with the good adsorption and lipophilicity of OWPS and MWPS. Especially, WPI/OWPS/GO microcapsule was relatively stable in the gastric phase and had sufficient GO release (67.24 %) in the intestinal phase, which was significantly higher than WPI/MWPS/GO microcapsule (56.03 %), benefiting from the adsorption and digestive properties of OWPS, and resulting in a total cumulative GO release rate of 90.86 %.
Collapse
Affiliation(s)
- Caini Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Shenzhen Boton Flavors and Fragrances Co., Ltd, Shenzhen, Guangdong 518000, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China
| | - Shuaihao Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hong He
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Zhao Y, Qiao S, Zhu X, Guo J, Peng G, Zhu X, Gu R, Meng Z, Wu Z, Gan H, Guifang D, Jin Y, Liu S, Sun Y. Effect of different drying methods on the structure and properties of porous starch. Heliyon 2024; 10:e31143. [PMID: 38813237 PMCID: PMC11133660 DOI: 10.1016/j.heliyon.2024.e31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
In order to investigate the effects of different drying methods on the properties of porous starch. The present study used four drying methods, namely hot air drying (HD), spray drying (SPD), vacuum freeze drying (FD) and supercritical carbon dioxide drying (SCD) to prepare maize and kudzu porous starch. Findings indicated that the physicochemical properties (e.g., morphology, crystallinity, enthalpy value, porosity, surface area and water absorption capacity as well as dye absorption capacity, particle size) of porous starch were significantly affected by the drying method. Compared with other samples, SCD-treated porous starch exhibited the highest surface areas of the starch (2.943 and 3.139 m2/g corresponding to kudzu and maize, respectively), amylose content (22.02 % and 16.85 % corresponding to kudzu and maize, respectively), MB and NR absorption capacity (90.63 %, 100.26 % and 90.63 %, 100.26 %, corresponding to kudzu ad maize, respectively), and thermal stability, whereas HD-treated porous starch showed the highest water-absorption capacity (123.8 % and 131.31 % corresponding to kudzu and maize, respectively). The dye absorption of the maize and kudzu porous starch was positively correlated with surface area, according to Pearson's correlation analysis. Therefore, in this study, our aim was to explore the effects of different drying methods on the Structure and properties of porous starch, and provide reference for selecting the best drying method for its application in different fields.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Simo Qiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaohui Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jinnan Guo
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guanqun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaoxia Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dou Guifang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shuchen Liu
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yunbo Sun
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
14
|
Wang D, Tang Z, Chen R, Zhong X, Du X, Li YX, Zhao Z. Physicochemical properties of esterified/crosslinked quinoa starches and their influence on bread quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3834-3841. [PMID: 38394374 DOI: 10.1002/jsfa.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Starch is the main component of quinoa seeds. However, quinoa starch has poor solubility in cold water and poor mechanical resistance and is easily aged, which limit its application. Therefore, modification of its structure to improve its functional properties is necessary. RESULTS This research used acetic anhydride and sodium trimetaphosphate to modify the structure of starch molecules and investigated their influence on bread quality. The results showed that both esterification and crosslinking prevented the aggregation behavior of starch molecules. Moreover, they both decreased the gelatinization enthalpy change and relative crystallinity of the starch. Compared with native starch, modification significantly decreased the gelatinization temperature from 57.01 to 52.01 °C and the esterified starch exhibited the lowest enthalpy change with a 44.2% decrease. Modified starch increased the specific volume and decreased the hardness and chewiness of bread. Modification did not influence the moisture content in bread but impacted the water retention capacity, depending on the degree of modification. Low and medium degrees of modification improved the water retention capacity during storage. By contrast, a high degree of modification (10 g kg-1 crosslinking agent) decreased the water retention capacity. The dually modified quinoa starch (esterified and crosslinked) showed no influence on the textural properties of bread. CONCLUSION This study demonstrated that both esterification and crosslinking significantly improved the functional properties of quinoa starch. Crosslinked or esterified quinoa starches have the potential to improve the textural properties of bakery products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Donghai Wang
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
- School of Biology and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyi Tang
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Rui Chen
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xu Zhong
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaoyao Du
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yi-Xuan Li
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhengtao Zhao
- School of Grain Science and Technology, Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
15
|
Gui H, Ma W, Cao Y, Chao H, Fan M, Dong Q, Li L. Sustained release, antimicrobial, and antioxidant properties of modified porous starch-based biodegradable polylactic acid/polybutylene adipate-co-terephthalate/thermoplastic starch active packaging film. Int J Biol Macromol 2024; 267:131657. [PMID: 38636753 DOI: 10.1016/j.ijbiomac.2024.131657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Porous starch (PS) is a modified starch with commendable biodegradable and adsorption properties. PS exhibits poor thermal stability, and the aqueous solution casting method is conventionally used for PS-activated packaging films. This approach limits the large-scale production of films and makes it difficult to play the functions of porous pores. In this study, PS was prepared by enzymatic digestion combined with freeze-drying and adsorbed with clove essential oil (CEO) after cross-linking with sodium trimetaphosphate. Subsequently, a novel PLA/PBAT/TPS/ScPS-CEO sustained release active packaging film was prepared by blending PLA, PBAT, TPS, and ScPS-CEO using industrial melt extrusion. Compared with PS, ScPS effectively slowed down the release of CEO from the film, with the maximum release of active substances at equilibrium increasing by approximately 100 %, which significantly enhanced the persistence of the antimicrobial and antioxidant properties. The polylactic acid/poly (butylene adipate-co-terephthalate)/thermoplastic starch/trimetaphosphate-crosslinked porous starch incorporated with clove essential oil (PLA/PBAT/TPS/ScPS-CEO) film could reduce the proteolysis, lipid oxidation and microbial growth of salmon, extending its shelf life by approximately 100 % at 4 °C. These results indicate that the ScPS can be used in fresh packaging material in practical applications.
