1
|
Duan S, Zhang X, Li C. Importance of starch chain-length distribution in determining starch digestibility through affecting short- and long-range intermolecular interactions during retrogradation. Int J Biol Macromol 2025; 306:141728. [PMID: 40044013 DOI: 10.1016/j.ijbiomac.2025.141728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
Starch retrogradation involves both short- and long-range intermolecular interactions, while their relations with starch chain-length distribution (CLD) and digestibility are less clear. To address this, 9 types of starches with distinct CLDs were analyzed for intermolecular interactions and digestibility over 7 days of retrogradation. Wheat starch exhibited a higher ratio of long-range intermolecular interactions, while pea, mung bean, potato, sweet potato, lentil, and corn starch formed more short-range intermolecular interactions. All retrograded starches displayed B + V crystallinity with characteristic peaks at 17°, 20°, and 22°. The pores of some starch hydrogels shrank after retrogradation. Most importantly, positive correlations were for the first time observed between amylose chains of 100 < DP ≤ 5000 and intermolecular interactions. Whereas a higher level of the intermolecular interactions was negatively correlated with enzymatic binding rate constants (the rate-limiting step of digestion) and maximum digested percentages. In conclusion, these results suggest that starches with more amylose chains with 100 < DP ≤ 5000 are preferable in terms of promoting a slow starch digestibility.
Collapse
Affiliation(s)
- Shuting Duan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
2
|
Zhao L, Wang J, Xiao S, Du M, Zhao D, Dai X, Zhou Z, Cao Q. A novel isolation technique for sweetpotato starch and its application in thermal property characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1583-1592. [PMID: 39360446 DOI: 10.1002/jsfa.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The utilization of sweetpotato starch in the food industry is significantly influenced by the granule size of the starch. To isolate sweetpotato starch fractions with different sizes, an efficient isolation method is in demand. The differences in thermal properties of starch fractions with different sizes from various sweetpotato varieties were revealed insufficiently. RESULTS In this study, we devised a time-saving isolation technique to effectively isolate sweetpotato starch fractions based on granule sizes. The new technique was proved applicable for sweetpotato varieties with different flesh colors. The amylose contents of the isolated starch fractions were in the range 16.49-23.27%. A positive association was observed between amylose content, relative crystallinity of starch fractions and their granule size. Conversely, both the swelling power and water solubility at 95 °C displayed a consistent decline from more than 30 g g-1 to lower than 20 g g-1 as the granule size increased. Tp, To and Tc decreased gradually with an increase of starch granule size, while the medium- or small-sized starch fractions showed higher ΔH. In the first stage of thermogravimetric analysis curves, the weight of the small-sized starch fractions decreased the slowest, but no definite pattern was detected in the second or third stage. CONCLUSION Therefore, the newly established technique and the results of this study will help better understand the properties of sweetpotato starch fractions with different sizes and certainly provide guidelines for the utilization of sweetpotato starch in food processing and product development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Jie Wang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Shizuo Xiao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Mingjuan Du
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Donglan Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Xibin Dai
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Zhilin Zhou
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Qinghe Cao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| |
Collapse
|
3
|
Wang B, Zheng H, Yang Y, Bian X, Ma C, Zhang Y, Liu X, Wang Y, Zhang G, Sun S, Zhang N. Effect of different chain-length fatty acids on the retrogradation properties of rice starch. Food Chem 2024; 461:140796. [PMID: 39153371 DOI: 10.1016/j.foodchem.2024.140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
In order to delay the retrogradation of rice starch, the effects of three different chain length fatty acids (lauric acid, myristic acid and palmitic acid) on rice starch were studied. The fatty acids with longer carbon chains had strong steric hindrance and hydrophobicity, which formed a more compact structure in the helical cavity of amylose, and significantly reduced degree of expansion, migration of water, short-range ordered structure, number of double helical structures and crystallinity. These structural changes endowed the rice starch-long chain fatty acid complexes with better gel viscosity, liquid fluidity and thermal stability than in the rice starch-short chain fatty acid complexes. The results showed that fatty acids with longer chain length inhibited the retrogradation of rice starch, most obviously when 5% palmitic acid was added. This study provides an important reference for the processing of rice starch-based foods.
