1
|
Ma K, Yuan X, Jia Z, Lu H, Chen X, Wen X, Chen F. Changes in the grain quality of foxtail millet released in China from the 1970s to the 2020s. Food Res Int 2025; 209:116316. [PMID: 40253157 DOI: 10.1016/j.foodres.2025.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.) is popular for its medicinal and edible properties and is an important strategic reserve crop for future complex climates. In this study, the genetic diversity of 5 representative foxtail millet genotypes released from the 1970s to the 2020s was examined for their appearance quality, nutritional quality, amino acid contents, culinary quality and aroma profiles. The trend of these indicators over the 60 years of cultivar release was revealed. The results revealed that the genetic gains of b*, yellow pigment content (YPC), breakdown viscosity (BD), setback viscosity (SB), and consistency (CS) were 0.45 %, 0.93 %, 0.34 %, -1.97 %, and - 0.68 %, respectively. The replacement of foxtail millet cultivars improved their appearance quality, culinary quality, and aroma and decreased their nutritional quality. Overall, a compensation effect exists between nutritional quality and organoleptic quality. The transitional foxtail millet variety has advantages over both the old varieties and modern varieties. Therefore, breeders need to focus on improving the nutritional quality of foxtail millet and utilize the quality advantages of the transitional variety in the future.
Collapse
Affiliation(s)
- Ke Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Zheng Jia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China
| | - Huayu Lu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030032, China
| | - Xiangyang Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100176, China
| | - Xinya Wen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China
| | - Fu Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China.
| |
Collapse
|
2
|
Wu S, Bai Y, Xu B, Li X, Yao Z, Li J, Sun Y. The Formation and Change of Volatile Flavor Compounds During the Cooking of Sheep Bone Soup. Foods 2025; 14:949. [PMID: 40231951 PMCID: PMC11941685 DOI: 10.3390/foods14060949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/22/2025] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
To investigate the formation of flavor compounds in sheep bone soup, E-nose, gas chromatograph (GC), and gas chromatography-mass spectrometry (GC-MS) were used to determine the changes in lipid oxidation, Maillard reaction, and volatile flavor compounds during the slow cooking process of 4 h. The thiobarbituric acid reactive substances (TBARS) value began to increase significantly (p < 0.05) after 2 h of cooking, reaching its peak in the third hour before significantly decreasing. The intensity of the Maillard reaction significantly increased after 2 h of cooking and subsequently stabilized. Thirty-nine flavor compounds were identified, primarily comprising aldehydes, ketones, alcohols, esters, aromatic compounds, and heterocyclic compounds. The formation of volatile flavor compounds in sheep bone soup was associated with lipid oxidation, particularly the oxidation of unsaturated fatty acids, and the Maillard reaction. Lipid oxidation produced a large number of volatile flavor compounds, such as aldehydes and ketones. The Maillard reaction gave sheep bone soup a certain flavor. Aldehydes were mostly influenced by cooking time, becoming the main flavor compounds in the bone soup after 2.5 h of cooking, accounting for more than half of the total volatile flavor compounds. The highest content and richest profile of volatile flavor compounds were obtained in the soup cooked for 2.5 h and 3 h. This study provides a theoretical basis for the flavor regulation of sheep bone soup.
Collapse
Affiliation(s)
- Shan Wu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yuzhu Bai
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 239000, China
| | - Yun Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Sun H, Yang M, Olajide TM, Wang M, Qian M, He Y, Liao X, Huang J. Evaluating the impact of different processing methods on the flavor characteristics of Gorgon Euryale seeds using electronic tongue, electronic nose, gas chromatography-mass spectrometry, and gas chromatography-ion mobility spectrometry. J Food Sci 2025; 90:e70019. [PMID: 39898925 DOI: 10.1111/1750-3841.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
This study evaluated the volatile organic compounds (VOCs) and taste properties of Gorgon Euryale seeds processed by five methods (steaming, boiling, microwaving, roasting, and stir-frying) using electronic tongue (E-tongue), electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). A total of 44 and 40 VOCs were identified by GC-MS and GC-IMS, respectively. Pyrazines (2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine) and furans (2-pentylfuran, 2-ethylfuran) played a major role in the baked aroma characteristics of roasted and stir-fried Gorgon Euryale seeds. Six and seven marker compounds were identified by Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) models for GC-MS and GC-IMS based on 12 VOCs with odor activity value > 1 and 18 VOCs with relative odor activity value > 0.1, respectively. OPLS-DA and principal component analysis score plots of the E-tongue and E-nose demonstrated that samples could be effectively distinguished in terms of flavor. This research provides a comprehensive basis for evaluating the impact of processing methods on the changes in flavor of Gorgon Euryale seeds. PRACTICAL APPLICATION: This work demonstrates that the use of E-tongue, E-nose, HS-SPME-GC-MS, and GC-IMS has the capability to thoroughly analyze the flavor profile of Gorgon Euryale seeds at both macro and micro levels. This approach effectively distinguishes Gorgon Euryale products subjected to different processing treatments and provides a reliable reference for evaluating and identifying the flavor quality of Gorgon Euryale seeds.
Collapse
Affiliation(s)
- Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Mingzhu Wang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Mingji Qian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Liu X, Wang S, Pan M, Tian A, Chen K, Qu W, Zhou W, Zhou Y, Fan L, Zhao C, Qu L, Liu Q, Wang S, Zheng C, Zheng L, Zhong F, Xu L, Ma A. Effect of cooking methods on volatile compounds and texture properties in millet porridge. Food Chem X 2024; 23:101652. [PMID: 39113744 PMCID: PMC11304996 DOI: 10.1016/j.fochx.2024.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
To instruct the production of millet porridge, the effect of cooking methods on flavor and texture of millet porridge was investigated. A total of 91 volatiles were detected and most volatile compounds decreased with cooking time, e.g. alcohols. The esters as major volatiles had a high content in electric rice cooker (IC). Multiple chemometric results indicated that volatiles from different cooking methods were distinguished respectively. Texture analysis indicated that the hardness of millet porridge prepared in IC had a more dominant decrease trend than electromagnetic oven and the electric pressure cooker before 40 min. In conclusion, different cooking methods had a more significant influence on the volatiles than cooking time, while the texture is opposite. The comprehensive sensory score reached its peak in IC-30 min. The comprehensive sensory scores of IC and EC decreased with the prolongation of cooking time. This study helps to improve the sensory attributes of millet porridge.
