1
|
Akhila PP, Sunooj KV, Nemțanu MR, Sakshi T, Aaliya B, Navaf M, Annamalai A, Indumathy B, Yugeswaran S, Sinha SK, Yadav DN, Joshi MC, Jebreen A, Sudheer KP, George J. 3D printing of hausa potato starch: Assessing a new dimension of cold plasma treatment using varied feed gas. Int J Biol Macromol 2025; 302:140655. [PMID: 39909252 DOI: 10.1016/j.ijbiomac.2025.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
3D printing is a technology proficient in producing complex objects in an appealing design with precise composition and dimensions. This study employed cold plasma (CP) to modify hausa potato starch, specifically for 3D printing applications. CP treatment using four distinct feed gases (oxygen, argon, air, and nitrogen) was applied to investigate their impact on starch properties and printability. Findings indicated that type of feed gas selected for CP production significantly altered the physicochemical characteristics of the starch, influencing the rheological properties and printability. All samples exhibited 3D printability, with argon CP-treated starch showing the best printability. Oxygen and argon CP-treated starch samples showed an increased relative crystallinity, gelatinization enthalpy, and peak intensity of the C-O-C bond along with enhanced gel strength, viscoelasticity, and rigidity. Conversely, nitrogen and air CP-treatment caused a decreased relative crystallinity and gelatinization enthalpy and increased peak intensity of OH groups. These changes resulted in altered rheological behavior and printability of the modified starch gels. The CP-Ar sample exhibited superior printing precision with a K value of 3162 Pa·sn. The CP-Ar sample exhibited printability that closely aligned with the CAD model, followed by CP-Air, while CP-O2 and CP-N2 showed lower printability.
Collapse
Affiliation(s)
| | | | - Monica R Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., P.O. Box MG-36, 077125 Măgurele, Romania.
| | - Tripathi Sakshi
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Arunachalam Annamalai
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | | | - Suraj Kumar Sinha
- Department of Physics, Pondicherry University, Puducherry 605014, India
| | - Deep Narayanan Yadav
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Mukesh Chandra Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Ali Jebreen
- Department of Food Science and Technology, Al-Zytona University of Science and Technology, Salfit 00972, Palestine
| | | | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore, 570011, India
| |
Collapse
|
2
|
Song X, Chen J, Deng L, Zhao Q. Rheological, textural, and pasting properties of A- and B-type wheat starches in relation to their molecular structures. Food Chem 2024; 460:140810. [PMID: 39167869 DOI: 10.1016/j.foodchem.2024.140810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
A- and B-type wheat starches have significant differences in rheological, textural, and pasting properties; however, the structure-property relationship is not fully revealed. Herein, the physicochemical characteristics and molecular structures of A- and B-type starches isolated from three wheat varieties with different apparent amylose contents (2.41%-27.93%) were investigated. A-type starches exhibited higher pasting viscosities, relative crystallinity, onset gelatinization temperatures, and enthalpies, while B-type starches had wide gelatinization temperature ranges. B-type starches had lower resistant starch contents than their A-type counterparts, but B-type starches formed more stable gels and had a lower tendency to retrograde, resulting in lower hardness, storage (G') and loss (G'') moduli but higher tan δ values. A-type starches had lower contents of short amylose (100 ≤ X < 1000) and amylopectin chains (DP 6-12) than B-type. These findings elucidated the differences in molecular structures between A- and B-type starches, which can contribute to their effective application.
Collapse
Affiliation(s)
- Xiaoyan Song
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jianyang Chen
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Lili Deng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Sudheesh C, Varsha L, Sunooj KV, Pillai S. Influence of crystalline properties on starch functionalization from the perspective of various physical modifications: A review. Int J Biol Macromol 2024; 280:136059. [PMID: 39341324 DOI: 10.1016/j.ijbiomac.2024.136059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The relationship between structural properties and functional characteristics of starch remains a hot subject among researchers. The crystalline property is a substantial characteristic of starch granules, undergoing different changes during modification techniques. These changes are closely related to the functional properties of modified starches. Physical modifications are eco-friendly techniques and are widely adopted for starch modifications. Therefore, understanding the impact of changes in crystalline properties during different physical modifications on starch functionality is the ultimate way to improve their industrial utilization. However, the existing literature still lacks the elucidation of changes in functional properties of starch in accordance with its crystalline properties during different physical treatments. Hence, this review summarizes the effects of the most important and widely used physical modifications on starch crystalline properties, highlighting the alterations in various functional properties such as hydration, pasting, gelatinization, and in vitro digestibility resulting from changes in crystalline characteristics in a single comprehensive discussion. Furthermore, the current review gives direction for envisaging the functionalization of starches based on deviations in the crystalline properties during several physical treatments.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.
| | - Latha Varsha
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
5
|
Ji H, Li D, Zhang L, Li M, Ma H. Effect of atmospheric pressure plasma jet on the structure and physicochemical properties of wheat starch. Front Nutr 2024; 11:1386778. [PMID: 38765812 PMCID: PMC11100464 DOI: 10.3389/fnut.2024.1386778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The effect of atmospheric pressure plasma jet (APPJ) with different discharge power (0, 400, 600, and 800 W) on the structure and physicochemical properties of wheat starch were evaluated in this study. After APPJ treatments, significant declines in peak viscosity, breakdown viscosity, and final viscosity of wheat starch pasting parameters were observed with increase of plasma treatment power. Being treated with discharge power of 800 W, the PV and BD value of wheat starch paste significantly dropped to 2,578 and 331 cP, respectively. Apparently, APPJ could raise the solubility of wheat starch, while reduce the swelling capacity, and also lower the G' and G″ value of wheat starch gel. Roughness and apparent scratch was observed on the surface of the treated wheat starch granules. Although APPJ treatment did not alter wheat starch's crystallization type, it abated the relative crystallinity. APPJ treatment might be useful in producing modified wheat starch with lower viscosity and higher solubility.