Collapse
Affiliation(s)
- Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Huixin Zheng
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Yu Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Sihui Sun
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, People's Republic of China.
| |
Collapse
|
4
|
Yang Y, Fu J, Duan Q, Xie H, Dong X, Yu L. Strategies and Methodologies for Improving Toughness of Starch Films. Foods 2024; 13:4036. [PMID: 39766978 PMCID: PMC11728288 DOI: 10.3390/foods13244036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/15/2025] Open
Abstract
Starch films have attracted increasing attention due to their biodegradability, edibility, and potential use as animal feed from post-products. Applications of starch-based films include food packaging, coating, and medicine capsules. However, a major drawback of starch-based films is their brittleness, particularly under dry conditions, caused by starch retrogradation and the instability of plasticizers. To address this challenge, various strategies and methodologies have been developed, including plasticization, chemical modification, and physical reinforcement. This review covers fundamental aspects, such as the microstructures, phase transitions, and compatibility of starch, as well as application-oriented techniques, including processing methods, plasticizer selection, and chemical modifications. Plasticizers play a crucial role in developing starch-based materials, as they mitigate brittleness and improve processability. Given the abundance of hydroxyl groups in starch, the plasticizers used must also contain hydroxyl or polar groups for compatibility. Chemical modification, such as esterification and etherification, effectively prevents starch recrystallization. Reinforcements, particularly with nanocellulose, significantly improved the mechanical properties of starch film. Drawing upon both the literature and our expertise, this review not only summarizes the advancements in this field but also identifies the limitations of current technologies and outlines promising research directions for future development.
Collapse
Affiliation(s)
- Yiwen Yang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Jun Fu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfei Duan
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Huifang Xie
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Xinyi Dong
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Long Yu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Shi X, Fan C, Pan C, Zhang F, Hou X, Hui M. Analysis of differences in physicochemical properties of different sorghum varieties and their influence on the selection of raw materials for winemaking. Food Chem X 2024; 23:101517. [PMID: 38974196 PMCID: PMC11225647 DOI: 10.1016/j.fochx.2024.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Sorghum is one of the oldest crops in the world, an important grain crop in northern China, and a major raw material in the liquor-brewing industry. The physicochemical properties, cooking characteristics, and starch quality of sorghum seeds considerably affect the liquor-brewing process.To select suitable sorghums for liquor brewing and to determine the cooking characteristics and starch physicochemical properties of different sorghum varieties, 30 types of sorghum were used in this study, and their compositions were compared; six types of sorghum were further studied for their cooking quality and starch physicochemical and pasting characteristics. Gas chromatography time of flight mass spectrometry was used to analyse the cooking aroma of sorghum seeds. Additionally, scanning electron microscopy, a rapid visco analyser, and a differential calorimetric scanner were used to analyse the microstructure of sorghum starch, starch pasting characteristics, and thermodynamic properties, respectively. The results revealed that the water absorption and saccharification forces of glutinous sorghum were higher than those of japonica sorghum and that the aroma substances were significantly different. Glutinous sorghum starch had high crystallinity, freeze-thaw stability, and enthalpy, thus indicating its structural stability. This study provides a theoretical basis for the selection of wine raw materials in the future.