Collapse
Affiliation(s)
- Xinyang Liu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Shihao Wang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Meifan Pan
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Ailing Tian
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Kaixuan Chen
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Wenwen Qu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
- Shandong Laiyang Health School, 265200, Laiyang, China
| | - Wenkai Zhou
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Yarui Zhou
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lijjiao Fan
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Cong Zhao
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lingyun Qu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Qiangwei Liu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Saihan Wang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Chuanxu Zheng
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System, College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhong
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lirong Xu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| |
Collapse
|
5
|
Wang L, Xie J, Miao Y, Wang Q, Hu J, Jiang Y, Wang J, Tong H, Yuan H, Yang Y. Exploration of the effects of geographical regions on the volatile and non-volatile metabolites of black tea utilizing multiple intelligent sensory technologies and untargeted metabolomics analysis. Food Chem X 2024; 23:101634. [PMID: 39831178 PMCID: PMC11740800 DOI: 10.1016/j.fochx.2024.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 01/22/2025] Open
Abstract
Geographical regions profoundly influence the flavor characteristics of Congou black tea (CBT). In this study, 35 CBT samples from 7 geographical regions were comprehensively characterized by integrated multiple intelligent sensory technologies and untargeted metabolomics analysis. A satisfactory discrimination was achieved through the fusion of multiple intelligent sensory technologies (R2Y = 0.918, Q2 = 0.859). A total of 104 non-volatile and 169 volatile metabolites were identified by UHPLC-HRMS and GC-MS, respectively. Of these, 45 critical differential non-volatile metabolites and 76 pivotal differential volatile metabolites were pinpointed based on variable importance in projection >1 and p < 0.05. Moreover, 52 key odorants with OAV ≥ 1 were identified, with hexanal, phenylacetaldehyde, linalool, β-cyclocitral, methyl salicylate, geraniol, α-ethylidene phenylacetaldehyde, and trans-β-ionone being recognized as the common odorants across 7 geographical regions. The results provide theoretical support for a comprehensive understanding of the effect of geographical regions on the flavor of black tea.
Collapse
Affiliation(s)
- Lilei Wang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Food Science, Southwest University, Beibei District, Chongqing 400715, China
| | - Jialing Xie
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yiwen Miao
- College of Food Science, Southwest University, Beibei District, Chongqing 400715, China
| | - Qiwei Wang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiajing Hu
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjin Wang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Huarong Tong
- College of Food Science, Southwest University, Beibei District, Chongqing 400715, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yanqin Yang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
6
|
Liu H, Zhou H, Li J, Peng Y, Shen Z, Luo X, Liu J, Zhang R, Zhang Z, Gao X. Effects of nitrogen fertilizer application on the physicochemical properties of foxtail millet (Setaria italica L.) starch. Int J Biol Macromol 2024; 278:134522. [PMID: 39128735 DOI: 10.1016/j.ijbiomac.2024.134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
The use of nitrogen fertilizer is a crucial agronomic practice to increase crop output and quality. This study investigated the impact of five nitrogen application levels (0, 60, 135, 210, and 285 kg N/hm2) on the physicochemical properties of foxtail millet (FM) starch. Optimal nitrogen application (210 kg N/hm2) significantly increased L*, a*, and b* values, water and oil absorption capacity, water solubility, and swelling power of starch. The number of small starch granules increased as the nitrogen application rate increased, but the granule morphology and typical A-type pattern did not change among the treatments. Nitrogen application increased the relative crystallinity and ordered structure, resulting in a higher gelatinization enthalpy. Compared to the control group (7.02 J/g), the enthalpy increased by 21.94 %, 66.38 %, 73.50 %, and 103.28 % under the nitrogen application rates, respectively. Moreover, nitrogen application greatly increased the percentage of A and B3 chains while it lowered the apparent amylose content, peak viscosity, and final viscosity. The effects of 210 and 285 kg N/hm2 treatments on the water solubility and swelling power, water and oil absorption, and light transmission of starch were greater compared to the 60 and 135 kg N/hm2 treatments. These results indicate that nitrogen fertilization significantly affects the physicochemical properties of FM starch.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Haolu Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yanli Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhaoyang Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xinyu Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jindong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruipu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhiyan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Zhang D, Gao M, Cai Y, Wu J, Lao F. Profiling flavor characteristics of cold brew coffee with GC-MS, electronic nose and tongue: effect of roasting degrees and freeze-drying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6139-6148. [PMID: 38442084 DOI: 10.1002/jsfa.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Roasting is an important process in the formation of coffee flavor characteristics, which determines the quality of coffee and consumer acceptance. However, the influence of roasting degree on the flavor characteristics of cold brew coffee has not been fully described. RESULTS In the present study, the flavor characteristics of cold brew coffee with different roasting degrees were compared in detail by using chromatographic and electronic sensory approaches, and the flavor changes induced by freeze-drying were investigated. Pyrazine and heterocyclic compounds were the main aroma compounds in coffee, and gradually dominated with the increase of roasting. Pyridine was consistently present in cold brew coffees of different roasting degrees and showed significant gradient of quantity accumulation. Aroma compounds such as pyrazine, linalool and furfuryl acetate were the main contributors to coffee roasting, floral and fruity flavor. Freeze-drying preserved the fruity and floral aromas of medium-roasted cold brew coffee, whereas reducing the bitterness, astringency and acidity properties that are off-putting to consumers. CONCLUSION The higher consumer acceptance and enjoyment in medium roast cold brew coffee may be related to its stronger floral and fruity aroma. The aroma profile qualities of freeze-drying processed medium roasted cold brewed coffee were more dominant and more suitable for freeze-drying processing than medium dark roasting. Application of freeze-drying for cold brew coffee will promote the convenience of drinking. The present study provides valuable technical guidance in improving the flavor and quality of cold brew coffee, and also promotes its commercialization process. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Min Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
- Office of Asset Management (Office of Laboratory Management), Beijing Technology and Business University, Beijing, China
| | - Yanpei Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| |
Collapse
|
8
|
Xiao Y, Liu S, Zeng L, Zhou C, Peng Y, Wu Y, Yin X, Peng G. Effects of processing methods on the aroma of Poria cocos and its changing regulations during processing. Food Chem 2024; 448:139151. [PMID: 38547709 DOI: 10.1016/j.foodchem.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/24/2024]
Abstract
Poria cocos is a natural source of fungal food raw materials. Processing method is a key effecting the aroma of Poria cocos. In this study, the aroma compounds of Poria cocos products processed using sweating-low-temperature drying (SW-LD), sweating-high-temperature drying (SW-HD), steaming-low-temperature drying (ST-LD), and steaming-high-temperature drying (ST-HD) were compared by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), and the changes in aroma compounds of Poria cocos products during processing were analyzed. GC-MS analysis showed SW-HD product had highest content of aroma compounds. Aroma activity value (OAV) analysis indicated that 9 aroma compounds contributed to the overall aroma of Poria cocos. Among 9 compounds of Poria cocos, 1-octen-3-ol, hexanal, nonanal, octanal, trans-2-octenal, and heptanal contributed to mushroom, refreshing, sweet and fatty characters. In addition, the aroma compound changes during the processing were analyzed, revealing that steaming and sweating were the key processes affecting the aroma of Poria cocos products. The findings of this study provide valuable theoretical guidance for the development of Poria cocos processing technology.