Collapse
Affiliation(s)
- Hang Gui
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yichen Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hui Chao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
16
|
Sujka M, Wiącek AE. Physicochemical Characteristics of Porous Starch Obtained by Combined Physical and Enzymatic Methods, Part 1: Structure, Adsorption, and Functional Properties. Int J Mol Sci 2024; 25:1662. [PMID: 38338940 PMCID: PMC10855069 DOI: 10.3390/ijms25031662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Porous starch can be applied as an adsorbent and encapsulant for bioactive substances in the food and pharmaceutical industries. By using appropriate modification methods (chemical, physical, enzymatic, or mixed), it is possible to create pores on the surface of the starch granules without disturbing their integrity. This paper aimed to analyze the possibility of obtaining a porous structure for native corn, potato, and pea starches using a combination of ultrasound, enzymatic digestion, and freeze-drying methods. The starch suspensions (30%, w/w) were treated with ultrasound (20 kHz, 30 min, 20 °C), then dried and hydrolyzed with amyloglucosidase (1000 U/g starch, 50 °C, 24 h, 2% starch suspension). After enzyme digestion, the granules were freeze-dried for 72 h. The structure of the native and modified starches were examined using VIS spectroscopy, SEM, ATR-FTIR, and LTNA (low-temperature nitrogen adsorption). Based on the electrophoretic mobility measurements of the starch granules using a laser Doppler velocimeter, zeta potentials were calculated to determine the surface charge level. Additionally, the selected properties such as the water and oil holding capacities, least gelling concentration (LGC), and paste clarity were determined. The results showed that the corn starch was the most susceptible to the combined modification methods and was therefore best suited for the production of porous starch.
Collapse
Affiliation(s)
- Monika Sujka
- Department of Analysis and Food Quality Assessment, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq.3, 20-031 Lublin, Poland
| |
Collapse
|
17
|
Cao F, Lu S, Quek SY. Preparation, characterization and in vitro digestion of octenyl succinic anhydride-modified porous starch with different degrees of substitution. Int J Biol Macromol 2023; 253:126579. [PMID: 37648131 DOI: 10.1016/j.ijbiomac.2023.126579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Octenyl succinic anhydride modified porous starch (OSA-PS) with degrees of substitution (DS) from 0.0123 to 0.0427 were prepared by aqueous phase method. From SEM, PS had a porous structure which showed a rough and corrosive surface after esterification with OSA. FT-IR revealed the characteristic peaks of OSA-PS at 1725 cm-1 and 1570 cm-1. From 1H NMR spectra, OSA-PS displayed extra chemical signal peaks at 0.85 ppm, 1.25 ppm and 1.96 ppm. These results fully demonstrated that OSA groups were successfully grafted onto PS. Furthermore, as DS increased, the specific surface area (5.6464 m2/g), pore volume (0.9959 × 10-2 cm3/g) and methylene blue adsorption capacity (24.3962 mg/g) of OSA-PS reached the maximum, while its relative crystallinity (26.8112 %) and maximum thermal decomposition temperature (291.96 °C) were the minimum. In vitro digestion studies showed that with the increase of DS, OSA-PS' contents of rapidly digestible starch and slowly digestible starch decreased from 9.06 % to 6.27 % and 28.38 % to 14.61 %, respectively. In contrast, its resistant starch had an increase in content from 62.56 % to 79.12%. The results provided an effective method for obtaining a double-modified starch with high specific surface area and anti-digestibility, thus broadening the industrial application of starch.
Collapse
Affiliation(s)
- Feng Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
18
|
Liu M, Yao W, Zheng H, Zhao H, Shao R, Tan H, Zhang Y. Preparation of a high-strength, hydrophobic performance starch-based adhesive with oxidative cross-linking via Fenton's reagent. Int J Biol Macromol 2023; 253:126995. [PMID: 37802432 DOI: 10.1016/j.ijbiomac.2023.126995] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Starch is a highly attractive carbohydrate in the production for the preparation of adhesives in recent years, due to its widespread availability, renewability, and abundance of reactive hydroxyl groups. However, the mechanical properties, hydrophobicity, self-adhesion, and particularly high energy efficiency are generally unsatisfactory for current starch-based adhesives. On this premise, starch was oxidized using Fenton's reagent in a ""one-pot cooking" process. The prepared oxidized starch was chain expanded by polyvinyl alcohol (PVA) and then cross-linked with a 10 % isocyanate (PM-200) to fabricate a starch-based adhesive (SFA) with a network crosslinked structure. SF12A35%/2.5-55 adhesive shows significantly higher wet shear strength (1.18 MPa), a remarkable 94 % increase compared to SF0A35%/2.5-55. The adhesive film also demonstrates both hydrophobicity (99° contact angle) and exceptional energy efficiency, with a DSC test revealing a notable 10 % elevation in energy efficiency. In addition, the crosslinked structure increases its molecular weight, thereby increasing its self-adhesion (Fig. S1). This study opens up new possibilities for the design and manufacture of multifunctional starch-based adhesives.