Collapse
Affiliation(s)
- Xin Shi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chenming Fan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chunmei Pan
- College of Food and Biological Engineering(Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | | | - Xiaoge Hou
- College of Food and Biological Engineering(Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | - Ming Hui
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, Zhengzhou 450001, PR China
| |
Collapse
|
6
|
Ribeiro NR, Sousa MBE, de Oliveira LA, de Oliveira EJ. Variability of amylose content and its correlation with the paste properties of cassava starch. PLoS One 2024; 19:e0309619. [PMID: 39441806 PMCID: PMC11498679 DOI: 10.1371/journal.pone.0309619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/15/2024] [Indexed: 10/25/2024] Open
Abstract
The amylose content can significantly impact the diverse industrial applications of cassava starch. This study aimed to assess the variability of cassava germplasm concerning amylose content and other attributes pertinent to root quality, alongside its correlation with paste properties. Starch extracted from 281 genotypes, obtained in germplasm evaluation trials, was evaluated for amylose content, with additional analysis of parameters such as pasting temperature, time to peak viscosity (TPV), viscosity breakdown (BrD), retrogradation tendency, and maximum, minimum, and final viscosities. The genotypes exhibited considerable variation in dry matter content (ranging from 27.06% to 41.02%), starch content (from 14.61% to 25.67%), cyanogenic compounds (1.77 to 7.81), and amylose content (0.05% to 33.23%). High phenotypic variability in paste properties was observed, alongside a low residual effect for most traits, resulting in high broad-sense heritabilities (>0.95). Strong correlations of significant magnitude (>0.80) were found between parameters such as peak viscosity × viscosity breakdown, minimum viscosity × final viscosity, and final viscosity × retrogradation tendency. Moderate correlations were also identified, such as between dry matter content × starch content (0.56). While positive, correlations between amylose content and paste properties were of low magnitude (ranging from 0.13 to 0.35), except for TPV and BrD. Principal component discriminant analysis clustered the germplasm into six distinct groups based on root quality and paste properties, with most improved genotypes falling into two clusters characterized by high starch and dry matter contents. This study underscores the necessity of simultaneous evaluation of amylose content and paste properties in the breeding pipeline. Additionally, clustering cassava genotypes proves beneficial in identifying those that fulfill specific requirements in industrial and breeding applications.
Collapse
|
7
|
Wu X, Wang M, Liu R, Miao X, Liu J. Three nonconventional starch: Comparison of physicochemical properties and in vitro digestibility. J Food Sci 2024; 89:4123-4135. [PMID: 38957110 DOI: 10.1111/1750-3841.17171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
Extraction of starch from waste is also an effective way to recover resources and provide new sources of starch. In this study, starch was isolated from white kidney bean residue, chickpea residue, and tiger nut meal after protein or oil extraction, and the morphology of starch particles was observed to determine their physicochemical properties and in vitro digestibility. All these isolated starches had unique properties, among which white kidney bean starch (KBS) had a high amylose content (43.48%), and its structure was better ordered. Scanning electron microscopy revealed distinct granular morphologies for the three starches. KBS and chickpea starch (CHS) were medium-granular starches, whereas tiger nut starch was a small granular starch. Fourier transform infrared spectroscopy analysis confirmed the absence of significant differences in functional groups and chemical bonds among the three starch molecules. In vitro digestibility studies showed that CHS is more resistant to enzymatic degradation. Overall, these results will facilitate the development of products based on the separation of nonconventional starches from waste.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Mengyang Wang
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Rui Liu
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Xinzhu Miao
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Jinliang Liu
- College of Food Science and Engineering, Changchun University, Changchun, China
| |
Collapse
|
8
|
Li Y, Ji S, Xu M, Zhou Z, Zhao X, Shen J, Qin Z, Tian S, Lu B. Molecular mechanism for the influence of yam starch multiscale structure on the sensory texture of cooked yam. Int J Biol Macromol 2024; 271:132572. [PMID: 38782328 DOI: 10.1016/j.ijbiomac.2024.132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Yam is a dual-purpose crop as both medicine and food. However, the mechanism controlling the eating quality of yam remains to be elucidated. This study explored the influence of starch multiscale structure on the texture of yam. The results indicated that FS and RC yam have higher hardness and chewiness, while BZ, XM, and PL yam possess waxiness, Fineness, and Stickiness. Statistically, high amylose (AM) can increase hardness, chewiness, and compactness; and average molecular size (Rh) is positively correlated with stickiness, fineness, and waxiness. Specifically, medium- and long-chain amylose (1000 < X ≤ 10,000) and amylopectin (24 < X ≤ 100), particularly medium-chain amylose (1000 < X ≤ 5000) and long-chain amylopectin (24 < X ≤ 36), primarily affect sensory and rheological stickiness. The long chains of amylose form a straight chain interspersed in the crystalline and amorphous regions to support the entire lamellar structure. Higher proportion of amylose long chains, promoting the starch's structural rigidity, which in turn enhanced its hardness-related attributes. Moreover, a higher ratio of long chains within amylopectin results in tightly intertwined adjacent outer chains, forming double helix crystalline zones. This consequently augmenting the texture quality linked to stickiness-related attributes.