Collapse
Affiliation(s)
- Hongfang Ji
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- National Pork Processing Technology Research and Development Professional Center, Xinxiang, China
| | - Dandan Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Lingwen Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Manjie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- National Pork Processing Technology Research and Development Professional Center, Xinxiang, China
| |
Collapse
|
6
|
Cheng JH, Ai X, Ma J, Sun DW. Effects of cold plasma pretreatment combined with sodium periodate on property enhancement of dialdehyde starch prepared using native maize starch. Int J Biol Macromol 2024; 267:131435. [PMID: 38593900 DOI: 10.1016/j.ijbiomac.2024.131435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
This study represents the inaugural investigation into the effect of cold plasma (CP) pretreatment combined with sodium periodate on the preparation of dialdehyde starch (DAS) from native maize starch and its consequent effects on the properties of DAS. The findings indicate that the maize starch underwent etching by the plasma, leading to an increase in the particle size of the starch, which in turn weakened the rigid structure of the starch and reduced its crystallinity. Concurrently, the plasma treatment induced cleavage of the starch molecular chain, resulting in a decrease in the viscosity of the starch and an enhancement of its fluidity. These alterations facilitated an increased contact area between the starch and the oxidising agent sodium periodate, thereby augmenting the efficiency of the DAS preparation reaction. Consequently, the aldehyde group content was elevated by 9.98 % compared to the conventional DAS preparation methodology. Therefore, CP could be an efficient and environmentally friendly non-thermal processing method to assist starch oxidation for DAS preparation and property enhancement.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xin Ai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Liang Y, Zheng L, Yang Y, Zheng X, Xiao D, Ai B, Sheng Z. Dielectric barrier discharge cold plasma modifies the multiscale structure and functional properties of banana starch. Int J Biol Macromol 2024; 264:130462. [PMID: 38423435 DOI: 10.1016/j.ijbiomac.2024.130462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.
Collapse
Affiliation(s)
- Yonglun Liang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China.
| | - Zhanwu Sheng
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
8
|
Du Z, Li X, Zhao X, Huang Q. Multi-scale structural disruption induced by radio frequency air cold plasma accelerates enzymatic hydrolysis/ hydroxypropylation of tapioca starch. Int J Biol Macromol 2024; 260:129572. [PMID: 38253141 DOI: 10.1016/j.ijbiomac.2024.129572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
This study investigated the effects of radio frequency air cold plasma (RFACP) pretreatment on the multi-scale structures, physicochemical properties, enzymatic hydrolysis, and hydroxypropylation of tapioca starch. The results showed that cold plasma (CP) made starch granules rough on the surface and disrupted long- and short-range ordered structures, reducing relative crystallinity from 43.8 % to 37.4 % and R1047/1022 value from 0.992 to 0.934. Meanwhile, the starch molecules were depolymerized and oxidized by CP, reducing weight-average molecular weight from 9.64 × 107 to 2.17 × 107 g/mol, while increasing carbonyl and carboxyl groups by up to 118 % and 53 %. Additionally, CP-treated starches exhibited higher solubility and swelling power, along with lower gelatinization enthalpy. Short-time CP pretreatment (10 min) promoted the hydroxypropylation of starch and increased the molar substitution (0.081-0.112). Also, CP pretreatment accelerated enzymatic hydrolysis of starch, as indicated by the increase in hydrolysis rate (1.846 × 10-3-2.033 × 10-3 min-1) and degree of hydrolysis (51.45 % - 59.92 %). Overall, the multi-scale structural disruption induced by CP treatment facilitated the accessibility of enzymes/chemical reagents into starch granules and glucan chains. This study suggested that RFACP could be used for starch pretreatment to increase production efficiency in modified starch production, as well as in brewing and fermentation industries.
Collapse
Affiliation(s)
- Zhixiang Du
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuxu Li
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Zhao
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Punthi F, Yudhistira B, Gavahian M, Chang CK, Husnayain N, Hou CY, Yu CC, Hsieh CW. Optimization of Plasma Activated Water Extraction of Pleurotus ostreatus Polysaccharides on Its Physiochemical and Biological Activity Using Response Surface Methodology. Foods 2023; 12:4347. [PMID: 38231788 DOI: 10.3390/foods12234347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
This study focused on optimizing the extraction of P. ostreatus polysaccharides (POPs) using plasma-activated water (PAW). A single factor and response surface methodology were employed to optimize and evaluate the polysaccharide yield, physiochemical characteristics, and biological activities of POPs. The observed findings were compared to those obtained by the conventional hot water extraction method (100 °C, 3 h), as the control treatment. The optimal extraction conditions were obtained at 700 W PAW power, 58 s treatment time, 1:19 sample-to-water ratio, and 15 L/min gas flow rate. In these conditions, the PAW-treated samples experienced changes in surface morphology due to plasma etching, leading to a 288% increase in the polysaccharide yield (11.67%) compared to the control sample (3.01%). Furthermore, the PAW-treated sample exhibited superior performance in terms of biological activities, namely phenolic compounds (53.79 mg GAE/100 g), DPPH scavenging activity (72.77%), and OH scavenging activity (65.03%), which were 29%, 18%, and 38% higher than those of control sample, respectively. The results highlighted the importance of process optimization and provided new evidence for PAW as an alternative approach to enhance the extraction efficiency of POPs, a novel source of natural antioxidants which enables diverse applications in the food industry.