Collapse
Affiliation(s)
- Yangbo Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Shu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Luzhi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Churen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Yisi Peng
- Hunan Agricultural University, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China
| | - Yu Wu
- Hunan Agricultural University, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China
| | - Xia Yin
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Guoping Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China.
| |
Collapse
|
9
|
Gao X, Zhang M, Li J, Gu L, Chang C, Huang Z, Yang Y, Su Y. Novel Insights into the Effects of Different Cooking Methods on Salted Egg Yolks: Physicochemical and Sensory Analysis. Foods 2024; 13:1963. [PMID: 38998469 PMCID: PMC11240978 DOI: 10.3390/foods13131963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the flavor characteristics and physicochemical properties of salted egg yolk (SEY) under different cooking methods (steaming/baking/microwaving) were investigated. The microwave-treated SEY exhibited the highest levels of salt content, cooking loss, lightness, and b* value, as well as the highest content of flavor amino acids. A total of 31, 27, and 29 volatile compounds were detected after steaming, baking, and microwave treatments, respectively, covering 10 chemical families. The partial least squares discriminant analysis confirmed that 21 compounds, including octanol, pyrazine, 2-pentyl-furan, and 1-octen-3-ol, were the key volatile compounds affecting the classification of SEY aroma. The electronic nose revealed a sharp distinction in the overall flavor profile of SEY with varying heat treatments. However, no dramatic differences were observed in terms of fatty acid composition. Microwave treatment was identified as presenting a promising approach for enhancing the aroma profile of SEY. These findings contribute novel insights into flavor evaluation and the development of egg products as ingredients for thermal processing.
Collapse
Affiliation(s)
- Xuejing Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengya Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijian Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Li K, Zhang L, Yi D, Luo Y, Zheng C, Wu Y. Insights into the Volatile Flavor Profiles of Two Types of Beef Tallow via Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry Analysis. Foods 2024; 13:1489. [PMID: 38790789 PMCID: PMC11119226 DOI: 10.3390/foods13101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In the current study, an electronic nose (E-nose) and gas chromatography-ion mobility spectrometry (GC-IMS) were employed to investigate the volatile flavor compounds (VFCs) of intense flavor beef tallow (L) and ordinary beef tallow (P). The study results indicate that an E-nose combined with an LDA and GC-IMS combined with an OPLS-DA can effectively distinguish between the two types of beef tallow. Compared with ordinary beef tallow, the E-nose sensors of intense flavor beef tallow have stronger response signals to sulfides, terpenes, and nitrogen oxides. A total of 22 compounds contribute to making the flavor of intense flavor beef tallow more typical and richer; in contrast, ethyl acetate was the main aroma-active compound found in the ordinary beef tallow. Sulfur-containing compounds and terpenoids might be the key substances that cause sensory flavor differences between the two types of beef tallow. In conclusion, the results of this study clarify the characteristics and differences of the two types of beef tallow and provide an enhanced understanding of the differences in the flavors of the two types of beef tallow.
Collapse
Affiliation(s)
- Ke Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; (K.L.); (L.Z.); (D.Y.); (Y.L.); (C.Z.)
- Institute of Agriculture Products Processing Science and Technology, Sichuan Academy of Agriculture Science, Chengdu 610039, China
| | - Liangyao Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; (K.L.); (L.Z.); (D.Y.); (Y.L.); (C.Z.)
| | - Danhui Yi
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; (K.L.); (L.Z.); (D.Y.); (Y.L.); (C.Z.)
| | - Yunxiao Luo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; (K.L.); (L.Z.); (D.Y.); (Y.L.); (C.Z.)
| | - Chao Zheng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; (K.L.); (L.Z.); (D.Y.); (Y.L.); (C.Z.)
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; (K.L.); (L.Z.); (D.Y.); (Y.L.); (C.Z.)
| |
Collapse
|
11
|
Liu M, Deng N, Li H, Hou X, Zhang B, Wang J. Characterization and comparison of flavors in fresh and aged fermented peppers: Impact of different varieties. Food Res Int 2024; 182:114187. [PMID: 38519195 DOI: 10.1016/j.foodres.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
The flavor profiles of fresh and aged fermented peppers obtained from four varieties were thoroughly compared in this study. A total of 385 volatile compounds in fermented pepper samples were detected by flavoromics (two-dimensional gas chromatography-time-of-flight mass spectrometry). As fermentation progressed, both the number and the total concentration of volatile compounds changed, with esters, alcohols, acids, terpenoids, sulfur compounds, and funans increasing, whereas hydrocarbons and benzenes decreased. In contrast to the fresh fermented peppers, the aged fermented samples exhibited lower values of pH, total sugars, and capsaicinoids but higher contents of organic acids and free amino acids. Furthermore, the specific differences and characteristic aroma substances among aged fermented peppers were unveiled by multivariate statistical analysis. Overall, 64 volatiles were screened as differential compounds. In addition, Huanggongjiao samples possessed the most abundant differential volatiles and compounds with odor activity values > 1, which were flavored with fruity, floral, and slightly phenolic odors. Correlation analysis demonstrated that the levels of 23 key aroma compounds (e.g., ethyl 2-methylbutyrate, 1-butanol, and ethyl valerate) showed a significantly positive correlation with Asp, Glu and 5 organic acids. By contrast, there is a negative association between the pH value and total sugar. Overall, aging contributed significantly to the flavor attributes of fermented peppers.
Collapse
Affiliation(s)
- Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Na Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Xiaoyi Hou
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Prepared Dishes Modern Industrial College, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Prepared Dishes, Changsha, 410114, China.
| |
Collapse
|
12
|
Du W, Wang Y, Ma Q, Li Y, Wang B, Bai S, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect meat flavorings system: Insights on initial Maillard reaction stage and meat flavor formation from thiazolidine derivatives. Curr Res Food Sci 2024; 8:100719. [PMID: 38533489 PMCID: PMC10963188 DOI: 10.1016/j.crfs.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to study the effect of number and position of the unsaturated bond in aliphatic aldehydes on meat flavorings. Cysteine-Amadori and thiazolidine derivatives were synthesized, identified by UPLC-TOF/MS and NMR, and quantitatively by UPLC-MS/MS. The polyunsaturated aldehydes exhibited higher inhibition than monounsaturated aldehydes, and monounsaturated aldehydes exhibited higher inhibition than saturated aldehydes, mainly manifested by the inhibition of the cysteine-Amadori formation and acceleration of the thiazolidine derivatives formation. The effect of unsaturated bonds position in aliphatic aldehydes on the initial Maillard reaction stage was similar. The cysteine played an important role in catalyzing the reaction of aliphatic aldehydes. A total of 109 volatile compounds derived by heating prepared thiazolidine derivatives degradation were detected by GC-MS. Formation pathways of volatile compounds were proposed by retro-aldol, oxidation, etc. Particularly, a route to form thiazole by the decarboxylation reaction of thiazolidine derivatives which derivatives from formaldehyde reacting with cysteine was proposed.
Collapse
Affiliation(s)
- Wenbin Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Yutang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Qianli Ma
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
13
|
Kang M, Guo Y, Ren Z, Ma W, Luo Y, Zhao K, Wang X. Volatile Fingerprint and Differences in Volatile Compounds of Different Foxtail Millet ( Setaria italica Beauv.) Varieties. Foods 2023; 12:4273. [PMID: 38231730 DOI: 10.3390/foods12234273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Aroma components in foxtail millet are one of the key factors in origin traceability and quality control, and they are associated with consumer acceptance and the corresponding processing suitability. However, the volatile differences based on the foxtail millet varieties have not been studied further. The present study was undertaken to develop the characteristic volatile fingerprint and analyze the differences in volatile compounds of 20 foxtail millet varieties by electronic nose (E-Nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). A total of 43 volatile compounds were tentatively identified in foxtail millet samples, 34 and 18 by GC-IMS and GC-MS, respectively. Aldehydes, alcohols, and ketones were the major volatile compounds, and the hexanal content was the highest. The characteristic volatile fingerprint of foxtail millet was successfully constructed. A total of 39 common volatile compounds were found in all varieties. The content of hexanal, heptanal, 1-pentanol, acetophenone, 2-heptanone, and nonanal were explored to explain the aroma characteristics among the different varieties, and different varieties can be separated based on these components. The results demonstrate that the combination of E-Nose, GC-IMS, and GC-MS can be a fast and accurate method to identify the general aroma peculiarities of different foxtail millet varieties.