Collapse
Affiliation(s)
- Ye Li
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Minghao Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Zhenjiang Zhou
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Xi Zhao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Zihan Qin
- Food Sensory Science Laboratory of Zhejiang Gongshang University, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Shiyi Tian
- Food Sensory Science Laboratory of Zhejiang Gongshang University, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Liu M, Guo X, Ma X, Xie Z, Wu Y, Ouyang J. Physicochemical properties of a novel chestnut porous starch nanoparticle. Int J Biol Macromol 2024; 261:129920. [PMID: 38311128 DOI: 10.1016/j.ijbiomac.2024.129920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
A novel chestnut porous starch nanoparticle (PSNP) was successfully synthesized, combining the properties of starch nanoparticle (SNP) and porous starch. The SNP obtained through ultrasonic and acid hydrolysis, exhibited a smaller particle size (173.9 nm) and a higher specific surface area (SSA) compared to native starch. After the synergistic hydrolysis by α-amylase and glucoamylase, the porous structure appeared on the surface of SNP. The prepared PSNP had a size of 286.3 nm and the highest SSA. In the adsorption experiments, PSNP showed higher capacities for adsorbing water, oil and methylene blue (MB) compared to other samples. The acid and enzymatic treatments resulted in a decrease in the levels of total starch content and amylose ratio. Furthermore, the treatments increased the levels of relative crystallinity (RC) and solubility, while decreasing the short-range ordered structure and swelling ratio at high temperatures. It was observed that the SSA of starch granules positively correlated with the MB and water adsorption capacity (WAC), solubility, and RC. These findings highlight the potential of the novel PSNP as an efficient adsorbent for bioactive substances and dyes.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxiao Guo
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Xinyu Ma
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zirun Xie
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Fan M, Choi YJ, Wedamulla NE, Kim SH, Bae SM, Yang D, Kang H, Tang Y, Moon SH, Kim EK. Different particle sizes of Momordica charantia leaf powder modify the rheological and textural properties of corn starch-based 3D food printing ink. Heliyon 2024; 10:e24915. [PMID: 38370168 PMCID: PMC10869779 DOI: 10.1016/j.heliyon.2024.e24915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
The study determined the effect of incorporating Momordica charantia leaf powder (MCLP) into corn-starch 3D food-printing ink as a functional ingredient. The effects of the particle size (75, 131, and 200 μm) and quantity of MCLP on 3D printing performance, structural, textural, and rheological properties of corn starch gel were evaluated with different concentrations (5, 10, and 15 % (w/w)) of corn starch. The viscoelastic properties of food inks were determined considering their behavior during extrusion and self-recovery after printing. Scanning electron microscope was used to characterize the microstructure. Based on the results, a high starch content (15 %) with 5 % MCLP was more favorable for 3D food printing. In addition, 3D printing performance, textural and rheological properties of formulated ink was mainly governed by the particle size of MCLP. The food ink with a 5 % mass fraction of 200 μm MCLP had the highest printing precision and the best masticatory properties.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, 27478, Republic of Korea
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
- Department of Food Science and Technology, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Seok-Hee Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju, 52733, Republic of Korea
| | - DaEun Yang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, Busan, 49315, Republic of Korea
| | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, Busan, 49315, Republic of Korea
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun, 130600, China
| | - Sang-Ho Moon
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, 27478, Republic of Korea
| | - Eun-Kyung Kim
- Nutritional Education Major, Graduate School of Education, Dong-A University, Busan, 49315, Republic of Korea
- Nutrinomics Lab. Co., Ltd., Busan, 49315, Republic of Korea
| |
Collapse
|
11
|