Collapse
Affiliation(s)
- Mengyao Liu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Wenrui Yao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Hao Zheng
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Hangqi Zhao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Ruoxi Shao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Haiyan Tan
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
19
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
20
|
Min Y, Yi J, Dai R, Liu W, Chen H. A novel efficient wet process for preparing cross-linked starch: Impact of urea on cross-linking performance. Carbohydr Polym 2023; 320:121247. [PMID: 37659826 DOI: 10.1016/j.carbpol.2023.121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 09/04/2023]
Abstract
Although wet processes are promising for preparing cross-linked starch, they are currently challenged by lower cross-linking efficiency and the requirement of large amounts of salts. Herein, an efficient and greener wet process was proposed, in which the cross-linking performance between sodium hexametaphosphate (SHMP) and starch was enhanced with the aid of urea. The maximum degree of substitution (DS) of the urea-phosphorylated cross-linked starch (UPCS) was 0.040 at 35 °C, while that of the conventional phosphorylated cross-linked starch (CPCS) was 0.031 at 45 °C. Compared with CPCS, the maximum DS of UPCS was elevated by 29.03 %, but its optimum cross-linking temperature was reduced by 10 °C, indicating that the cross-linking efficiency of this novel wet process was greatly improved by urea. The structural difference between UPCS and CPCS was confirmed by using a series of techniques including 31P NMR and 13C NMR. Zeta potential results suggested that urea may promote starch cross-linking by preventing the closure of active sites through hydrophobic interactions. Due to the structural reinforcement of starch by urea, UPCS showed better thermal stability, water resistance, acid and alkali resistance, and steady shear tolerance properties. This study provides a facile wet process for the fabrication and application of cross-linked starch materials.
Collapse
Affiliation(s)
- Yan Min
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jie Yi
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Rui Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Wentao Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Hui Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Bodjrenou DM, Huang Z, Liu T, Zheng B, Zeng H. Effects of crosslinking with sodium trimetaphosphate on structural, physicochemical, rheological and in vitro digestibility properties of purple sweet potato starch. Food Res Int 2023; 173:113427. [PMID: 37803765 DOI: 10.1016/j.foodres.2023.113427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Purple sweet potato starch (PSPS) was modified using different amounts of sodium trimetaphosphate (0, 3-12%). Phosphorus content, crosslinking (CL), and substitution levels increased after modification. CL led to gradual agglomeration with each other through adhesion, compared to 0% STMP. X-ray diffraction did not change, but crystalline properties, swelling index, and peak viscosity increased, and solubility and glycaemic index decreased after crosslinking. Crosslinking increased, leading to a decrease of greater significance at 3% CL. Resistant starch was increased from 60.51 to 83.32%. G' and G'' values for crosslinking starch samples varied from 3086.00-5507.50 Pa and 513.92-800.30 Pa, respectively, after sweep test. The flow behavior index < 1 indicates that CL starch pastes are shear-thin. Positive and negative correlations were observed between gelatinized starch enthalpy and RS and between SDS and GI, respectively. The results lay the groundwork to comprehend the properties and relationships of CLPSPS and promote its possible use in foods.
Collapse
Affiliation(s)
- David Mahoudjro Bodjrenou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zengjing Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Teng Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| | - Honliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| |
Collapse
|
22
|
Lin D, Zhao J, Fan H, Qin W, Wu Z. Enhancing starch nanocrystal production and evaluating their efficacy as fat replacers in ice cream: Investigating the influence of high pressure and ultrasonication. Int J Biol Macromol 2023; 251:126385. [PMID: 37595721 DOI: 10.1016/j.ijbiomac.2023.126385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
A preparation method involving the combination of high-pressure homogenization and ultrasound (HPH-US) techniques was employed to produce starch nanocrystals (NCs) from three botanical starch sources: chestnut, corn starch, and potato starch. The optimal conditions, determined using response surface methodology, consisted of a homogenization pressure of 60 MPa and ultrasound at 280 W for 30 min. The utilization of dynamic light scattering (DLS) and transmission electron microscopy (TEM) unveiled that the resulting starch particles exhibited nanometric dimensions ranging from 135.36 to 203.47 nm. The mechanical forces generated by the HPH-US treatment significantly enhanced the physicochemical properties of the starch NCs, leading to a partial disruption of the crystalline structure. Moreover, the potential application of the synthesized starch NCs as fat replacers (FRs) was investigated. As the degree of substitution increased, notable improvements were observed in the hardness and viscosity of ice cream, accompanied by a reduction in the melting rate. The overall sensory evaluation indicated that corn starch NCs held substantial promise as a viable alternative FR for enhancing the quality of ice cream.
Collapse
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jingjing Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Hao Fan
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| |
Collapse
|
23
|
Chen X, Zhang W, Quek SY, Zhao L. Flavor-food ingredient interactions in fortified or reformulated novel food: Binding behaviors, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Compr Rev Food Sci Food Saf 2023; 22:4004-4029. [PMID: 37350045 DOI: 10.1111/1541-4337.13195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023]
Abstract
With consumers gaining prominent awareness of health and well-being, a diverse range of fortified or reformulated novel food is developed to achieve personalized or tailored nutrition using protein, carbohydrates, or fat as building blocks. Flavor property is a critical factor in the acceptability and marketability of fortified or reformulated food. Major food ingredients are able to interact with flavor compounds, leading to a significant change in flavor release from the food matrix and, ultimately, altering flavor perception. Although many efforts have been made to elucidate how food matrix components change flavor binding capacities, the influences on flavor perception and their implications for the innovation of fortified or reformulated novel food have not been systematically summarized up to now. Thus, this review provides detailed knowledge about the binding behaviors of flavors to major food ingredients, as well as their influences on flavor retention, release, and perception. Practical approaches for manipulating these interactions and the resulting flavor quality are also reviewed, from the scope of their intrinsic and extrinsic influencing factors with technologies available, which is helpful for future food innovation. Evaluation of food-ingredient interactions using real food matrices while considering multisensory flavor perception is also prospected, to well motivate food industries to investigate new strategies for tasteful and healthy food design in response to consumers' unwillingness to compromise on flavor for health.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North, New Zealand
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
24
|
Li Y, Luo XE, Tan MJ, Yue FH, Yao RY, Zeng XA, Woo MW, Wen QH, Han Z. Preparation of carboxymethylcellulose / ZnO / chitosan composite hydrogel microbeads and its drug release behaviour. Int J Biol Macromol 2023; 247:125716. [PMID: 37419258 DOI: 10.1016/j.ijbiomac.2023.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ming-Jun Tan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fu-Hao Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Run-Yu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Meng-Wai Woo
- Department of chemical and materials engineering, University of Auckland, Auckland 1010, New Zealand
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
25
|
Cao F, Lu S, Wang L, Zheng M, Young Quek S. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chem 2023; 415:135765. [PMID: 36854239 DOI: 10.1016/j.foodchem.2023.135765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Native starches have low water solubility at room temperature and poor stability, which demand modifications to overcome. Porous starch as a modified one shows enhanced adsorptive efficiency and solubility compared with its native starch. In contrast, some inherent disadvantages exist, such as weak mechanical strength and low thermal resistance. Fortunately, modified porous starches have been developed to perform well in adsorption capacity and stability. Modified porous starch can be prepared by esterification, crosslinking, oxidation and multiple modifications to the porous starch. The characterization of modified porous starch can be achieved through various analytical techniques. Modified porous starch can be utilized as highly efficient adsorbents and encapsulants for various compounds and applied in various fields. This review dealt with the progress in the preparation, structural characterization and application of modified porous starch. The objective is to provide a reference for its development, utilization, and future research directions.