Collapse
Affiliation(s)
- Miao Kang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yu Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiyuan Ren
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weiwei Ma
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yuewei Luo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kai Zhao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
14
|
Jin W, Cai W, Zhao S, Gao R, Jiang P. Uncovering the differences in flavor volatiles of different colored foxtail millets based on gas chromatography-ion migration spectrometry and chemometrics. Curr Res Food Sci 2023; 7:100585. [PMID: 37744553 PMCID: PMC10514424 DOI: 10.1016/j.crfs.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
The differences of volatile organic compounds in commercially available foxtail millets with different colors (black, green, white and yellow) were assayed through gas chromatography-ion migration spectrometry (GC-IMS) to explore their volatile flavor characteristics. Fifty-five volatile components were found in various colored foxtail millets, including 25 kinds of aldehydes (accounting for 39.19-48.69%), 10 ketones (25.36-32.37%), 15 alcohols (20.19-24.11%), 2 ethers (2.29-2.45%), 2 furans (1.49-2.95%) and 1 ester (0.27-0.39%). Aldehydes, alcohols and ketones were the chief volatiles in different colored foxtail millet, followed by furans, esters and ethers. These identified volatile flavor components in various colored foxtail millets obtained by GC-IMS could be well distinguished by principal components and cluster analysis. Meanwhile, a stable prediction model was fitted via partial least squares-discriminant analysis (PLS-DA), in which 17 kinds of differentially volatile components were screened out based on variable importance in projection (VIP>1). These findings might provide certain information for understanding the flavor traits of colored foxtail millets in future.
Collapse
Affiliation(s)
- Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi, 723001, China
| | - Wenqiang Cai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi, 723001, China
| | - Ruichang Gao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
15
|
Jin W, Zhao S, Sun H, Pei J, Gao R, Jiang P. Characterization and discrimination of flavor volatiles of different colored wheat grains after cooking based on GC-IMS and chemometrics. Curr Res Food Sci 2023; 7:100583. [PMID: 37691695 PMCID: PMC10484957 DOI: 10.1016/j.crfs.2023.100583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Changes in flavor volatiles of three colored wheat grains (black, green, and yellow) after cooking were detected via gas chromatography-ion migration spectrometry (GC-IMS) to explore corresponding volatile flavor traits. A total of 52 volatile chemicals were spotted among these cooked wheat grains, including 30 aldehydes (accounting for 73.86-83.78%), 11 ketones (9.53-16.98%), 3 alcohols (0.88-1.21%), 4 furans (4.82-7.44%), 2 esters (0.28-0.42%), and 2 pyrazines (0.18-0.32%). Aldehydes, ketones, and furans were the main volatile compounds in three different cooked wheat. For black-colored wheat, the relative contents of benzene acetaldehyde, benzaldehyde, 2-methyl butanal, and 3-methyl butanal were much higher (p < 0.05). For green-colored wheat, the relative contents of nonanal, 2-pentyl furan, (E)-hept-2-enal, 2-butanone, and acetone were significantly higher (p < 0.05). For yellow-colored wheat, the relative amounts of heptanal, hexanal, and pentanal were much higher (p < 0.05). The overall volatile substances of the three cooked wheat grains might be classified by GC-IMS data coupled with principal component analysis and heatmap clustering analysis. A reliable forecast set was established through orthogonal partial least squares-discriminant analysis (OPLS-DA), and 22 differential volatile compounds were screened out based on variable importance in projection (VIP) being higher than 1.0, as flavor markers for distinguishing the three cooked wheat grains. These results suggest that GC-IMS could be used for characterizing the flavor volatiles of different colored wheat, and the findings could contribute certain information for understand the aroma traits in different colored cooked wheat and related products in the future.
Collapse
Affiliation(s)
- Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi 723001, China
| | - Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
| | - Haiyan Sun
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi 723001, China
| | - Ruichang Gao
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116034, China
| |
Collapse
|
16
|
Fu W, Ren J, Li S, Ren D, Li X, Ren C, Zhao X, Li J, Li F. Effect of Peony ( Paeonia ostii) Seed Meal Supplement on Enzyme Activities and Flavor Compounds of Chinese Traditional Soybean Paste during Fermentation. Foods 2023; 12:3184. [PMID: 37685116 PMCID: PMC10486673 DOI: 10.3390/foods12173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Peony seed meal (PSM) is the by-product obtained from peony seeds after oil extraction. In this study, PSM was incorporated into traditional koji-making, and its impacts on koji enzyme activities and flavor compounds in final products were investigated. In the process of koji fermentation, the optimal addition ratio of PSM to soybean was determined as 7:3. Under this ratio, the maximum enzyme activities of neutral protease, amylase, and glucoamylase were 1177.85, 686.58, and 1564.36 U/g, respectively, and the koji obtained was subjected to maturation. During post-fermentation, changes in the fermentation characteristics of the paste samples were monitored, and it was found that compared to the soybean paste without PSM, the enzyme activities maintained at a relatively good level. The PSM soybean paste contained a total of 80 flavor compounds and 11 key flavor compounds (OAV ≥ 1), including ethyl isovalerate, isovaleric acid, hexanal, phenylacetaldehyde, 3-Methyl-1-butanol 4-heptanone, 2-pentylfuran, methanethiol ester caproate, isoamyl acetate, 3-methyl-4-heptanone, and isovaleraldehyde. These findings could be used to improve the quality of traditional fermented paste, enrich its flavor, and simultaneously promote PSM as a valuable resource for fermented foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengjuan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (W.F.); (J.R.); (S.L.); (D.R.); (X.L.); (C.R.); (X.Z.); (J.L.)
| |
Collapse
|
17
|
Jin W, Zhang Z, Zhao S, Liu J, Gao R, Jiang P. Characterization of volatile organic compounds of different pigmented rice after puffing based on gas chromatography-ion migration spectrometry and chemometrics. Food Res Int 2023; 169:112879. [PMID: 37254327 DOI: 10.1016/j.foodres.2023.112879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
The distinctness in volatile profiles of pigmented rice with various colors (black, green, purple, red, and yellow) after puffing were assayed through gas chromatography-ion migration spectrometry (GC-IMS) to explore their odor characteristics. Fifty-two volatile components were found in those puffed rice, including 27 kinds of aldehydes (accounting for 59.69-64.37 %), 9 ketones (25.55-29.73 %), 5 alcohols (2.45-5.29 %), 4 pyrazines (1.38-2.36 %), 3 ethers (0.81-1.27 %), 2 furans (0.95-1.39 %), 1 pyridine (1.0-1,16 %), and 1 pyrrole (0.59-0.71 %). Aldehydes and ketones were the two chief volatiles in different pigmented puffed rice. These identified volatile flavor components in various pigmented puffed rice obtained by GC-IMS might be well differentiated by principal component and cluster interpretation. Meanwhile, a stable prediction model was fitted via orthogonal partial least squares-discriminant analysis, and 19 differentially volatile components were screened out based on variable importance projection (VIP) above 1. These findings could add certain information for understanding the flavor profiles of pigmented puffed rice and related products.