Collapse
Affiliation(s)
- Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung City 91201, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Naila Husnayain
- International Master Program of Agriculture, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 40402, Taiwan
| |
Collapse
|
10
|
Zhu Q, Yao S, Wu Z, Li D, Ding T, Liu D, Xu E. Hierarchical structural modification of starch via non-thermal plasma: A state-of-the-art review. Carbohydr Polym 2023; 311:120747. [PMID: 37028874 DOI: 10.1016/j.carbpol.2023.120747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.
Collapse
Affiliation(s)
- Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
11
|
Sudheesh C, Sunooj KV, Navaf M, Akhila PP, Aaliya B, Mounir S, Sinha SK, Kumar S, Sajeevkumar VA, George J. An efficient approach for improving granular cold water soluble starch properties using energetic neutral atoms treatment and NaOH/urea solution. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Effect of energetic neutrals on the kithul starch retrogradation; Potential utilization for improving mechanical and barrier properties of films. Food Chem 2023; 398:133881. [DOI: 10.1016/j.foodchem.2022.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022]
|
13
|
Navaf M, Sunooj KV, Aaliya B, Sudheesh C, Akhila PP, Sabu S, Sasidharan A, George J. Impact of gamma irradiation on structural, thermal, and rheological properties of talipot palm (Corypha umbraculifera L.) starch: a stem starch. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Rostamabadi H, Rohit T, Karaca AC, Nowacka M, Colussi R, Feksa Frasson S, Aaliya B, Valiyapeediyekkal Sunooj K, Falsafi SR. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Wang J, Yu YD, Zhang ZG, Wu WC, Sun PL, Cai M, Yang K. Formation of sweet potato starch nanoparticles by ultrasonic—assisted nanoprecipitation: Effect of cold plasma treatment. Front Bioeng Biotechnol 2022; 10:986033. [PMID: 36185450 PMCID: PMC9523013 DOI: 10.3389/fbioe.2022.986033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Starch nanoparticles (SNPs) were produced from sweet potato starches by ultrasonic treatment combined with rapid nanoprecipitation. The starch concentration, ultrasonic time, and the ratio of starch solution to ethanol were optimized through dynamic light scattering (DLS) technique to obtain SNPs with a Z-average size of 64.51 ± 0.15 nm, poly dispersity index (PDI) of 0.23 ± 0.01. However, after freeze drying, the SNPs showed varying degrees of aggregation depending on the particle size of SNPs before freeze-drying. The smaller the particle size, the more serious the aggregation. Therefore, we tried to treat SNPs with dielectric barrier discharge cold plasma before freeze drying. Properties including morphological features, crystalline structure and apparent viscosity of various starches were measured by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and rheometer, respectively. The results showed that, after cold plasma (CP) treatment, the aggregation of SNPs during freeze drying was significantly inhibited. Compared to the native sweet potato starch, SNPs showed a higher relative crystallinity and a lower apparent viscosity. After CP treatment, the relative crystallinity of CP SNPs was further higher, and the apparent viscosity was lower. This work provides new ideas for the preparation of SNPs and could promote the development of sweet potato SNPs in the field of active ingredient delivery.
Collapse
Affiliation(s)
- Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yu-Die Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhi-Guo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wei-Cheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Pei-Long Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- *Correspondence: Ming Cai, ; Kai Yang,
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- *Correspondence: Ming Cai, ; Kai Yang,
| |
Collapse
|
16
|
Yan Y, Xue X, Jin X, Niu B, Chen Z, Ji X, Shi M, He Y. Effect of annealing using plasma-activated water on the structure and properties of wheat flour. Front Nutr 2022; 9:951588. [PMID: 36034897 PMCID: PMC9403792 DOI: 10.3389/fnut.2022.951588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, wheat flour (WF) was modified by annealing (ANN) using plasma-activated water (PAW) for the first time. Compared with WF and DW-WF, the results of scanning electron microscopy (SEM) and particle-size analysis showed that the granule structure of wheat starch in PAW-WF was slightly damaged, and the particle size of PAW-WF was significantly reduced. The results of X-ray diffraction and Fourier transforming infrared spectroscopy indicated that PAW-ANN could reduce the long-range and short-range order degrees of wheat starch and change the secondary structure of the protein in WF, in which the content of random coils and α-helices was significantly increased. In addition, the analysis of solubility, viscosity, and dynamic rheological properties showed that PAW-ANN improved the solubility and gel properties of WF and decreased its viscosity properties and short-term regeneration. PAW-ANN, as a green modification technology, has the potential for further application in WF modification, as well as in the production of flour products.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xinhuan Xue
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan He
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
17
|
Tavakoli Lahijani A, Shahidi F, Habibian M, Koocheki A, Shokrollahi Yancheshmeh B. Effect of atmospheric nonthermal plasma on physicochemical, morphology and functional properties of sunn pest ( Eurygaster integriceps)-damaged wheat flour. Food Sci Nutr 2022; 10:2631-2645. [PMID: 35959250 PMCID: PMC9361433 DOI: 10.1002/fsn3.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 11/07/2022] Open
Abstract