Collapse
Affiliation(s)
- Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
26
|
Pokharel A, Jaidka RK, Sruthi NU, Bhattarai RR. Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles. Foods 2023; 12:foods12081662. [PMID: 37107457 PMCID: PMC10137948 DOI: 10.3390/foods12081662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
White salted (udon) noodles are one of the major staple foods in Asian countries, particularly in Japan. Noodle manufacturers prefer the Australian noodle wheat (ANW) varieties to produce high-quality udon noodles. However, the production of this variety has reduced significantly in recent years, thus affecting the Japanese noodle market. Noodle manufacturers often add tapioca starch to compensate for the flour scarcity; however, the noodle-eating quality and texture are significantly reduced. This study, therefore, investigated the effect of the addition of porous tapioca starch on the cooking quality and texture of udon noodles. For this, tapioca starch was initially subjected to enzyme treatment, ultrasonication, and a combination of both to produce a porous starch where a combined enzyme (0.4% alpha amylase)-ultrasound treatment (20 kHz) yielded a porous starch with increased specific surface area and better absorbent properties which are ideal for udon noodle manufacturing, Later, udon noodles were prepared using three varieties of ANW, a hard Mace variety, and commercial wheat flour by incorporating the prepared porous tapioca starch at a concentration of 5% and 10% of dry ingredients. Adding this porous starch resulted in a lower cooking time with higher water absorption and desirable lower cooking loss compared to the control sample with 5% of the porous starch chosen as the optimum formulation. Increasing the level of the porous starch reduced the hardness of the noodles whilst maintaining the desired instrumental texture. Additionally, a multivariate analysis indicated a good correlation between responses' optimum cooking time and water absorption capacity as well as turbidity and cooking loss, and a cluster analysis grouped noodle samples prepared from different varieties into the same clusters based on the porous starch added, indicating the possibility of different market strategies to improve the quality of the udon noodles produced from different wheat varieties.
Collapse
Affiliation(s)
- Anju Pokharel
- School of Molecular Life Science, Faculty of Science and Engineering, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Randhir Kumar Jaidka
- School of Molecular Life Science, Faculty of Science and Engineering, Curtin University, Bentley, Perth, WA 6102, Australia
| | - N U Sruthi
- School of Molecular Life Science, Faculty of Science and Engineering, Curtin University, Bentley, Perth, WA 6102, Australia
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rewati Raman Bhattarai
- School of Molecular Life Science, Faculty of Science and Engineering, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
27
|
Malik M, Kumar V, Singh J, Bhatt P, Dixit R, Kumar S. Phosphorylation of Alkali Extracted Mandua Starch by STPP/STMP for Improving Digestion Resistibility. ACS OMEGA 2023; 8:11750-11767. [PMID: 37033860 PMCID: PMC10077428 DOI: 10.1021/acsomega.2c05783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The chemical modifications of starch granules have been adopted to improve the characteristics, viz., paste clarity, resistant starch content, thermal stability, and so forth. The modified starch has been applied as a biopolymer in developing various preparations of food, nutraceutical, and pharmaceutical importance. The present work is focused on phosphorylation of alkali extracted mandua starch for improving digestion resistibility. The phosphorylation of mandua starch extracted from grains of Eleusine coracana (family Poaceae) was carried out by sodium tripolyphosphate/sodium trimetaphosphate at alkaline pH. After chemical treatment of mandua starch, the resistant starch (RS) content was increased significantly. The digestibility of chemically modified starch (CMS) was decreased down after treating by the phosphorylation process. The digestibility of CMS and alkali extracted mandua starch (AMS) in simulated intestinal fluid was found to be 32.64 ± 1.98% w/w and 61.12 ± 2.54% w/w, respectively. After chemical modification of mandua starch, a decrement was observed in amylose content, water-binding capacity, and swelling power. In the three-stage decomposition pattern of CMS studied by thermal gravimetric analysis, the significant changes in decomposition behavior also affirmed the impact of cross-linking in the improvement of stability of internal structure and resistibility of starch. In Fourier transform infrared (FTIR), the formation of the P=O bond was observed in CMS at 1250 cm-1. The acute and sub-acute toxicity studies in terms of behavioral, haematological, and enzymological parameters for CMS were not different significantly from AMS and control (p > 0.05). The cellular architecture of the liver and the kidney were found normal after consumption of CMS. The results revealed that significant increment in RS fraction occurred after cross-linking of mandua starch. The prepared starch may be applied in developing various formulations of food and pharmaceutical importance.