Collapse
Affiliation(s)
- Wengang Jin
- National Key Laboratory of Biological Resource and Ecological Protection Jointly Built by the Province and Ministry, School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong 723001, China; Bioresources Main Laboratory of Shaanxi Province, Hanzhong 723001, China; Collaborative Innovation Center of Bio-Resource in Qin-Ba Mountain Area, Hanzhong 723001, China.
| | - Zihan Zhang
- National Key Laboratory of Biological Resource and Ecological Protection Jointly Built by the Province and Ministry, School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong 723001, China; Bioresources Main Laboratory of Shaanxi Province, Hanzhong 723001, China
| | - Shibo Zhao
- National Key Laboratory of Biological Resource and Ecological Protection Jointly Built by the Province and Ministry, School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong 723001, China; Bioresources Main Laboratory of Shaanxi Province, Hanzhong 723001, China
| | - Junxia Liu
- National Key Laboratory of Biological Resource and Ecological Protection Jointly Built by the Province and Ministry, School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong 723001, China; Bioresources Main Laboratory of Shaanxi Province, Hanzhong 723001, China
| | - Ruichang Gao
- National Key Laboratory of Biological Resource and Ecological Protection Jointly Built by the Province and Ministry, School of Bioscience and Technology, Shaanxi University of Technology, Hanzhong 723001, China; College of Food and Biological Technology, Jiangsu University, Zhenjiang 212013, China.
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning 116034, China.
| |
Collapse
|
18
|
Zhang X, Shen Q, Yang Y, Zhang F, Wang C, Liu Z, Zhao Q, Wang X, Diao X, Cheng R. Structural, functional and mechanistic insights uncover the role of starch in foxtail millet cultivars with different congee-making quality. Int J Biol Macromol 2023:125107. [PMID: 37257541 DOI: 10.1016/j.ijbiomac.2023.125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Ten foxtail millet cultivars with different congee-making quality were investigated for relationships between starch structures, functional properties and congee-making qualities. Swelling power, pasting peak viscosity (PV) and setback (SB), gel hardness and resilience, and gelatinization onset (To), peak (Tp) and range (R) temperature were correlated with congee-making performance significantly. Good eating-quality cultivars with these parameters were in the range of 15.41-18.58 %, 3095-3279 cp, 1540-1745 cp, 430-491 g, 0.47-0.57, 64.43-65.28 °C, 69.97-70.32 °C and 23.38-24.52 °C, respectively. Correlation analysis showed that amylose, amylopectin B2 chains and A21 were essential parameters controlling the functional properties. Amylose molecules with linear molecular morphology would cause crystal defects and a wide range of molecular weight distribution. Additionally, they were more prone to re-association, which influenced the PV, SB, To, Tp and gel hardness. B2 chains impacted the gelatinization temperature range (R), gel resilience and swelling behavior by affecting the alignment of double helices and the size of starch particles and pores. Starch with more binding sites of bound water (A21) tended to leach from the swelling granules easily and contributed to higher values of PV. The content of amylose, B2 chains and A21 of good eating-quality cultivars were 16.19-18.46 %, 11.60-11.69 % and 96.50-97.02 %, respectively.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Yu Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Fan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| | - Xianrui Wang
- Research Institute of Millet, Chifeng Academy of Agriculture and Animal Science, Chifeng 024031, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruhong Cheng
- Research Institute of Millet, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| |
Collapse
|
19
|
Zhang W, Yang X, Zhang J, Lan Y, Dang B. Study on the Changes in Volatile Flavor Compounds in Whole Highland Barley Flour during Accelerated Storage after Different Processing Methods. Foods 2023; 12:foods12112137. [PMID: 37297381 DOI: 10.3390/foods12112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The effect of heat processing on the flavor characteristics of highland barley flour (HBF) in storage was revealed by analyzing differences in volatile compounds associated with flavor deterioration in HBF using GC-MS identification and relative odor activity values (ROAVs). Hydrocarbons were the most abundant in untreated and extrusion puffed HBFs, while heterocycles were found to be the most abundant in explosion puffed, baked, and fried HBFs. The major contributors to the deterioration of flavor in different HBFs were hexanal, hexanoic acid, 2-pentylfuran, 1-pentanol, pentanal, 1-octen-3-ol, octanal, 2-butyl-2-octanal, and (E,E)-2,4-decadienal. Amino acid and fatty acid metabolism was ascribed to the main formation pathways of these compounds. Baking slowed down the flavor deterioration in HBF, while extrusion puffing accelerated the flavor deterioration in HBF. The screened key compounds could predict the quality of HBF. This study provides a theoretical basis for the regulation of the flavor quality of barley and its products.
Collapse
Affiliation(s)
- Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| |
Collapse
|
20
|
Aroma formation and transformation during sealed yellowing process of Pingyang yellow tea. Food Res Int 2023; 165:112535. [PMID: 36869535 DOI: 10.1016/j.foodres.2023.112535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Yellow tea, a unique type of tea in China which is characterized with yellow color, has gained increasing popularity due to its pleasant taste. However, transformation of aroma compounds during sealed yellowing has been poorly understood. Results of sensory evaluation exhibited that yellowing time was the key factor for flavor and fragrance formation. A total of 52 volatile components during sealed yellowing process of Pingyang yellow soup were further collected and analyzed. The results demonstrated that the sealed yellowing process significantly increased the ratio of alcohol and aldehyde compounds in the aroma volatiles of yellow tea, which were primarily composed of geraniol, linalool, phenylacetaldehyde, linalool oxide and cis-3-hexenol, and their proportion increased with the prolongation of sealed yellowing. Mechanistic speculation revealed that the sealed yellowing process promoted release of alcoholic aroma compounds from their glycoside precursors and enhanced Strecker and oxidative degradation. This study revealed the transformation mechanism of aroma profile during the sealed yellowing process, which would facilitate processing of yellow tea.