He W, Han M, Wu Y, Ouyang J, Xu C. Impact of molecular structure of starch on the glutinous taste quality of cooked chestnut kernels. Int J Biol Macromol 2024; 254:127704. [PMID: 37898245 DOI: 10.1016/j.ijbiomac.2023.127704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Chestnuts are a starchy food with a characteristic glutinous taste that is often used to assess their quality. In this study, our findings indicated that chestnuts with higher glutinous taste quality had lower amylose content and microcrystalline structures, as well as higher subcrystalline structures and relative crystallinity in both the raw and steamed starches. In the leached starch, chestnuts with higher glutinous taste quality had lower amylopectin B1 chains and microcrystalline structure, but higher amylopectin B2 chains, subcrystalline structure and relative crystallinity. These results suggest that amylose content, relative crystallinity, and amylopectin chain length distribution are important factors determining the glutinous taste quality of chestnuts. To further enhance our understanding of these factors, an sensory evaluation model was developed based on textural profile analysis parameters. This study provides valuable insights into the relationship between molecular structure of starch and the glutinous taste quality of starchy foods.
Collapse
Affiliation(s)
- Wenxin He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Meijun Han
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Chunming Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
12
|
Li X, Wei S, Gao Z, Zhao R, Wang Z, Fan Y, Cui L, Wang Y. The influence of cooperative fermentation on the structure, crystallinity, and rheological properties of buckwheat starch. Curr Res Food Sci 2023; 8:100670. [PMID: 38261894 PMCID: PMC10797143 DOI: 10.1016/j.crfs.2023.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
The effects of co-fermentation of yeast and Lactiplantibacillus plantarum 104 on buckwheat starch physical properties were investigated by various analytical techniques. To investigate the regulations of starch modification during fermentation and to provide a foundation for improving the performance of modified properties of buckwheat starch food. The pasting properties were decreased by co-fermentation also resulted in a reduction in the relative crystallinity. Scanning electron microscopy (SEM) demonstrated that more holes and a relatively rough granule surface were seen in the co-fermentation group. Fourier transform-infrared spectroscopy (FT-IR) results suggested that co-fermentation fermentation decreased the degree of short-range order (DO) and degree of t1he double helix (DD). The results demonstrated that co-fermentation altered these properties more rapidly than spontaneous fermentation. In conclusion, Lactiplantibacillus plantarum 104 could be used for buckwheat fermentation to improve food quality.
Collapse
Affiliation(s)
| | | | - Zixin Gao
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Ruixue Zhao
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Zhanpeng Wang
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Yuling Fan
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Linlin Cui
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| | - Yuhua Wang
- College of Food Science and Engineering and Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province, 130033, China
| |
Collapse
|
13
|
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, Qu H, Liu Y, Xu G. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2654-2670. [PMID: 37623700 PMCID: PMC10651157 DOI: 10.1111/pbi.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Improving rice eating and cooking quality (ECQ) is one of the primary tasks in rice production to meet the rising demands of consumers. However, improving grain ECQ without compromising yield faces a great challenge under varied nitrogen (N) supplies. Here, we report the approach to upgrade rice ECQ by native promoter-controlled high expression of a key N-dependent floral and circadian clock regulator Nhd1. The amplification of endogenous Nhd1 abundance alters rice heading date but does not affect the entire length of growth duration, N use efficiency and grain yield under both low and sufficient N conditions. Enhanced expression of Nhd1 reduces amylose content, pasting temperature and protein content while increasing gel consistence in grains. Metabolome and transcriptome analyses revealed that increased expression of Nhd1 mainly regulates the metabolism of carbohydrates and amino acids in the grain filling stage. Moreover, expression level of Nhd1 shows a positive relationship with grain ECQ in some local main cultivars. Thus, intensifying endogenous abundance of Nhd1 is a promising strategy to upgrade grain ECQ in rice production.