To improve the quality of sunn pests (Eurygaster integriceps)-damaged wheat flour, the effects of nonthermal plasma on physicochemical, rheological, functional, and microstructural properties were investigated. Gas type (air and oxygen), voltage (22 and 25 volts), and time (0, 2, 4, 6, 8, and 10 min) were the variables of the experiments conducted using a completely randomized design with three replications. The results show that with increasing voltage and time of plasma treatment, the pH decreased significantly (p ≥ .05), and brightness parameter, yellow-blue parameter, water-solubility, water absorption, oil absorption, and swelling power increased significantly (p ≥ .05). The duration of plasma treatment, voltage, and change in input gas from air to oxygen did not significantly change the gluten index, particle size, and negative electric charge of flour particles, and the amount of zeta potential of samples. Differential calorimetric analysis showed the first and second peaks of the thermogram in the range 55-99°C and also 114-99°C. Infrared spectroscopy (FT-IR) showed hydroxyl group, CH bonds, C=O bonds, as well as the presence of types I and II amide bonds in the structure. Microstructural results indicated that plasma treatment reduced the particle size and increased particle sorting. By Increasing voltage and the duration of plasma treatment, peak viscosity, final viscosity, breakdown viscosity, pasting time and temperature significantly increased and setback viscosity decreased (p ≥ .05), which reduced retrogradation which improved the dough stability during the cooling process.
Collapse
Affiliation(s)
- Amir Tavakoli Lahijani
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of Mashhad (FUM)MashhadIran
| | - Fakhri Shahidi
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of Mashhad (FUM)MashhadIran
| | - Mahmoud Habibian
- Chemistry and Chemical Engineering Research Center of IranTehranIran
| | - Arash Koocheki
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of Mashhad (FUM)MashhadIran
| | | |
Collapse
|
18
|
Pulsed light, Pulsed Electric Field and Cold plasma modification of Starches: Technological Advancements & Effects on Functional Properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Kaavya R, Pandiselvam R, Gavahian M, Tamanna R, Jain S, Dakshayani R, Khanashyam AC, Shrestha P, Kothakota A, Arun Prasath V, Mahendran R, Kumar M, Khaneghah AM, Nayik GA, Dar AH, Uddin J, Ansari MJ, Hemeg HA. Cold plasma: a promising technology for improving the rheological characteristics of food. Crit Rev Food Sci Nutr 2022; 63:11370-11384. [PMID: 35758273 DOI: 10.1080/10408398.2022.2090494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
At the beginning of the 21st century, many consumers show interest in purchasing safe, healthy, and nutritious foods. The intent requirement of end-users and many food product manufacturers are trying to feature a new processing technique for the healthy food supply. The non-thermal nature of cold plasma treatment is one of the leading breakthrough technologies for several food processing applications. The beneficial response of cold plasma processing on food quality characteristics is widely accepted as a substitution technique for new food manufacturing practices. This review aims to elaborate and offer crispy innovative ideas on cold plasma application in various food processing channels. It highlights the scientific approaches on the principle of generation and mechanism of cold plasma treatment on rheological properties of foods. It provides an overview of the behavior of cold plasma in terms of viscosity, crystallization, gelatinization, shear stress, and shear rate. Research reports highlighted that the cold plasma treated samples demonstrated a pseudoplastic behavior. The published literatures indicated that the cold plasma is a potential technology for modification of native starch to obtain desirable rheological properties. The adaptability and environmentally friendly nature of non-thermal cold plasma processing provide exclusive advantages compared to the traditional processing technique.
Collapse
Affiliation(s)
- R Kaavya
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - R Tamanna
- Innovation and Technology, Kraft Heinz Company, Chicago, Illinois, USA
| | - Surangna Jain
- Department of Biotechnology, Mahidol University, Bangkok, Thailand
| | - R Dakshayani
- Department of Food Processing and Quality Control, ThassimBeevi Abdul Kader College for Women, Ramanathapuram, Tamil Nadu, India
| | | | - Pratiksha Shrestha
- Department of Food Technology and Quality Control (DFTQC), National Food and Feed Reference Laboratory (NFFRL), Babarmahal, Nepal
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - V Arun Prasath
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - R Mahendran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, Jammu & Kashmir, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Awantipora, Jammu & Kashmir, India
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh), India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
20
|
Shen H, Ge X, Zhang Q, Zhang X, Lu Y, Jiang H, Zhang G, Li W. Dielectric barrier discharge plasma improved the fine structure, physicochemical properties and digestibility of α-amylase enzymatic wheat starch. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
High-voltage and short-time dielectric barrier discharge plasma treatment affects structural and digestive properties of Tartary buckwheat starch. Int J Biol Macromol 2022; 213:268-278. [DOI: 10.1016/j.ijbiomac.2022.05.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
22
|
Shen H, Ge X, Zhang B, Su C, Zhang Q, Jiang H, Zhang G, Yuan L, Yu X, Li W. Preparing potato starch nanocrystals assisted by dielectric barrier discharge plasma and its multiscale structure, physicochemical and rheological properties. Food Chem 2022; 372:131240. [PMID: 34619520 DOI: 10.1016/j.foodchem.2021.131240] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
Non-thermal plasma has increasingly been used for surface modification of various materials as a novel green technology. In this study, we prepared potato starch nanocrystals (SNCs) assisted by dielectric barrier discharge plasma technology and investigated its multiscale structure, physicochemical properties and rheology. Plasma treatment did not change the morphology and crystalline pattern of SNCs but reduced the crystallinity. The amylose content, swelling power, gelatinization temperature, and apparent viscosity of SNCs decreased after the plasma process by depolymerizing the amylopectin branch chains and degrading SNCs molecules. Besides, plasma increased the rapidly digestible starch and resistant starch content. Changes in rheological properties of plasma treated SNCs suggested that the plasma process increased the flowing capacity. The effective structural and functional changes of plasma treated SNCs confirm that plasma technology has great potential for modification of SNCs.