Collapse
|
21
|
Identification of aroma active compounds in walnut oil by monolithic material adsorption extraction of RSC18 combined with gas chromatography-olfactory-mass spectrometry. Food Chem 2023; 402:134303. [DOI: 10.1016/j.foodchem.2022.134303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
|
22
|
Ma K, Zhao L, Zhao X, Li X, Dong S, Zhang L, Guo P, Yuan X, Diao X. The relationship between ecological factors and commercial quality of high-quality foxtail millet "Jingu 21". Food Res Int 2023; 163:112225. [PMID: 36596154 DOI: 10.1016/j.foodres.2022.112225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The commercial quality of foxtail millet grain (Setaria italica L.) includes appearance quality, functional quality, and cooking and eating quality, which directly determine whether consumers will purchase the product. We studied the relationship between ecological factors and commercial quality attributes of foxtail millet "Jingu 21" from twelve production areas. The results showed that altitude, latitude, and diurnal temperature range were negatively correlated with b*, total flavones content (TFC), setback (SB), consistence (CS) and pasting temperature (PTM), but positively correlated with L/B and breakdown (BD). In contrast, average temperature, average precipitation, average humidity, available nitrogen, phosphorus, and potassium had positive effects on 1,000-grain weight (KGW), b*, TFC, CS, and PTM and had a negative impact on L/B and BD. Climate factors had a greater effect on the commercial quality of foxtail millet than soil factors, and the influence of climatic factors was particularly obvious in the early and middle growth periods. The multivariate equation between ecological factors and the comprehensive score of foxtail millet commercial quality is Y = 1,159.745-4.496X1 (altitude) + 19.529X5 (≥10℃ effective accumulated temperature) - 166.327X10 (organic matters). In conclusion, high temperature and precipitation are conducive to high quality appearance and the accumulation of functional substances, while a high diurnal temperature range and high soil nutrients are conducive to the formation of cooking and eating quality. The impact of ecological factors on foxtail millet quality is complicated and it is essential to select a cultivation site that is matched to the intended use of the foxtail millet being produced.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Lirong Zhao
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiatong Zhao
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaorui Li
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Shuqi Dong
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Liguang Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Pingyi Guo
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), College of Agronomy, Shanxi Agricultural University, Taigu 030801, China.
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
23
|
Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuumL.). Food Res Int 2023; 163:112194. [PMID: 36596132 DOI: 10.1016/j.foodres.2022.112194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Fermented peppers are usually obtained by the spontaneous fermentation of microorganisms attached to fresh peppers, and the variable microbial composition would lead to inconsistencies in flavor between batches. To demonstrate the roles of microorganisms in flavor formation, the core microbes closely associated with the key aroma compounds of fermented pepper paste were screened and validated in this study. Lactobacillus was the dominant bacterial genus in fermented pepper paste, whereas the main fungal genera were Alternaria and Kazachstania. Nine strains of the genera Lactobacillus, Weissella, Bacillus, Zygosaccharomyces, Kazachstania, Debaryomyces, and Pichia were isolated from fermented pepper paste. Eleven key aroma compounds were identified using gas chromatography combined with olfactometry and relative odor activity values. Correlation analysis showed that Zygosaccharomyces and Kazachstania were positively correlated with the majority of the key aroma compounds, whereas Lactobacillus was negatively correlated with them. Thus, Zygosaccharomyces and Kazachstania were identified as core genera associated with the key odorants. Finally, Zygosaccharomyces bisporus, Kazachstania humilis, and Lactiplantibacillus plantarum were used as starter cultures for fermented peppers, confirming that Z. bisporus and K. humilis were more beneficial for the key aroma compounds (e.g., acetate, linalool, and phenyl ethanol) rather than L. plantarum. This study contributed to understanding the flavor formation mechanism and provided references for the quality control of food fermentation.
Collapse
|
24
|
Wei S, Wang N, Huang X, Xu G, Xu X, Xu D, Jin Y, Yang N, Wu F. Effect of germination on the quality characteristics and volatile compounds of fermented brown rice cake. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Zhang H, Zhang L, Yang X, Cheng W, Huang Y, Liang P. Oxidative stability of marine phospholipids derived from large yellow croaker roe. Food Res Int 2022; 160:111743. [DOI: 10.1016/j.foodres.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
|
26
|
Li Y, Gao C, Wang Y, Fan M, Wang L, Qian H. Analysis of the aroma volatile compounds in different stabilized rice bran during storage. Food Chem 2022; 405:134753. [DOI: 10.1016/j.foodchem.2022.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
27
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
28
|
Xu B, Feng M, Chitrakar B, Wei B, Wang B, Zhou C, Ma H, Wang B, Chang L, Ren G, Duan X. Selection of drying techniques for Pingyin rose on the basis of physicochemical properties and volatile compounds retention. Food Chem 2022; 385:132539. [PMID: 35278739 DOI: 10.1016/j.foodchem.2022.132539] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
Awareness of edible rose being beneficial for health has attracted researchers in exploring different rose products. The study aimed to investigate effects of vacuum freeze drying (VFD), hot air drying (HAD), heat pump drying (HPD), relative humidity drying (RHD) and catalytic infrared drying (CID) on the physicochemical properties, and volatile organic compounds (VOCs) of Pingyin roses. Results showed that the VFD roses had significantly (p < 0.05) bright color, complete tissue cells, low shrinkage, and good plasma membrane permeability. CID roses showed the highest total phenols content (164.09 ± 0.88 mg/g) and the strongest antioxidant activity. Besides, the odor is the most crucial indicator for dried roses. VFD can well prevent the odor from diminishing/destroying and preserve the natural smell of rose. Thermal drying including HAD, HPD, RHD, and CID, could cause significant losses of VOCs. Consequently, the findings can provide the scientific basis for future large-scale production of dried rose products.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Min Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Wang
- Shandong Huamei Biology Science &Technology Co., Pingyin, Shandong 250400, China
| | - Lu Chang
- Shandong Huamei Biology Science &Technology Co., Pingyin, Shandong 250400, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
29
|
Solid-state fermentation by Rhizopus oryzae improves flavor of wheat bran for application in food. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Bi S, Lao F, Pan X, Shen Q, Liu Y, Wu J. Flavor formation and regulation of peas (Pisum sativum L.) seed milk via enzyme activity inhibition and off-flavor compounds control release. Food Chem 2022; 380:132203. [PMID: 35101790 DOI: 10.1016/j.foodchem.2022.132203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/04/2022]
Abstract
Ascorbic acid, quercetin, epigallocatechin-3-gallate and reduced glutathione as well as high hydrostatic pressure were used to regulate the flavor of milk prepared from pea seeds. Activities of lipoxygenase (LOX) pathway enzymes and fatty acid contents of pea milk were determined. The hexanal content was positively correlated with the activity of LOX-2, but was negatively correlated with the contents of linoleic acid and α-linolenic acid. The intensity of the sensory attribute "fatty" was reduced when epigallocatechin-3-gallate or high hydrostatic pressure were combined with quercetin. Decreases in hexanal, pentanol, and 2-pentylfuran contents may have caused the change in sensory properties of pea milk. Pea protein, sodium sulfate and/or propylene glycol were used to regulate interactions between pea protein and flavor compounds. The hexanal content was reduced by commercial pea protein. Sodium sulfate and propylene glycol individually reduced the hexanal content and together reduced the hexanol content.
