1
|
Wang D, Wang J, Lang Y, Huang M, Hu S, Liu H, Sun B, Long Y, Wu J, Dong W. Interactions between food matrices and odorants: A review. Food Chem 2025; 466:142086. [PMID: 39612859 DOI: 10.1016/j.foodchem.2024.142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Currently, although odorants of various foods have been thoroughly studied, the regulation of food aromas is still difficult due to the interaction between odorants and food matrices. These complex matrices in food may interact with odorants to change the volatility of odorants, which in turn affect food aroma. Clarifying the interaction between them are promising for predicting food aroma formation, which will provide valuable support for a high-efficiency food industry. Herein, the research progresses on interactions between food matrices and odorants are reviewed. First, the analysis methods and their advantages and disadvantages are introduced and discussed emphatically, including sensory-analysis methods, characterization methods of the volatility changes of odorants, and the research methods of interaction mechanism. Further, the research advances of interactions among proteins, carbohydrates, lipids, and polyphenols with odorants are summarized briefly. Finally, the existing problems are discussed and the research prospects are proposed.
Collapse
Affiliation(s)
- Danqing Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Juan Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Mingquan Huang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Shenglan Hu
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Hongqin Liu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Yao Long
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Jihong Wu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
2
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
3
|
Khan UM, Sameen A, Decker EA, Shabbir MA, Hussain S, Latif A, Abdi G, Aadil RM. Implementation of plant extracts for cheddar-type cheese production in conjunction with FTIR and Raman spectroscopy comparison. Food Chem X 2024; 22:101256. [PMID: 38495457 PMCID: PMC10943033 DOI: 10.1016/j.fochx.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Plant extracts have demonstrated the ability to act as coagulants for milk coagulation at an adequate concentration, wide temperatures and pH ranges. This research is focused on the use of different vegetative extracts such as Citrus aurnatium flower extract (CAFE), bromelain, fig latex, and melon extract as economical and beneficial coagulants in the development of plant-based cheddar-type cheese. The cheddar-type cheese samples were subjected to physicochemical analysis in comparison to controlled cheese samples made from acetic acid and rennet. The fat, moisture, protein, and salt contents remained the same over the storage period, but a slight decline was observed in pH. The Ferric reducing antioxidant power (FRAP) increased with the passage of the ripening period. The FTIR and Raman spectra showed exponential changes and qualitative estimates in the binding and vibrational structure of lipids and protein in plant-based cheeses. The higher FTIR and Raman spectra bands were observed in acid, rennet, bromelain, and CAFE due to their firm and strong texture of cheese while lower spectra were observed in cheese made from melon extract due to weak curdling and textural properties. These plant extracts are economical and easily available alternative sources for cheese production with higher protein and nutritional contents.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anam Latif
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
4
|
Kim W, Wang Y, Vongsvivut J, Ye Q, Selomulya C. On surface composition and stability of β-carotene microcapsules comprising pea/whey protein complexes by synchrotron-FTIR microspectroscopy. Food Chem 2023; 426:136565. [PMID: 37302310 DOI: 10.1016/j.foodchem.2023.136565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
This study aims to elucidate the stability of spray dried β-carotene microcapsules by identifying their surface composition using synchrotron-Fourier transform infrared (FTIR) microspectroscopy. To investigate the impact of enzymatic cross-linking and polysaccharide addition on heteroprotein, three wall materials were prepared: pea/whey protein blends (Con), cross-linked pea/whey protein blends (TG), and cross-linked pea/whey protein blends-maltodextrin complex (TG-MD). The TG-MD exhibited the highest encapsulation efficiency (>90 %) after 8 weeks of storage followed by TG and Con. Chemical images obtained using synchrotron-FTIR microspectroscopy confirmed that the TG-MD displayed the least amount of surface oil, followed by TG and Con, due to increasing amphiphilic β-sheet structure of the proteins led by cross-linking and maltodextrin addition. Both enzymatic cross-linking and polysaccharide addition improved the stability of β-carotene microcapsules, demonstrating that pea/whey protein blends with maltodextrin can be utilised as a hybrid wall material for enhancing the encapsulation efficiency of lipophilic bioactive compounds in foods.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Qianyu Ye