Collapse
Affiliation(s)
- Yuyi Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jinfei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Wei Wei
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
14
|
Lim QY, Cheng LH. A review on stringiness property of cheese and the measuring technique. J Texture Stud 2023. [PMID: 37985234 DOI: 10.1111/jtxs.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
This review paper provides a deep understanding of stringiness property in a cheese product. Stringiness is used to describe the extended continuous strand of a molten cheese, especially mozzarella cheese. Stringiness is often described quantitatively by stretch length, as well as qualitative definition which focuses on the dimension of strand and ease of extensibility. Very often, the scope of defining stringiness attributes is limited by the measuring techniques because a complete experimental setup is required to obtain information on both stretch quantity and stretch quality. Among the measuring methods, cheese extensibility rig stands out to be the best method to assess stringiness attribute of a cheese as it is an objective method. In addition, a detailed study on the molecular behavior and interactions among natural and imitation cheese components in delivering stringiness, and the challenges faced therein have been reviewed. Thus, the review provides a foundation for the development of vegan cheese or plant-based cheese with stringiness properties.
Collapse
Affiliation(s)
- Qai-Yeing Lim
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Lai-Hoong Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
15
|
Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, Liu L, Farag MA, Xiao J, Liu L. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr Rev Food Sci Food Saf 2023; 22:4217-4241. [PMID: 37583298 DOI: 10.1111/1541-4337.13217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
Collapse
Affiliation(s)
- Huanqi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Orense, Spain
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
16
|
Guo Q, Zheng B, Zeng X, Chen L. Understanding the structural contributions to the functional properties of chestnut starch high in resistant starch type-2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6605-6615. [PMID: 37252745 DOI: 10.1002/jsfa.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Chestnut has recently attracted attention because of its exceptional functional properties, which are mainly influenced by the structural properties of chestnut starch (CS). In this study, ten varieties of chestnut from the northern, southern, eastern, and western regions of China were selected, and their functional properties, including thermal properties, pasting properties, in vitro digestibility, and multi-scale structural characteristics were characterized. The relationship between structure and functional properties was clarified. RESULTS In the varieties that were studied, the pasting temperature of CS was in the range of 67.2-75.2 °C and the pastes displayed diverse viscosity characteristics. Slowly digestible starch (SDS), and resistant starch (RS) of CS were in the range of 17.17-28.78% and 61.19-76.10%, respectively. Chestnut starch from north-eastern China exhibited the highest RS content of 74.43-76.10%. Structural correlation analysis revealed that smaller size distribution, fewer B2 chains, and thinner lamellae thickness contributed to higher RS content. Meanwhile, CS with smaller granules, more B2 chains, and thicker amorphous lamellae displayed lower peak viscosities, stronger resistance to shear, and higher thermal stability. CONCLUSION Overall, this study clarified the relationship between the functional properties and the multi-scale structure of CS, revealing the structural contributions to its high RS content. These findings provide significant information and basic data for use in the creation of nutritional chestnut food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyong Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Xixi Zeng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
17
|
Wolde YT, Emire SA, Zeleke WA, Ronda F. Gel Rheological Properties and Storage Texture Kinetics of Starches Isolated from Anchote ( Coccinia abyssinica ( Lam.) Cogn.) Cultivars. Gels 2023; 9:631. [PMID: 37623086 PMCID: PMC10454307 DOI: 10.3390/gels9080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Anchote is a tuber crop indigenous to Ethiopia. Starch hydration properties and important gel characteristics which include: color, gel rheological properties (at 2, 4, 6, 8, and 10% starch:water w/w) and gel texture evolution (at 10% starch:water w/w), during 0 to 192 h storage (at 4 °C), of anchote starches isolated from four anchote cultivars (Desta 01, Desta 24, white and red) were evaluated and compared with potato and cassava starches (PS and CS). The lightness (L*) and whiteness scores of the anchote starch ranged up to >95, with slight differences among the cultivars, making them pure starches. Swelling power (SP) and water solubility index (WSI) of the anchote starches increased with increasing cooking temperature (40, 50, 60, 70, 80 and 90 °C), and their rate of increase varied significantly with the control starches, as follows: CS < anchote starches < PS. Anchote starch gels resisted higher stresses before breaking their structure and showed higher elasticity with lower (tan δ)1 values than PS and CS gels. They also had greater viscoelastic moduli even at lower concentrations than the PS and CS gels, and their stability increased with increasing concentration. The study of the gels' texture evolution during storage revealed that anchote starch gels had significantly higher (≥40%) initial and final (after 192 h) hardness and were less adhesive than the PS gel. Despite some significant differences in the studied starch gel quality parameters among the starches from the anchote cultivars, the results suggested their promising potential as additional new materials in the development of food products, specifically as a functional ingredient for the formulation of gel-like products.