Collapse
Affiliation(s)
- Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
31
|
Huang S, Chi C, Li X, Zhang Y, Chen L. Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Zhao Q, Xi J, Xu D, Jin Y, Wu F, Tong Q, Xu X. Effect of optimal-water boiling cooking on the volatile compounds in 26 Japonica rice varieties from China. Food Res Int 2022; 155:111078. [DOI: 10.1016/j.foodres.2022.111078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
|
33
|
Xiao Z, Niu M, Niu Y, Zhu J. Evaluation of the Perceptual Interaction Among Sulfur Compounds in Durian by Feller’s Additive Model and Odor Activity Value. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02238-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Wang Y, Zhao H, Song X, Zhang W, Yang F. Drying Kinetics, Physicochemical Properties and Sensory Quality of the Instant Foxtail Millet as Affected by Drying Methods. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/146175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods 2022; 11:foods11030446. [PMID: 35159596 PMCID: PMC8834115 DOI: 10.3390/foods11030446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
In order to screen for a proper baking condition to improve flavor, in this experiment, we analyzed the effect of baking on the flavor of defatted tiger nut flour by electronic tongue (E-tongue), electronic nose (E-nose) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). According to E-tongue and E-nose radar plots and principal component analysis (PCA), baking can effectively change the taste and odor of defatted tiger nut flour, and the odors of samples with a baking time of >8 min were significantly different from the original odor of unbaked flour. Moreover, bitterness and astringency increased with longer baking times, and sweetness decreased. HS-SPME-GC-MS detected a total of 68 volatile organic compounds (VOCs) in defatted tiger nut flour at different baking levels, and most VOCs were detected at 8 min of baking. Combined with the relative odor activity value (ROAV) and heat map analysis, the types and contents of key flavor compounds were determined to be most abundant at 8 min of baking; 3-methyl butyraldehyde (fruity and sweet), valeraldehyde (almond), hexanal (grassy and fatty), and 1-dodecanol, were the key flavor compounds. 2,5-dimethyl pyrazine, and pyrazine, 2-ethylalkyl-3,5-dimethyl- added nutty aromas, and 1-nonanal, 2-heptanone, octanoic acid, bicyclo [3.1.1]hept-3-en-2-ol,4,6,6-trimethyl-, and 2-pentylfuran added special floral and fruity aromas.
Collapse
|
36
|
Effects of Processing on Starch Structure, Textural, and Digestive Property of "Horisenbada", a Traditional Mongolian Food. Foods 2022; 11:foods11020212. [PMID: 35053944 PMCID: PMC8774302 DOI: 10.3390/foods11020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Horisenbada, prepared by the soaking, steaming, and baking of millets, is a traditional Mongolian food and is characterized by its long shelf life, convenience, and nutrition. In this study, the effect of processing on the starch structure, textural, and digestive property of millets was investigated. Compared to the soaking treatment, steaming and baking significantly reduced the molecular size and crystallinity of the millet starch, while baking increased the proportion of long amylose chains, partially destroyed starch granules, and formed a closely packed granular structure. Soaking and steaming significantly reduced the hardness of the millets, while the hardness of baked millets is comparable to that of raw millet grains. By fitting digestive curves with a first-order model and logarithm of the slope (LOS) plot, it showed that the baking treatment significantly reduced the digestibility of millets, the steaming treatment increased the digestibility of millets, while the soaked millets displayed a similar digestive property with raw millets, in terms of both digestion rate and digestion degree. This study could improve the understanding of the effects of processing on the palatability and health benefits of Horisenbada.
Collapse
|
37
|
Characterization of key aroma-active compounds in Bobaizhi (Angelica dahurica) before and after boiling by sensomics approach. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Hou L, Chen L, Song P, Zhang Y, Wang X. Comparative assessment of the effect of pretreatment with microwave and roast heating on the quality of black sesame pastes. J Food Sci 2021; 86:5353-5374. [PMID: 34888858 DOI: 10.1111/1750-3841.15976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Heating is a key procedure in producing sesame paste. The effects of microwave heating and conventional roasting on the physicochemical features, protein profiles, and volatile compounds of black sesame pastes made of black sesame seeds from Burma and China were evaluated in this study. All heating treatments decreased the moisture contents of black sesame pastes, and roasting yielded lower moisture levels, although with similar chroma (p < 0.05). The samples subjected to microwave heating had remarkably lower peroxide values than those heated with roasting (p < 0.05). Chinese microwave-heated samples had a higher nitrogen solubility index than roasting (p < 0.05). Both microwave and roasting increased the contents of the volatiles notably. SDS-PAGE showed that the intensity of the 2-15 kDa band decreased markedly after heating and nearly diminished for roasting samples, suggesting that roasting was more remarkable for the promotion to the protein aggregation. The results indicated that the quality traits of black sesame paste not only depend on the heating methods, but also the heating power/temperature and duration, and the source of the materials.
Collapse
Affiliation(s)
- Lixia Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Liyan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Pinqing Song
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yujin Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xuede Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
39
|
Liu H, Xu Y, Wu J, Wen J, Yu Y, An K, Zou B. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res Int 2021; 150:110784. [PMID: 34865799 DOI: 10.1016/j.foodres.2021.110784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/24/2023]
Abstract
This study aims to investigate the influence of different harvesting seasons on the aroma of black tea and the trend in the tea aroma variation. A total of 68 volatile substances was identified by gas chromatography coupled with ion-mobility spectrometry (GC-IMS), and 20 characteristic aroma-active compounds were quantitatively analyzed by gas chromatography-olfactometry coupled with aroma extract dilution analysis (GC-O AEDA) and odor activity value (OAV) analysis. These aroma-active compounds are mainly linalool, β-damascenone, and benzeneacetaldehyde. Both methods confirmed that the aroma of tea changes with the harvesting seasons, showing a downward trend followed by an upward trend. Besides, black teas harvested in different seasons have their characteristic volatile compounds and metabolism precursors. The degradation of glycosides, carotenes, and amino acids are the most important degradation pathways for the formation of tea aroma. The PLSR results of GC-O-AEDA, OAV, and DSA data agree with each other, showing that five aroma attributes of the autumn tea have strong correlations. The autumn tea has the richest aroma, followed by the spring tea and the summer tea.
Collapse
Affiliation(s)
- Haocheng Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jing Wen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Kejing An
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| |
Collapse
|
40
|
Yu M, Wan S, Song H, Zhang Y, Wang C, Wang H, Wang H. Sensory-Based Identification of Aroma-Active Compounds in Hotpot Seasoning before and after Boiling. Molecules 2021; 26:molecules26195727. [PMID: 34641271 PMCID: PMC8510388 DOI: 10.3390/molecules26195727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
Boiling, the most frequent edible way to hotpot seasoning (HS), exerts a significant impact on the aroma of HS. The present study employed, for the first time, a novel switchable system between GC-O-MS and GC×GC-O-MS (SGC/GC×GC-O-MS) to study the aroma compounds of HS and hotpot seasoning boiling liquid (HSBL). A total of 79 aroma compounds and 56 aroma-active compounds were identified. The aroma extract dilution analysis (AEDA) was used to analyze the differences between the key aroma-active components in the HS and HSBL. The results showed that 13 aroma-active components were significantly affected by boiling, such as D-limonene, methional, and linalool. Moreover, a total of 22 key aroma-active components were identified through the odor activity values (OAVs) calculation. Of them, (E)-2-octenal (fatty) and linalool showed a significant difference, suggesting them to be the most critical aroma-active compounds in the HSBL, and HS, respectively. Finally, the correlation between key aroma-active compounds and the sensory properties of HS and HSBL was studied. These results demonstrated that the OAVs of key aroma-active compounds could characterize the real information of samples through bidirectional orthogonal partial least squares (O2PLS). The analysis results were consistent with the sensory evaluation results.