Collapse
Affiliation(s)
- Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Bo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chunyan Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Guoquan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 7710119, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
23
|
Taslikh M, Abbasi H, Mortazavian AM, Ghasemi JB, Naeimabadi A, Nayebzadeh K. Effect of Cold Plasma Treatment, Cross‐Linking, and Dual Modification on Corn Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Musarreza Taslikh
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences P.O. Box19395‐4741 Tehran Iran
| | - Hossein Abbasi
- Faculty of Energy Engineering and Physics Amirkabir University of Technology P.O.Box15875‐4413 Tehran Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences P.O. Box19395‐4741 Tehran Iran
| | - Jahan B. Ghasemi
- Faculty of Chemistry School of Sciences University of Tehran P.O.Box14155‐6455 Tehran Iran
| | - Aboutorab Naeimabadi
- Faculty of Energy Engineering and Physics Amirkabir University of Technology P.O.Box15875‐4413 Tehran Iran
| | - Kooshan Nayebzadeh
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences P.O. Box19395‐4741 Tehran Iran
| |
Collapse
|
24
|
Yan Y, Peng B, Niu B, Ji X, He Y, Shi M. Understanding the Structure, Thermal, Pasting, and Rheological Properties of Potato and Pea Starches Affected by Annealing Using Plasma-Activated Water. Front Nutr 2022; 9:842662. [PMID: 35198591 PMCID: PMC8859486 DOI: 10.3389/fnut.2022.842662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
In this research, annealing (ANN) using plasma-activated water (PAW) was first employed to modify potato and pea starches. Compared with the conventional ANN using distilled water (DW), the granular morphology of two starches was not significantly affected by PAW-ANN. The results of X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that PAW-ANN could reduce the long and short-range ordered structure of potato starch while improving the long and short-range ordered structure of pea starch. Differential scanning calorimetry (DSC) analysis indicated that PAW-ANN lowered the gelatinization enthalpy of potato starch and increased the gelatinization enthalpy of pea starch. The analysis of viscosity and dynamic rheological characteristics illustrated that PAW-ANN reduced the peak viscosity and improved the gel strength of starch pastes. PAW-ANN represents a novel modification method for modifying the structure, reducing the viscosity, improving the gel strength of starch, and is very promising for applying in starch-based hydrogels and food additives.
Collapse
Affiliation(s)
- Yizhe Yan
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- *Correspondence: Yizhe Yan
| | - Baixiang Peng
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaolong Ji
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan He
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Miaomiao Shi
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Miaomiao Shi
| |
Collapse
|
25
|
Okyere AY, Rajendran S, Annor GA. Cold plasma technologies: Their effect on starch properties and industrial scale-up for starchmodification. Curr Res Food Sci 2022; 5:451-463. [PMID: 35243357 PMCID: PMC8866071 DOI: 10.1016/j.crfs.2022.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022] Open
Abstract
Native starches have limited applications in the food industry due to their unreactive and insoluble nature. Cold plasma technology, including plasma-activated water (PAW), has been explored to modify starches to enhance their functional, thermal, molecular, morphological, and physicochemical properties. Atmospheric cold plasma and low-pressure plasma systems have been used to alter starches and have proven successful. This review provides an in-depth analysis of the different cold plasma setups employed for starch modifications. The effect of cold plasma technology application on starch characteristics is summarized. We also discussed the potential of plasma-activated water as a novel alternative for starch modification. This review provides information needed for the industrial scale-up of cold plasma technologies as an eco-friendly method of starch modification. Cold plasma technology could be an effective, sustainable alternative for starch modification. The extent of modification of starches from different botanical sources depends on the type of cold plasma technology used. For mainstream adoption of cold plasma modified starches, research on safety and consumer perception must be conducted.
Collapse
|
26
|
Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. Int J Biol Macromol 2022; 196:63-71. [PMID: 34896473 DOI: 10.1016/j.ijbiomac.2021.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of atmospheric pressure non-thermal pin-to-plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of starch treated. The isolated mango seed kernel starch was subjected to the plasma treatment of input voltages 170 and 230 V for 15 and 30 min of exposure. Water adsorption, swelling, and solubility at lower temperatures. There has been a significant reduction (p < 0.05) in pH values of starch from 7.09 to 6.16 and also the desirable reduction in turbidity values by 42.60%. However, there has been no significant change in the oil and water binding behavior of the starch. The FTIR spectra of MSKS demonstrate the formation of amines which contributes to the better hydrophilic nature of the starch. The structural modification has been adequately confirmed by SEM images. The maximum voltage and time combination, lead to depolymerization of starch which is supported by NMR spectra thus affecting thermal and rheological properties. The application of cold plasma-modified MSKS in food would facilitate stable and smooth textural development.