Collapse
Affiliation(s)
- Mayank
Kumar Malik
- Department
of Chemistry, Gurukula Kangri (Deemed to
be University), Haridwar 249407, India
| | - Vipin Kumar
- Department
of Pharmaceutical Sciences, Faculty of Medical Science & Health, Gurukula Kangri (Deemed to be University), Haridwar 249407, India
| | - Jaspal Singh
- Department
of Chemistry, Gurukula Kangri (Deemed to
be University), Haridwar 249407, India
| | - Pankaj Bhatt
- KIET
School of Pharmacy, Ghaziabad 201206, India
| | - Raghav Dixit
- Department
of Pharmaceutical Sciences, Faculty of Medical Science & Health, Gurukula Kangri (Deemed to be University), Haridwar 249407, India
| | - Sunil Kumar
- Gurukula
Kangri (Deemed to be University), Haridwar 249407, India
| |
Collapse
|
28
|
Luo XE, Wang RY, Wang JH, Li Y, Luo HN, Zeng XA, Woo MW, Han Z. Combining pulsed electric field and cross-linking to enhance the structural and physicochemical properties of corn porous starch. Food Chem 2023; 418:135971. [PMID: 36958183 DOI: 10.1016/j.foodchem.2023.135971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
In this study, corn porous starch (CPS) was firstly prepared using enzymatic hydrolysis, followed by pore formation enhancement using the treatment of a pulsed electric field (PEF). Subsequently, the PEF treated porous starch (CPS-PEF) was cross-linked with sodium trimetaphosphate (STMP) to investigate its structural and functional properties. The results showed PEF treatment increased the oil absorption of CPS by 26.92% and improved its specific surface area, total pore volume value, solubility and swelling power. After cross-linking of the CPS-PEF, C-O-P covalent bonds were formed between CPS-PEF molecules, resulting in a further increase in oil absorption and specific surface area properties. Moreover, the covalent bonds enhanced the intermolecular forces, resulting in increased thermal stability of the cross-linked porous starch (ScPS). The double modification resulted in significantly improved adsorption properties and better thermal stability of the ScPS, indicating that the double modification is an effective method for the preparation of porous starches.
Collapse
Affiliation(s)
- Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | | | - Jin-Hua Wang
- Foshan Shunde Midea Washing Appliances MFG. CO., LTD, Foshan 528300, China
| | - Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huai-Nan Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
29
|
Lu H, Yi D, Feng H, Hou B, Hao J. Influence of the Crystal Structure of Melamine Trimetaphosphate 2D Supramolecules on the Properties of Polyamide 6. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12393-12402. [PMID: 36802357 DOI: 10.1021/acsami.2c22760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To explore the influence of the crystal structure difference of melamine trimetaphosphate (MAP) on the application performance of its polymer composites, an intumescent flame retardant with the optimal crystal type was designed and synthesized to improve the mechanical properties and flame retardancy of polyamide 6 (PA6). I-MAP and II-MAP were obtained using different concentrations of MA and sodium trimetaphosphate (STMP) in an acidic aqueous solution. The morphology, chemical composition, and thermal stability were comprehensively characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The dispersion, mechanical properties, and flame retardancy of PA6/I-MAP and PA6/II-MAP were evaluated by SEM, stress and strain, limiting oxygen index test (LOI), vertical burning test (UL-94), cone calorimetry (CONE) test, and char residue analysis. The conclusion is as follows: I-MAP and II-MAP have a greater influence on the physical properties of PA6 but less influence on the chemical properties. Compared with PA6/I-MAP, the tensile strength of PA6/II-MAP is 104.7% higher, the flame rating reaches V-0, and PHRR is reduced by 11.2%.
Collapse
Affiliation(s)
- Hongyu Lu
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Deqi Yi
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Haisheng Feng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Boyou Hou
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Jianwei Hao
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
30
|
Wang N, Dong Y, Dai Y, Zhang H, Hou H, Wang W, Ding X, Zhang H, Li C. Influences of high hydrostatic pressure on structures and properties of mung bean starch and quality of cationic starch. Food Res Int 2023; 165:112532. [PMID: 36869532 DOI: 10.1016/j.foodres.2023.112532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
It is difficult to improve the quality of chemical-modified starch by traditional technology. Hence, in this study, mung bean starch with poor chemical activity was used as raw material, the native starch was treated and the cationic starch was prepared under high hydrostatic pressure (HHP) at 500 MPa and 40 °C. By studying the changes in the structure and properties of native starch after HHP treatment, the influence mechanism of HHP on improving the quality of cationic starch was analyzed. Results showed high pressure could make water and etherifying agent enter the starch granules through pores, and HHP made the structure of starch undergone three stages similar to mechanochemical effect. After HHP treated for 5 and 20 min, the degree of substitution, reaction efficiency and other qualities of cationic starch increased remarkably. Hence, proper HHP treatment could help to improve the chemical activity of starch and quality of cationic starch.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Ying Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hong Zhang
- College of Life Science, Dezhou University, Dezhou, Shandong 253023, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
31
|
Jiang Y, Junejo SA, Jia X, Zhang B, Fu X, Huang Q. Amylose content and pre-freezing regulate the structure and oil absorption of polyelectrolytes-based starch cryogel. Carbohydr Polym 2023; 302:120386. [PMID: 36604064 DOI: 10.1016/j.carbpol.2022.120386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Starch cryogel is a potential material for oil absorption. This study provided a facile and convenient polyelectrolyte-based preparation strategy of starch cryogel, in which the structural properties of the cryogel were regulated by amylose content and pre-freezing without long-time retrogradation. Sodium laurate was used as a guest model to form starch-fatty acid salt complex (polyelectrolyte). The amount of amylose content and sodium laurate added led more polyelectrolytes, significantly increased V-type crystallinity from 3.72 % to 22.40 % and complexing index from 4.32 % to 28.48 %. As the uniform pore structure improved the oil absorption ability of starch cryogel, the starch cryogel prepared by waxy maize starch followed by quick pre-freezing showed the highest specific surface area (9.87 m2/g) and oil absorption capacity (32.94 g/g). Our findings suggest that polyelectrolyte properties have great potential in the preparation of starch-based cryogels, which could be applied in the design of novel starch-based porous materials.