Collapse
Affiliation(s)
- Yohannes Tolesa Wolde
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa P.O. Box 385, Ethiopia
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 47002 Valladolid, Spain
| | - Shimelis Admassu Emire
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa P.O. Box 385, Ethiopia
| | - Workineh Abebe Zeleke
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 47002 Valladolid, Spain
- Ethiopian Institute of Agricultural Research, Addis Ababa P.O. Box 2003, Ethiopia
| | - Felicidad Ronda
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 47002 Valladolid, Spain
| |
Collapse
|
18
|
Cai M, Shen C, Li Y, Xiong S, Li F. Effects of particle size on quality characteristics of stone-milled whole wheat flour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2483-2491. [PMID: 36694095 DOI: 10.1002/jsfa.12465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Whole wheat flour (WWF) prepared by the direct crushing method preserves all the components of the whole wheat grain. WWF with different particle sizes (180, 150, 125, 106, and 96 μm) was obtained by combining stone milling and particle size sieving technology. The effects of particle size on the proximate composition, farinograph, pasting, thermal, and functional properties, starch microstructure, and Fourier-transform infrared (FTIR) spectroscopy of stone-milled WWF were investigated. RESULTS The smaller the particle size of WWF, the higher the damaged starch content. The water absorption, degree of softening, pasting temperature, solubility, and syneresis of WWF increased steadily as the particle size decreased, whereas the peak viscosity, final viscosity, swelling power, water holding capacity, and enthalpy of gelatinization decreased. The scanning electron microscope micrographs revealed that the larger the particle size of WWF, the denser the distribution of starch granules. The β-sheet and β-turn contents of WWF with particle size 180 μm were the highest, reaching up to 33.85% and 39.79%, respectively. CONCLUSION The particle size exerted influence on the quality characteristics of stone-milled WWF, and the overall properties of WWF were better at medium particle size. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengdi Cai
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chunxia Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yuhui Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shuangli Xiong
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Feng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
19
|
Yang Z, Wu Y, Ouyang J. Effect of Cooking Method and Enzymatic Treatment on the in vitro Digestibility of Cooked and Instant Chestnut Flour. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:166-172. [PMID: 36469235 DOI: 10.1007/s11130-022-01035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Microwave treatment, roasting, boiling, and enzymatic treatment were used to prepare cooked and instant chestnut flour, and the in vitro digestibility were compared. Cooking gelatinized the starch and destroyed the granular and crystal structure, increasing starch digestibility. After enzymatic hydrolysis, starches were degraded by 20~24%, and the reducing sugar content of the instant flours increased by 79~94%. Starch digestibility was reduced after enzymatic hydrolysis, however, the estimated glycemic index (GI) increased to 65.1 ~ 77.7 due to the combined effect of increased reducing sugar and decreased starch hydrolysis in the instant flours. The chestnuts treated by 'boiling + enzymes' are still a medium GI food. These findings give guidance for the development of low GI cooked and instant chestnut flour.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, 100083, Beijing, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), 100089, Beijing, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
20
|