Collapse
|
27
|
Sruthi NU, Josna K, Pandiselvam R, Kothakota A, Gavahian M, Mousavi Khaneghah A. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem 2022; 368:130809. [PMID: 34450498 DOI: 10.1016/j.foodchem.2021.130809] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma processing is a technique that uses electricity and reactive carrier gases, such as oxygen, nitrogen, or helium, to inactivate enzymes, destroy microorganisms, preserve food, and maintain quality without employing chemical antimicrobial agents.The review collates the latest information on the interaction mechanism and impact of non-thermal plasma, as an emerging processing technology, on selected physical properties, low-molecular-weight functional components, and bioactive properties of food. Significant changes observed in the physicochemical and functional properties. For example, changes in pH, total soluble solids, water and oil absorption capacities, sensory properties such as color, aroma, and texture, bioactive components (e.g., polyphenols, flavonoids, and antioxidants), and food enzymes, antinutrients, and allergens were elaborated in the present manuscript. It was highlighted that the plasma reactive species result in both constructive and antagonistic outcomes on specific food components, and the associated mechanism was different in each case. However, the design's versatility, characteristic non-thermal nature, better economic standards, and safer environmental factors offer matchless benefits for cold plasma over conventional processing methods. Even so, a thorough insight on the impact of cold plasma on functional and bioactive food constituents is still a subject of imminent research and is imperative for its broad recognition as a modern non-conventional processing technique.
Collapse
Affiliation(s)
- N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - K Josna
- Processing and Food Engineering Department, Kelappaji College of Agricultural Engineering & Technology, Kerala Agricultural University, Malappuram 679573, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671 124, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
28
|
Wu Z, Qiao D, Zhao S, Lin Q, Zhang B, Xie F. Nonthermal physical modification of starch: An overview of recent research into structure and property alterations. Int J Biol Macromol 2022; 203:153-175. [PMID: 35092737 DOI: 10.1016/j.ijbiomac.2022.01.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
To tailor the properties and enhance the applicability of starch, various ways of starch modification have been practiced. Among them, physical modification methods (micronization, nonthermal plasma, high-pressure, ultrasonication, pulsed electric field, and γ-irradiation) are highly potential for starch modification considering its safety, environmentally friendliness, and cost-effectiveness, without generating chemical wastes. Thus, this article provides an overview of the recent advances in nonthermal physical modification of starch and summarizes the resulting changes in the multi-level structures and physicochemical properties. While the effect of these techniques highly depends on starch type and treatment condition, they generally lead to the destruction of starch granules, the degradation of molecules, decreases in crystallinity, gelatinization temperatures, and viscosity, increases in solubility and swelling power, and an increase or decrease in digestibility, to different extents. The advantages and shortcomings of these techniques in starch processing are compared, and the knowledge gap in this area is commented on.
Collapse
Affiliation(s)
- Zhuoting Wu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
29
|
Shen H, Guo Y, Zhao J, Zhao J, Ge X, Zhang Q, Yan W. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. Int J Biol Macromol 2021; 191:821-831. [PMID: 34597694 DOI: 10.1016/j.ijbiomac.2021.09.157] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Plasma is a simple, effective and promising food processing technology with great potential for starch modification. Mung bean starch was subjected to ultrasound (300 W, 10, 30 and 50 min), plasma (40 V, 1, 3 and 9 min) and the synergistic treatment, as well as investigating its effects on the morphology, chain length distribution, molecular weight, crystalline structure and physicochemical properties of starch. Ultrasound and plasma treatment did not change the granule shape, but caused some corrosions on the surface, and dual treatment increased the damage degree of starch granules surface. All treatments decreased the molecular weight (Mw), amylopectin long chains and crystallinity but increased the gelatinization temperatures and enthalpy. Different from ultrasound irradiation, single plasma treatment significantly reduced the swelling power and pasting viscosities. Furthermore, dual treatment increased the thermal stability of starch paste, owing to the reinforcement effect between ultrasound and plasma. Thus, dual modification displayed an excellent ability to modify starch with specific characteristics and expand the potential application of mung bean starch in the food industry.
Collapse
Affiliation(s)
- Huishan Shen
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yu Guo
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Jiangyan Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Jian Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| |
Collapse
|
30
|
Ge X, Shen H, Su C, Zhang B, Zhang Q, Jiang H, Yuan L, Yu X, Li W. Pullulanase modification of granular sweet potato starch: Assistant effect of dielectric barrier discharge plasma on multi-scale structure, physicochemical properties. Carbohydr Polym 2021; 272:118481. [PMID: 34420740 DOI: 10.1016/j.carbpol.2021.118481] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022]
Abstract
This study explored the potential application of physical combined enzyme treatment to modify starch granules. Starch was modified by exposure to cold plasma (CP) for 1, 3, and 9 min and to pullulanase (PUL) for 12, 24, and 36 h. Individual treatments with CP and PUL somewhat modified starch structure and physicochemical properties. Nevertheless, compared with native starch and individual treatments, CP-PUL combined treatment significantly (p < 0.05) promoted the subsequent structural modification, increased the short-chain ratio and the amylose content, reduce the molecular weight and the relative crystallinity, and disturb the short-range order. CP also improved the properties of PUL-modified starch, including enhanced solubility, thermal properties and resistance to enzymatic hydrolysis but worsened swelling power and peak viscosity properties. This research provides a new perspective for the rational application of CP-PUL co-treated starch in the food industry.