Collapse
Affiliation(s)
- Yi Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
32
|
He X, Zhao S, Zhang Z, Dai L, Qin Y, Ji N, Xiong L, Shi R, Sun Q. A combined extrusion, retrogradation, and cross-linking strategy for preparing starch-based straws with desirable mechanical properties. Int J Biol Macromol 2023; 227:1089-1097. [PMID: 36470438 DOI: 10.1016/j.ijbiomac.2022.11.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
This work developed a novel strategy for producing starch straws with desirable mechanical properties by a combination of extrusion, retrogradation, and sodium trimetaphosphate (STMP) cross-linking. The straws were prepared by first extruding starch, glycerin, and water (10:1:1) with a double screw extruder, then retrograding the resulting straws at 4 °C for 6 h, and finally cross-linking the straws. Rapid visco-analyzer profiles showed decreases in the viscosity of milled straws with increases in the cross-linking duration, perhaps reflecting a higher degree of crosslinking. Fourier transform infrared spectroscopy showed evidence of more hydrogen bonds in the straws with a longer cross-linking duration, while thermogravimetric analysis indicated higher thermal stability for the cross-linked straws than for the controls. The straw cross-linked for 3 h showed 1.52 times higher stiffness after soaking in room-temperature water for 30 min (4967.56 g/s), and 1.88 times higher stiffness after soaking in 60 °C hot water for 5 min (5371.89 g/s) than the original straw. STMP cross-linking also improved the starch straw mechanical properties after soaking in common soft drinks. These findings identify a potential new way to produce biodegradable straws with desirable properties from starch, an affordable biomaterial, while also addressing the problem of petroleum-based plastic pollution.
Collapse
Affiliation(s)
- Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Shuangshuang Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Zhao Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
33
|
Lu X, Yin Q, Zheng Z, Mu D, Zhong X, Luo S, Zhao Y. Effect of sodium trimetaphosphate on the physicochemical properties of modified soy protein isolates and its lutein-loaded emulsion. J Food Sci 2023; 88:744-756. [PMID: 36633000 DOI: 10.1111/1750-3841.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Due to people's pursuit of healthy and green life, soy protein isolate (SPI) is occupying a larger and larger market share. However, the low solubility of SPI affects its development in the field of food and medicine. This paper aimed to investigate the effects of sodium trimetaphosphate (STMP) on the functional properties and structures of phosphorylated SPI and its lutein-loaded emulsion. After modification by STMP, the phosphorus content of phosphorylated SPI reached 1.2-3.61 mg/g. Infrared spectrum and X-ray photoelectron spectrum analysis confirmed that PO4 3- had phosphorylation with -OH in serine of SPI molecule. X-ray diffraction analysis showed that phosphorylation destroyed the crystal structure of protein molecules. Zeta potential value of phosphorylated SPI decreased significantly. When STMP addition was 100 g/kg, particle size of protein solution decreased to 203 nm, and solubility increased to 73.5%. Furthermore, emulsifying activity and emulsifying stability increased by 0.51 times and 8 times, respectively. At the same protein concentration (1%-3% [w/w]), lutein-loaded emulsion prepared by phosphorylated SPI had higher absolute potential and smaller particle size. The phosphorylated protein emulsion at 2% concentration had the best emulsion stability after storage for 17 days. PRACTICAL APPLICATION: Phosphorylation significantly improved the emulsifying properties and solubility of SPI. Phosphorylated SPI significantly improved the stability of lutein-loaded emulsion. It provides theoretical basis for the application of phosphorylated SPI as emulsifier in delivery system and broadens the development of lutein in food and medicine field.
Collapse
Affiliation(s)
- Xingxing Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Qi Yin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
34
|
Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems. Pharmaceutics 2022; 15:pharmaceutics15010108. [PMID: 36678736 PMCID: PMC9865147 DOI: 10.3390/pharmaceutics15010108] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogels have a tridimensional structure. They have the ability to absorb a significant amount of water or other natural or simulated fluids that cause their swelling albeit without losing their structure. Their properties can be exploited for encapsulation and modified targeted drug release. Among the numerous natural polymers suitable for obtaining hydrogels, gellan gum is one gaining much interest. It is a gelling agent with many unique features, and furthermore, it is non-toxic, biocompatible, and biodegradable. Its ability to react with oppositely charged molecules results in the forming of structured physical materials (films, beads, hydrogels, nanoparticles). The properties of obtained hydrogels can be modified by chemical crosslinking, which improves the three-dimensional structure of the gellan hydrogel. In the current review, an overview of gellan gum hydrogels and their properties will be presented as well as the mechanisms of ionotropic gelation or chemical crosslinking. Methods of producing gellan hydrogels and their possible applications related to improved release, bioavailability, and therapeutic activity were described.