Collapse
Affiliation(s)
- Mingguang Yu
- Laboratory of Molecular Sensory Science, College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (M.Y.); (S.W.); (Y.Z.)
| | - Suyan Wan
- Laboratory of Molecular Sensory Science, College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (M.Y.); (S.W.); (Y.Z.)
| | - Huanlu Song
- Laboratory of Molecular Sensory Science, College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (M.Y.); (S.W.); (Y.Z.)
- Correspondence: (H.S.); (H.W.)
| | - Yu Zhang
- Laboratory of Molecular Sensory Science, College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (M.Y.); (S.W.); (Y.Z.)
| | - Chuanming Wang
- Sichuan Teway Food Group Co., Ltd., Chengdu 610021, China; (C.W.); (H.W.)
| | - Hongqiang Wang
- Sichuan Teway Food Group Co., Ltd., Chengdu 610021, China; (C.W.); (H.W.)
- Correspondence: (H.S.); (H.W.)
| | - Haowen Wang
- Sichuan Teway Food Group Co., Ltd., Chengdu 610021, China; (C.W.); (H.W.)
| |
Collapse
|
41
|
Analysis of the characteristics of foxtail millet during storage under different light environments. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Zhao GH, Hu YY, Liu ZY, Xie HK, Zhang M, Zheng R, Qin L, Yin FW, Zhou DY. Simultaneous quantification of 24 aldehydes and ketones in oysters (Crassostrea gigas) with different thermal processing procedures by HPLC-electrospray tandem mass spectrometry. Food Res Int 2021; 147:110559. [PMID: 34399536 DOI: 10.1016/j.foodres.2021.110559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023]
Abstract
Aldehydes and ketones are secondary oxidation products resulting from lipid oxidation that occurs during food processing. These small molecule compounds not only have an impact on the quality, odor and flavor of food, but also play a role in the pathogenesis of many human diseases. In this study, a HPLC-MS/MS analytical method was developed and validated for the simultaneous determination of 24 aldehydes and ketones. The coefficients of determination (R2) for all aldehydes and ketones were higher than 0.9975 at the range of 0.2-2000 ng/mL. The recoveries were in the range 71.20-108.13% with RSD < 10%. The method was tested by analyzing lipids from oysters with different thermal processing (boiling, frying, roasting and air frying) procedures; the highest concentration for saturated aldehydes and ketones while the highest content of unsaturated aldehydes in boiling treatment. Meanwhile, fatty acid oxidative decomposition was in agreement with aldehydes and ketones formation. Moreover, principal component analysis, orthogonal partial least-squares discriminant analysis and variable importance in projection value showed that lipid oxidation is positively related to the formation of a variety of aldehydes and ketones.
Collapse
Affiliation(s)
- Guan-Hua Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China.
| | - Yuan-Yuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Zhong-Yuan Liu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China; School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Min Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Rui Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| | - Fa-Wen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.
| |
Collapse
|
43
|
Precursors of volatile organics in foxtail millet (Setaria italica) porridge: The relationship between volatile compounds and five fatty acids upon cooking. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Li S, Zhao W, Liu S, Li P, Zhang A, Zhang J, Wang Y, Liu Y, Liu J. Characterization of nutritional properties and aroma compounds in different colored kernel varieties of foxtail millet (Setaria italica). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Chen J, Tao L, Zhang T, Zhang J, Wu T, Luan D, Ni L, Wang X, Zhong J. Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS, and HS-GC-IMS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111585] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Gao C, Li Y, Pan Q, Fan M, Wang L, Qian H. Analysis of the key aroma volatile compounds in rice bran during storage and processing via HS-SPME GC/MS. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Hou L, Zhang Y, Chen L, Wang X. A comparative study on the effect of microwave and conventional oven heating on the quality of flaxseeds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Yousaf L, Hou D, Liaqat H, Shen Q. Millet: A review of its nutritional and functional changes during processing. Food Res Int 2021; 142:110197. [PMID: 33773674 DOI: 10.1016/j.foodres.2021.110197] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022]
Abstract
Millets are a major source of human food, and their production has been steadily increasing in the last decades to meet the dietary requirements of the increasing world population. Millets are an excellent source of all essential nutrients like protein, carbohydrates, fat, minerals, vitamins, and bioactive compounds. However, the nutrients, bioactive compounds, and functions of cereal grains can be influenced by the food preparation techniques such as decortication/dehulling, soaking, germination/malting, milling, fermentation, etc. This study discusses the nutritional and functional changes in millet during different traditional/modern processing techniques, based on more than 100 articles between 2013 and 2020 from Web of Science, Google Scholar, FAO, and USDA databases. Our results concluded that processing techniques could be useful to combat undernourishment and other health issues. Moreover, this review provides detailed information about millet processing, which is advantageous for industry, consumers, and researchers in this area.
Collapse
Affiliation(s)
- Laraib Yousaf
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Humna Liaqat
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, South Korea
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
49
|
Application of volatile and spectral profiling together with multimode data fusion strategy for the discrimination of preserved eggs. Food Chem 2020; 343:128515. [PMID: 33160772 DOI: 10.1016/j.foodchem.2020.128515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
The maturity level of eggs during pickling is conventionally assessed by choosing few eggs from each curing batch to crack open. Yet, this method is destructive, creates waste and has consequences for financial losses. In this work, the feasibility of integrating electronic nose (EN) with reflectance hyperspectral (RH) and transmittance hyperspectral (TH) data for accurate classification of preserved eggs (PEs) at different maturation periods was investigated. Classifier models based solely on RH and TH with EN achieved a training accuracy (93.33%, 97.78%) and prediction accuracy (88.89%; 93.33%) respectively. The fusion of the three datasets, (EN + RH + TH) as a single classifier model yielded an overall training accuracy of 98.89% and prediction accuracy of 95.56%. Also, 52 volatile compounds were obtained from the PE headspace, of which 32 belonged to seven functional groups. This study demonstrates the ability to integrate EN with RH and TH data to effectively identify PEs during processing.
Collapse
|
50
|
Effects of frying, roasting and boiling on aroma profiles of adzuki beans (Vigna angularis) and potential of adzuki bean and millet flours to improve flavor and sensory characteristics of biscuits. Food Chem 2020; 339:127878. [PMID: 32866702 DOI: 10.1016/j.foodchem.2020.127878] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/23/2022]
Abstract
Volatile compounds of raw and cooked adzuki beans under three cooking methods namely frying, roasting, and boiling were extracted and identified. The odorants in raw beans changed from "green" and "grassy" to "roasted" and "nutty" in fried and roasted beans. Roasted adzuki beans had the greatest number of volatile compounds and best flavor properties. Because volatiles improve biscuit flavor profiles, biscuits were prepared in which wheat flour was substituted with adzuki bean flour and/or millet flour. The effects of grain flours on the sensory acceptability and aroma of biscuits were evaluated. Descriptive sensory analysis showed that the adzuki bean-millet biscuit had the best sensory quality. Correlation of volatile compounds, biscuit sensory attributes, and biscuit samples showed that maltol contributed to the "caramel-like" aroma of adzuki bean-millet biscuits. Adzuki bean and millet flours have potential in the development of biscuits that meet flavor and nutritional requirements.
Collapse
|