Collapse
Affiliation(s)
- Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chunyan Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, Xi'an 710119, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
31
|
Shen H, Ge X, Zhang B, Su C, Zhang Q, Jiang H, Zhang G, Li W. Understanding the multi-scale structure, physicochemical properties and in vitro digestibility of citrate naked barley starch induced by non-thermal plasma. Food Funct 2021; 12:8169-8180. [PMID: 34291264 DOI: 10.1039/d1fo00678a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-thermal plasma treatment is an emerging and effective starch modification technique. In this paper, plasma pretreatment was used to modify citrate naked barley starch for enhancing the ability of citric acid to access the starch structure. Plasma treatment did not alter the granule morphology and crystalline type of starch, but degraded the starch molecules and caused more short chains. Plasma pretreatment could etch the starch surface and depolymerize the starch molecules, which increased the accessibility of citric acid for uniform hydrolysis in the subsequent esterification reaction. Therefore, plasma pretreatment significantly promoted the structural and physicochemical modification of the citrate starch, including the enhancement of the degree of substitution, the short-range ordered degree and gelatinization temperatures, and the decreases in the molecular weight, long chains of amylopectin and pasting viscosities. Meanwhile, plasma pretreatment improved the efficiency of acid hydrolysis and decreased the enzymatic digestibility, so that it showed a higher resistant starch content in comparison with its corresponding citrate starch. This paper could provide a new insight into the lower digestion rate and improved functional properties of citrate starch.
Collapse
Affiliation(s)
- Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Braşoveanu M, Nemţanu MR, Ticoș D. Influence of the sample loading on the contribution of competitive effects for granular starch exposed to radio-frequency plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Carvalho APMG, Barros DR, da Silva LS, Sanches EA, Pinto CDC, de Souza SM, Clerici MTPS, Rodrigues S, Fernandes FAN, Campelo PH. Dielectric barrier atmospheric cold plasma applied to the modification of Ariá (Goeppertia allouia) starch: Effect of plasma generation voltage. Int J Biol Macromol 2021; 182:1618-1627. [PMID: 34052266 DOI: 10.1016/j.ijbiomac.2021.05.165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
The goal of this paper was to evaluate the influence of a range of plasma generation voltages on the physicochemical, structural, and technological properties of Aria (Goeppertia allouia) starch. Untreated (0 kV) and high voltages of cold plasma generation (7, 10, 14, and 20 kV) treated samples were evaluated according to their amylose content, pH, groups carbonyl/carboxyl, molecular size distribution, structure and technological properties (empirical viscosity, hydration properties, thermal analysis and gel strength). The applied voltage of 14 kV resulted in the greatest depolymerization of the starch chains, while 20 kV allowed the formation of oxidized complexes, promoting crosslinking of the starches chain. The cold plasma technique did not affect the levels of resistant starches, but increased the starch digestibility. The increased carbonyl and carboxyl groups also influenced the paste viscosity, improved hydration properties. This study suggests that the cold plasma technique can be useful in the controlled modification of starches, producing starches with different technological properties.
Collapse
Affiliation(s)
- Ana Paula Miléo Guerra Carvalho
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Domingos Rodrigues Barros
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Laiane Souza da Silva
- Laboratory of Nanostructured Polymers (NANOPOL; @nanopol_ufam), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL; @nanopol_ufam), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Camila da Costa Pinto
- Graduation Program in Material Science & Engineering (PPGCEM), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Sérgio Michielon de Souza
- Graduation Program in Material Science & Engineering (PPGCEM), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil; Department of Physics, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | | | - Sueli Rodrigues
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Campus do Pici Bloco 858, 60440-900 Fortaleza, Ceará, Brazil
| | - Fabiano André Narciso Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici Bloco 709, 60440-900 Fortaleza, Ceará, Brazil
| | - Pedro Henrique Campelo
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Faculty of Agrarian Science, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil.