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | |
Collapse
|
5
|
Use of MIR spectroscopy associated with chemometric techniques to verify the authenticity of prato cheese. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Yaman H, Aykas DP, Rodriguez-Saona LE. Monitoring Turkish white cheese ripening by portable FT-IR spectroscopy. Front Nutr 2023; 10:1107491. [PMID: 36814504 PMCID: PMC9940898 DOI: 10.3389/fnut.2023.1107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
The biochemical metabolism during cheese ripening plays an active role in producing amino acids, organic acids, and fatty acids. Our objective was to evaluate the unique fingerprint-like infrared spectra of the soluble fractions in different solvents (water-based, methanol, and ethanol) of Turkish white cheese for rapid monitoring of cheese composition during ripening. Turkish white cheese samples were produced in a pilot plant scale using a mesophilic culture (Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris), ripened for 100 days and samples were collected at 20-day intervals for analysis. Three extraction solvents (water, methanol, and ethanol) were selected to obtain soluble cheese fractions. Reference methods included gas chromatography (amino acids and fatty acid profiles), and liquid chromatography (organic acids) were used to obtain the reference results. FT-IR spectra were correlated with chromatographic data using pattern recognition analysis to develop regression and classification predictive models. All models showed a good fit (RPre ≥ 0.91) for predicting the target compounds during cheese ripening. Individual free fatty acids were predicted better in ethanol extracts (0.99 ≥ RPre ≥ 0.93, 1.95 ≥ SEP ≥ 0.38), while organic acids (0.98 ≥ RPre ≥ 0.97, 10.51 ≥ SEP ≥ 0.57) and total free amino acids (RPre = 0.99, SEP = 0.0037) were predicted better by using water-based extracts. Moreover, cheese compounds extracted with methanol provided the best SIMCA classification results in discriminating the different stages of cheese ripening. By using a simple methanolic extraction and collecting spectra with a portable FT-IR device provided a fast, simple, and cost-effective technique to monitor the ripening of white cheese and predict the levels of key compounds that play an important role in the biochemical metabolism of Turkish white cheese.
Collapse
Affiliation(s)
- Hulya Yaman
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States,Department of Food Processing, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Didem P. Aykas
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States,Department of Food Engineering, Adnan Menderes University, Aydin, Türkiye
| | - Luis E. Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States,*Correspondence: Luis E. Rodriguez-Saona,
| |
Collapse
|
7
|
Industrial freezing and tempering for optimal functional properties in thawed Mozzarella cheese. Food Chem 2022; 405:134933. [DOI: 10.1016/j.foodchem.2022.134933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
8
|
Abstract
Microscopy is often used to assist the development of cheese products, but manufacturers can benefit from a much broader application of these techniques to assess structure formation during processing and structural changes during storage. Microscopy can be used to benchmark processes, optimize process variables, and identify critical control points for process control. Microscopy can also assist the reverse engineering of desired product properties and help troubleshoot production problems to improve cheese quality. This approach can be extended using quantitative analysis, which enables further comparisons between structural features and functional measures used within industry, such as cheese meltability, shreddability, and stretchability, potentially allowing prediction and control of these properties. This review covers advances in the analysis of cheese microstructure, including new techniques, and outlines how these can be applied to understand and improve cheese manufacture.