Collapse
|
35
|
Liu Y, Tan L, Li M, An F, Xue S, Fu Z. In Vitro Digestibility, Pasting and Thermal Properties, and Structure of Cross‐Linked
Arenga pinnata (Wurmb.) Merr
. Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuan‐Sen Liu
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Lin‐Bin Tan
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Meng‐Yun Li
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Feng‐Kun An
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Shan Xue
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| |
Collapse
|
36
|
Li L, He S, Lin Y, Zheng B, Zhang Y, Zeng H. A novel lotus seed cross-linked resistant starch: Structural, physicochemical and digestive properties. Front Nutr 2022; 9:989042. [PMID: 36017223 PMCID: PMC9395931 DOI: 10.3389/fnut.2022.989042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
The structural properties and physicochemical characteristics of lotus seed cross-linked resistant starches (LSCSs; LS-0CS, LS-1CS, LS-2CS, LS-4CS, LS-6CS, LS-8CS, LS-10CS, and LS-12CS) with different concentrations of cross-linking agents were investigated. The degrees of cross-linking of LSCSs increased along with the amount of cross-linking agent. The higher the degree of cross-linking, the greater the degree of LSCSs granule agglomeration. The occurrence of the cross-linking reaction was confirmed by the appearance of P = O at 1,250 cm–1 as assessed by FT-IR, and the covalent bonds formed by the phosphate group in LSCSs were mainly composed of distarch monophosphate (DMSP) as determined by 31P NMR. As the crosslinking degree increased, the peak strength of DMSP in starch was stronger and the specific gravity of DMSP was larger. Among the samples, LS-12CS had the highest cross-linking degree, with a greater specific gravity of DMSP. Moreover, the solubility levels of LSCSs decreased and the thermal stability and anti-digestive properties improved as the cross-linking degree increased, which was correlated with the degree of agglomeration and DMSP in LSCSs. The RS content of LS-12CS was 48.95 ± 0.86%.
Collapse
Affiliation(s)
- Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongjie Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China.,China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China.,China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China.,China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Effects of Enzymatic Modification and Cross-Linking with Sodium Phytate on the Structure and Physicochemical Properties of Cyperus esculentus Starch. Foods 2022; 11:foods11172583. [PMID: 36076768 PMCID: PMC9455607 DOI: 10.3390/foods11172583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, C. esculentus porous starch (PS) and C. esculentus cross-linked porous starch (CPS) were prepared by enzymatic modification and sodium phytate cross-linking, and their physicochemical and structural properties were determined. The results showed that the adsorption and emulsification capacities of PS were 1.3606 g/g and 22.6 mL/g, respectively, which were significantly higher than 0.5419 g/g and 4.2 mL/g of C. esculentus starch (NS). The retrogradation curves of starch paste showed that the stability of PS was inferior to that of NS. In addition, the results of texture analysis showed that the gel strength of PS was also significantly reduced relative to NS. The PS exhibited a rough surface with pores and low molecular order and crystallinity according to scanning electron microscope (SEM), fourier infrared spectroscopy (FTIR), and X ray diffractometer (XRD) analyses. As compared to PS, CPS still presented a high adsorption capacity of 1.2744 g/g and the steadiness of starch paste was significantly better. XPS demonstrated the occurrence of the cross-linking reaction. Our results show that enzyme modification and dual modification by combining enzymatic treatment with sodium phytate cross-linking can impart different structures and functions to starch, creating reference material for the application of modified starch from C. esculentus.
Collapse
|
38
|
Fang K, Deng L, Yin J, Yang T, Li J, He W. Recent advances in starch-based magnetic adsorbents for the removal of contaminants from wastewater: A review. Int J Biol Macromol 2022; 218:909-929. [PMID: 35914554 DOI: 10.1016/j.ijbiomac.2022.07.175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Considerable concern exists regarding water contamination by various pollutants, such as conventional pollutants (e.g., heavy metals and organics) and emerging micropollutants (e.g., consumer care products and interfering endocrine-related compounds). Currently, academics are continuously exploring sustainability-related materials and technologies to remove contaminants from wastewater. Magnetic starch-based adsorbents (MSAs) can combine the advantages of starch and magnetic nanoparticles, which exhibit unique critical features such as availability, cost-effectiveness, size, shape, crystallinity, magnetic properties, stability, adsorption properties, and excellent surface properties. However, limited reviews on MSAs' preparations, characterizations, applications, and adsorption mechanisms could be available nowadays. Hence, this review not only focuses on their activation and preparation methods, including physical (e.g., mechanical activation treatment, microwave radiation treatment, sonication, and extrusion), chemical (e.g., grafting, cross-linking, oxidation and esterification), and enzymatic modifications to enhance their adsorption properties, but also offers an all-round state-of-the-art analysis of the full range of its characterization methods, the adsorption of various contaminants, and the underlying adsorption mechanisms. Eventually, this review focuses on the recycling and reclamation performance and highlights the main gaps in the areas where further studies are warranted. We hope that this review will spark an interdisciplinary discussion and bring about a revolution in the applications of MSAs.