| |
Collapse
|
34
|
Sudheesh C, Sunooj KV, Jamsheer V, Sabu S, Sasidharan A, Aaliya B, Navaf M, Akhila PP, George J. Development of Bioplastic Films from γ − Irradiated Kithul (
Caryota uren
s) Starch; Morphological, Crystalline, Barrier, and Mechanical Characterization. STARCH-STARKE 2021. [DOI: 10.1002/star.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cherakkathodi Sudheesh
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Vattaparambil Jamsheer
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Sarasan Sabu
- School of Industrial Fisheries Cochin University of Science and Technology Kochi Kerala 682016 India
| | - Abhilash Sasidharan
- Department of Fish Process and Technology Kerala University of Fisheries and Ocean Studies Kochi Kerala 682506 India
| | - Basheer Aaliya
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Muhammed Navaf
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Johnsy George
- Food Engineering and Packaging Division Defence Food Research Laboratory Mysore Karnataka 570011 India
| |
Collapse
|
35
|
Navaf M, Sunooj KV, Aaliya B, Sudheesh C, Akhila PP, Sabu S, Sasidharan A, George J. Talipot palm (Corypha umbraculifera L.) a nonconventional source of starch: Effect of citric acid on structural, rheological, thermal properties and in vitro digestibility. Int J Biol Macromol 2021; 182:554-563. [PMID: 33848545 DOI: 10.1016/j.ijbiomac.2021.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/15/2022]
Abstract
Starch from talipot palm trunk (Corypha umbraculifera L.), a new starch source, was treated with different citric acid concentrations (5%, 10%, 20%, and 40% of the dry weight of starch) to produce citrate starch. The influence of citric acid treatment on physicochemical, pasting, structural, thermal, rheological, and digestibility properties of talipot palm starch were studied. A new peak at 1728 cm-1 was observed in the Fourier-transform infrared spectroscopy (FTIR) spectra of citric acid-treated starches, which confirmed the formation of an ester bond between starch molecule and citric acid. The crystalline pattern of talipot palm starch was unaffected by citric acid treatment, whereas the relative crystallinity decreased from 16.35% to 3.06%. The Rapid Visco Analysis of starch treated with citric acid did not show any characteristic peaks, however, the untreated starch showed a peak viscosity of 3646 cP. The gelatinization parameters decreased with an increase in the degree of substitution, and the enthalpy of gelatinization (ΔHgel) decreased from 11.19 J/g to 6.37 J/g. The in-vitro digestibility of talipot palm starch was decreased by citric acid treatment, and that of the slowly digestible starch (SDS) and resistant starches (RS) increased significantly (p ≤ 0.05) from 31.71% to 39.43% and 37.55% to 53.38%, respectively.
Collapse
Affiliation(s)
- Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Sarasan Sabu
- School of Industrial Fisheries, Cochin University of Science and Technology, Kochi 682016, India
| | - Abhilash Sasidharan
- Department of Fish Process and Technology, Kerala University of Fisheries and Ocean Studies, Kochi 682506, India
| | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Mysore 570011, India
| |
Collapse
|
36
|
Sudheesh C, Sunooj KV, Bhavani B, Aaliya B, Navaf M, Akhila PP, Sabu S, Sasidharan A, Sinha SK, Kumar S, Sajeevkumar VA, George J. Energetic neutral atoms assisted development of kithul (Caryota urens) starch–lauric acid complexes: A characterisation study. Carbohydr Polym 2020; 250:116991. [DOI: 10.1016/j.carbpol.2020.116991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
|
37
|
Sudheesh C, Sunooj KV, Navaf M, Bhasha SA, George J, Mounir S, Kumar S, Sajeevkumar VA. Hydrothermal modifications of nonconventional kithul ( Caryota urens) starch: physico-chemical, rheological properties and in vitro digestibility. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2916-2925. [PMID: 32624597 PMCID: PMC7316946 DOI: 10.1007/s13197-020-04323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Effect of hydrothermal modifications (autoclaving, annealing and heat moisture treatment) on physico-chemical, rheological properties and in vitro digestibility of kithul starch was studied. Annealing and heat moisture treatment decreased swelling index, solubility and increased crystalline properties as compared with autoclaving. Autoclaving, annealing and heat moisture treatment caused significant morphological damages such as large holes and fissures on the kithul starch, in addition, granules changed from oval to donut shape. Heat moisture treatment formed higher number of agglomerated starch granules. Light transmittance decreased after hydrothermal modifications. Autoclaving and annealing increased the pasting viscosities (except break down viscosity) of kithul starch. A significant increase (p ≤ 0.05) in peak temperature, conclusion temperature and enthalpy was found in annealed and heat moisture treated kithul starches. The digestibility of kithul starch decreased with increasing resistant starch after annealing and heat moisture treatment. Autoclaved, annealed and heat moisture treated kithul starches exhibited higher value of storage modulus (G') and loss modulus (G″) than native kithul starch. It entail to higher firmness of modified starch gel. The current study showed that the remarkable changes formed by hydrothermal modifications increased the industrial acceptance of kithul starch.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | | | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | - Shaik Ameer Bhasha
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | - Johnsy George
- Defence Food Research Laboratory, Food Engineering and Packaging Division, Mysore, 570011 India
| | - Sabah Mounir
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519 Egypt
| | - Sunny Kumar
- Defence Food Research Laboratory, Food Engineering and Packaging Division, Mysore, 570011 India
| | | |
Collapse
|
38
|
Sudheesh C, Sunooj KV, Sasidharan A, Sabu S, Basheer A, Navaf M, Raghavender C, Sinha SK, George J. Energetic neutral N2 atoms treatment on the kithul (Caryota urens) starch biodegradable film: Physico-chemical characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Sudheesh C, Sunooj KV, Anjali K, Aaliya B, Navaf M, Kumar S, Sajeevkumar VA, George J. Effect of lysine incorporation, annealing and heat moisture treatment alone and in combination on the physico‐chemical, retrogradation, rheological properties and
in vitro
digestibility of kithul (
Caryota urens
L.) starch. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Cherakkathodi Sudheesh
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - K.U. Anjali
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Basheer Aaliya
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Muhammed Navaf
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Sunny Kumar
- Food Engineering and Packaging Division Defence Food Research Laboratory Mysore 570011 India
| | | | - Johnsy George
- Food Engineering and Packaging Division Defence Food Research Laboratory Mysore 570011 India
| |
Collapse
|