Collapse
Affiliation(s)
- Lydia Ong
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; .,Dairy Innovation Hub, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Xu Li
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia;
| | - Adabelle Ong
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; .,Dairy Innovation Hub, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Sally L Gras
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; .,Dairy Innovation Hub, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Silva LKR, Santos LS, Ferrão SPB. Application of infrared spectroscopic techniques to cheese authentication: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Larissa K R Silva
- Center for Biological and Health Sciences Federal University of Western Bahia Campus Universitário Barreiras Bahia CEP 47810‐047Brazil
| | - Leandro S Santos
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga Bahia CEP 45700‐000 Brazil
| | - Sibelli P B Ferrão
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga Bahia CEP 45700‐000 Brazil
| |
Collapse
|
10
|
Onohuean H, Okoh AI, Nwodo UU. Epidemiologic potentials and correlational analysis of Vibrio species and virulence toxins from water sources in greater Bushenyi districts, Uganda. Sci Rep 2021; 11:22429. [PMID: 34789791 PMCID: PMC8599681 DOI: 10.1038/s41598-021-01375-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Adequate water supply is one of the public health issues among the population living in low-income settings. Vibriosis remain a significant health challenge drawing the attention of both healthcare planners and researchers in South West districts of Uganda. Intending to clamp down the disease cases in the safest water deprive locality, we investigated the virulent toxins as contaminants and epidemiologic potentials of Vibrio species recovered from surface waters in greater Bushenyi districts, Uganda. Surface water sources within 46 villages located in the study districts were obtained between June and October 2018. Standard microbiological and molecular methods were used to analyse samples. Our results showed that 981 presumptive isolates retrieved cell counts of 10-100 CFU/g, with, with (640) 65% confirmed as Vibrio genus using polymerase chain reaction, which is distributed as follows; V. vulnificus 46/640 (7.2%), V. fluvialis 30/594 (5.1), V. parahaemolyticus 21/564 (3.7), V. cholera 5/543 (0.9), V. alginolyticus 62/538 (11.5) and V. mimicus 20/476 (4.2). The virulence toxins observed were heat-stable enterotoxin (stn) 46 (82.10%), V. vulnificus virulence gene (vcgCPI) 40 (87.00%), extracellular haemolysin gene {vfh 21 (70.00)} and Heme utilization protein gene {hupO 5 (16.70)}. The cluster analysis depicts hupO (4.46% n = 112); vfh (18.75%, n = 112); vcgCPI and stn (35.71%, & 41.07%, n = 112). The principal component analysis revealed the toxins (hupO, vfh) were correlated with the isolate recovered from Bohole water (BW) source, while (vcgCPI, stn) toxins are correlated with natural raw water (NRW) and open springs (OS) water sources isolates. Such observation indicates that surface waters sources are highly contaminated with an odds ratio of 1.00, 95% CI (70.48-90.5), attributed risk of (aR = 64.29) and relative risk of (RR = 73.91). In addition, it also implies that the surface waters sources have > 1 risk of contamination with vfh and > six times of contamination with hupO (aR = 40, - 66). This is a call of utmost importance to the population, which depends on these water sources to undertake appropriate sanitation, personal hygienic practices and potential measures that ensure water quality.
Collapse
Affiliation(s)
- Hope Onohuean
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa.
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western-Campus, Ishaka-Bushenyi, Uganda.
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa
| | - Uchechukwu U Nwodo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
11
|
Katsara K, Kenanakis G, Viskadourakis Z, Papadakis VM. Polyethylene Migration from Food Packaging on Cheese Detected by Raman and Infrared (ATR/FT-IR) Spectroscopy. MATERIALS 2021; 14:ma14143872. [PMID: 34300791 PMCID: PMC8303366 DOI: 10.3390/ma14143872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
For multiple years, food packaging migration has been a major concern in food and health sciences. Plastics, such as polyethylene, are continuously utilized in food packaging for preservation and easy handling purposes during transportation and storage. In this work, three types of cheese, Edam, Kefalotyri and Parmesan, of different hardness were studied under two complementary vibrational spectroscopy methods, ATR-FTIR and Raman spectroscopy, to determine the migration of low-density polyethylene from plastic packaging to the surface of cheese samples. The experimental duration of this study was set to 28 days due to the degradation time of the selected cheese samples, which is clearly visible after 1 month in refrigerated conditions at 4 °C. Raman and ATR-FTIR measurements were performed at a 4–3–4–3 day pattern to obtain comparative results. Initially, consistency/repeatability measurement tests were performed on Day0 for each sample of all cheese specimens to understand if there is any overlap between the characteristic Raman and ATR-FTIR peaks of the cheese with the ones from the low-density polyethylene package. We provide evidence that on Day14, peaks of low-density polyethylene appeared due to polymeric migration in all three cheese types we tested. In all cheese samples, microbial outgrowth started to develop after Day21, as observed visually and under the bright-field microscope, causing peak reverse. Food packaging migration was validated using two different approaches of vibrational spectroscopy (Raman and FT-IR), revealing that cheese needs to be consumed within a short time frame in refrigerated conditions at 4 °C.
Collapse
Affiliation(s)
- Klytaimnistra Katsara
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece;
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (G.K.); (Z.V.)
| | - Zacharias Viskadourakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (G.K.); (Z.V.)