Collapse
Affiliation(s)
- Kun Fang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China; College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Ligao Deng
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Jiangyu Yin
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Tonghan Yang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China.
| | - Wei He
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
39
|
Yuan M, Wang Y, Bai Y, Svensson B. Distinct effects of different α-amylases on cross-linked tapioca starch and gel-improving mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Kumar Y, Singh S, Saxena DC. Controlling the properties of starch from rice brokens by crosslinking with citric acid and sodium trimetaphosphate. STARCH-STARKE 2022. [DOI: 10.1002/star.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - D C Saxena
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
41
|
One-Step Synthesis of Cross-Linked Esterified Starch and Its Properties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cross-linked esterified starch (CES) was prepared using a one-step method, where maize starch was selected as the raw material, sodium trimetaphosphate as the cross-linking agent, and acetic anhydride as the esterifying agent, respectively. A response surface experiment was systematically conducted for analyzing the correlation of the experimental variables (cross-linked temperature, pH, reaction time, sodium trimetaphosphate and acetic anhydride dosage) and properties of the product (peak and final viscosity). The Brabender viscosity, freeze-thaw stability, shearing resistance, and acid tolerance of the cross-linked acetylated dual modified starch were studied under different conditions of crosslinking degree and acetyl content. Meanwhile, the granular structure and morphology of the modified starch were analyzed. The results indicated that: after cross-linked acetylated dual modification, the starch had a distinct birefringence and granular structure, along with the creation of new carbonyl groups. The low degree of crosslinking and high acetyl contents were beneficial to the viscosity, which was significantly increased at both low and high temperatures. Moreover, the freeze-thaw stability of CES was elevated sharply after five cycles. In addition, CES displayed increased shear and acid tolerance compared to the original waxy maize, and their lowest differences between waxy maize and CES were only 0.62% and 0.59%, respectively. In summary, a novel method for starch modification was provided, and the synthesized CES was suggested to have exceptional performance for the food industry.
Collapse
|
42
|
Structure and Menthone Encapsulation of Corn Starch Modified by Octenyl Succinic Anhydride and Enzymatic Treatment. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4556827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In order to improve the ability of starch to absorb menthone, corn starch was modified by enzymatic treatment (amyloglucosidase and α-amylase) combined with octenyl succinic anhydride (OSA) esterification. The oil absorption rate of starch modified by enzymatic treatment followed by OSA (P-OSA) reached 101.33%, whereas that of samples with reverse action sequences (OSA-P) was only 59.67%. The degree of substitution of OSA-P was also generally lower than that of P-OSA. At high OSA addition, OSA-P had a smaller specific surface area with fewer pores because octenyl succinic (OS) groups impeded the enzymatic treatment. Compared with OSA-P, the lamellar structure of P-OSA is sparser and less ordered. Owing to its pores, P-OSA was beneficial for the reaction to occur inside the granules, which was observed by Raman spectroscopy and laser confocal microscopy. At high OSA addition, the loading of P-OSA to menthone could reach 64.34 mg/g.
Collapse
|
43
|
Effects of chitosan modification, cross-linking, and oxidation on the structure, thermal stability, and adsorption properties of porous maize starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Ding L, Huang Q, Xiang W, Fu X, Zhang B, Wu JY. Chemical cross-linking reduces in vitro starch digestibility of cooked potato parenchyma cells. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abstract
The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.
Collapse
|
46
|
Xiaofan LV, CHEN Y, ZHOU W. Effect of cross-linking with sodium trimetaphosphate on structural and physicochemical properties of tigernut starch. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.76422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- LV Xiaofan
- Henan Institute of Science and Technology, China
| | - Yuzhen CHEN
- Henan Institute of Science and Technology, China
| | - Wei ZHOU
- Henan Institute of Science and Technology, China
| |
Collapse
|
47
|
Jia S, Yu B, Zhao H, Tao H, Liu P, Cui B. Physicochemical Properties and In Vitro Digestibility of Dual‐Modified Starch by Cross‐Linking and Annealing. STARCH-STARKE 2022. [DOI: 10.1002/star.202100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| |
Collapse
|
48
|
Maaloul N, Oulego P, Rendueles M, Ghorbal A, Díaz M. Enhanced Cu(II) adsorption using sodium trimetaphosphate-modified cellulose beads: equilibrium, kinetics, adsorption mechanisms, and reusability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46523-46539. [PMID: 32696406 DOI: 10.1007/s11356-020-10158-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The current study is focused on the simple synthesis of two novel biosorbent beads: BASB/STMP and CNFB/STMP, derived respectively from bleached almond shell (BAS) and cellulose nanofiber from almond shell (CNF) by means of chemical crosslinking with sodium trimetaphosphate (STMP). These biosorbents were thoroughly characterized in terms of structure (FTIR), texture (N2 adsorption-desorption), thermal behavior (TGA/DTG), morphology (SEM), and surface properties (XPS). The adsorption kinetics of Cu(II) ions onto BASB/STMP and CNFB/STMP materials proved the chemisorption interaction between Cu(II) ions and the STMP functionalized beads. The BASB/STMP equilibrium data were successfully described by the Redlich-Peterson model and the CNFB/STMP data by the Sips model which disclosed maximum adsorption capacities of 141.44 mg g-1 and 147.90 mg g-1, respectively. Furthermore, the BASB/STMP bioadsorbent offers easy regeneration and better reusability with high efficiency (> 83%). This study sheds light on the preparation of low-cost adsorbents for wastewater treatment in order to improve the competitiveness and eco-friendliness of agrowaste-based processes.
Collapse
Affiliation(s)
- Najeh Maaloul
- Applied Thermodynamic Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Achraf Ghorbal
- Applied Thermodynamic Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain.
| |
Collapse
|
49
|
Sintov AC, Yariv D. A New Nanoparticulate System Based on Divanillin‐Crosslinked Starch: Mode of Manufacturing and In‐Vitro Evaluation of Skin Penetration. STARCH-STARKE 2021. [DOI: 10.1002/star.202100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amnon C. Sintov
- Laboratory for Biopharmaceutical Research Department of Biomedical Engineering Ben Gurion University of the Negev Be'er Sheva 84105 Israel
| | - Doron Yariv
- Laboratory for Biopharmaceutical Research Department of Biomedical Engineering Ben Gurion University of the Negev Be'er Sheva 84105 Israel
| |
Collapse
|
50
|
Synthesis of porous starch microgels for the encapsulation, delivery and stabilization of anthocyanins. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|