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece;
- Correspondence: ; Tel.: +30-281-03-912-67
| |
Collapse
|
12
|
Peter A, Mihaly Cozmuta L, Nicula C, Mihaly Cozmuta A, Talasman CM, Drazic G, Peñas A, Calahorro AJ, Sagratini G, Silvi S. Chemical and organoleptic changes of curd cheese stored in new and reused active packaging systems made of Ag-graphene-TiO 2-PLA. Food Chem 2021; 363:130341. [PMID: 34144413 DOI: 10.1016/j.foodchem.2021.130341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
The study reports obtaining, characterization and evaluation of the preservation efficacy of nano-Ag-graphene-TiO2-polylactic acid (PLA) film during the storage of the curd cheese. The reusability of the active package was also evaluated. The mechanical resistance of the film was improved by 30% following the composite addition. Water vapour permeability decreased by 11-27% when the composite was incorporated into PLA in a mass percentage ranged between 0.5 and 3%. The highest fat permeability was obtained for PLA3% at 4 °C. The oxygen permeability of PLA3% is 24.6% lower than that of neat-PLA. PLA0.5% and PLA3% presented the highest antibacterial activity. PLA3% achieved the lowest solubility in food simulants at 4 °C compared to PLA and reference. The best active packages for curd storage were PLA0.5% and PLA3%. They showed also the lowest depreciation from the first to the second use. Their active role is kept 100% and 85% respectively, during the second use.
Collapse
Affiliation(s)
- Anca Peter
- Technical University of Cluj Napoca, Department of Chemistry, Victor Babes, 76 430083 Baia Mare, Romania.
| | - Leonard Mihaly Cozmuta
- Technical University of Cluj Napoca, Department of Chemistry, Victor Babes, 76 430083 Baia Mare, Romania
| | - Camelia Nicula
- Technical University of Cluj Napoca, Department of Chemistry, Victor Babes, 76 430083 Baia Mare, Romania
| | - Anca Mihaly Cozmuta
- Technical University of Cluj Napoca, Department of Chemistry, Victor Babes, 76 430083 Baia Mare, Romania
| | | | - Goran Drazic
- National Institute of Chemistry, Hajdrihova 19 POBox 660, SI-1001 Ljubljana, Slovenia
| | - Antonio Peñas
- Andaltec Pol. Ind. Cañada de la Fuente, Calle Vílches s/n, 23600 Martos-Jaén, Spain.
| | | | - Gianni Sagratini
- University of Camerino, Scuola di Scienze del Farmaco e dei Prodotti della Salute, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy.
| | - Stefania Silvi
- University of Camerino, Scuola di Bioscienze e Medicina Veterinaria, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| |
Collapse
|
13
|
Silva LKR, Jesus JC, Onelli RRV, Conceição DG, Santos LS, Ferrão SPB. Discriminating Coalho cheese by origin through near and middle infrared spectroscopy and analytical measures. Discrimination of Coalho cheese origin. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Larissa K R Silva
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga BahiaCEP 45700‐000Brazil
- Center for Biological and Health Sciences Federal University of Western Bahia Campus Universitário Barreiras BahiaCEP 47810‐047Brazil
| | - Josane C Jesus
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga BahiaCEP 45700‐000Brazil
| | - Rebeca R V Onelli
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga BahiaCEP 45700‐000Brazil
| | - Daniele G Conceição
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga BahiaCEP 45700‐000Brazil
| | - Leandro S Santos
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga BahiaCEP 45700‐000Brazil
| | - Sibelli P B Ferrão
- Program in Food Engineering and Science State University of Bahia Southwest Campus Universitário Itapetinga BahiaCEP 45700‐000Brazil
| |
Collapse
|
14
|
|
15
|
Ong L, Pax AP, Ong A, Vongsvivut J, Tobin MJ, Kentish SE, Gras SL. The effect of pH on the fat and protein within cream cheese and their influence on textural and rheological properties. Food Chem 2020; 332:127327. [DOI: 10.1016/j.foodchem.2020.127327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
|
16
|
Szymczak B, Szymczak M, Trafiałek J. Prevalence of Listeria species and L. monocytogenes in ready-to-eat foods in the West Pomeranian region of Poland: Correlations between the contamination level, serogroups, ingredients, and producers. Food Microbiol 2020; 91:103532. [DOI: 10.1016/j.fm.2020.103532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 11/27/2022]
|
17
|
|
18
|
Talbot-Walsh G, Kannar D, Selomulya C. pH effect on the physico-chemical, microstructural and sensorial properties of processed cheese manufactured with various starches. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|