Pino-Hernández E, Fasolin LH, Ballesteros LF, Pinto CA, Saraiva JA, Abrunhosa L, Teixeira JA. Structural and Physicochemical Properties of Starch from Rejected Chestnut: Hydrothermal and High-Pressure Processing Dependence. Molecules 2023; 28:molecules28020700. [PMID: 36677758 PMCID: PMC9865283 DOI: 10.3390/molecules28020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The quality standards for the export of chestnuts generate large quantities of rejected fruits, which require novel processing technologies for their safe industrial utilization. This study aimed to investigate the impact of high-pressure processing (HPP) and hydrothermal treatments (HT) on the physicochemical properties of rejected chestnut starch. Chestnuts were treated by HPP at 400, 500, and 600 MPa for 5 min and HT at 50 °C for 45 min. In general, all HPP treatments did not induce starch gelatinization, and their granules preserved the integrity and Maltese-cross. Moreover, starch granules' size and resistant starch content increased with the intensity of pressure. Native and HT chestnut starches were the most susceptible to digestion. HPP treatments did not affect the C-type crystalline pattern of native starch, but the crystalline region was gradually modified to become amorphous. HPP-600 MPa treated starch showed modified pasting properties and exhibited the highest values of peak viscosity. This study demonstrates for the first time that after HPP-600 MPa treatment, a novel chestnut starch gel structure is obtained. Moreover, HPP treatments could increase the slow-digesting starch, which benefits the development of healthier products. HPP can be considered an interesting technology to obtain added-value starch from rejected chestnut fruits.
Collapse
Affiliation(s)
- Enrique Pino-Hernández
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- INOV.LINEA—Agri-Food Technology Transfer and Valorization Center, TAGUSVALLEY—Science and Technology Park, 2200-062 Abrantes, Portugal
- Correspondence: (E.P.-H.); (L.A.)
| | - Luiz Henrique Fasolin
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Lina F. Ballesteros
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Abrunhosa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (E.P.-H.); (L.A.)
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
21
|
Wang Z, Han M, Liu Y, Wu Y, Ouyang J. Insights into the multiscale structure and thermal characteristics of chestnut starch. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Asimi S, Xin R, Min Z, Sixuan L, Lv Q, Lingqi M. Screening new breeding japonica rice varieties by rice quality, three processing characteristics, and odor characteristics. J Food Sci 2023; 88:133-146. [PMID: 36527317 DOI: 10.1111/1750-3841.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
Rice's yield, cooking, and sensory quality are primary considerations in selecting new breeding rice varieties, which are determined by the rice eating quality such as processing and flavor characteristics. Thus, in this study, to advance the breed of new superior japonica rice varieties, the differences in the rice quality, processing characteristics, and flavor characteristics between 12 newly-bred varieties (H2-36, H2-42, H2-53, H2-59, H2-63, H2-73, H2-74, H2-79, H2-81, H2-82, H2-89, and H2-91) and 1 commercial variety (Kenyu38) were analyzed. The results indicated that H2-42 has a reasonable length-to-width ratio (1.51), high rice yield, good color, reasonable amylose, protein content, excellent water existence index, accessible storage, and the highest taste value. Electronic nose results showed significant differences in aldehydes, ketones, and alcohols among 13 rice varieties. Aroma analysis results showed that H2-42 had the highest n-hexanal (14.63 µg/kg), (E,E)-2,4-nonadienal (37.24 µg/kg), nonanal (19.93 µg/kg), and decanal (4.81 µg/kg); those were important aroma components in cooked rice. The Pearson correlation analysis showed that hardness, springiness, cohesiveness, trough viscosity, peak time, and pasting temperature were the crucial factors that affected rice quality. According to partial least squares regression analysis, total color change, final viscosity, setback, (E)-2-heptenal, and 2-methyl-undecanol were the most important factors that distinguished the rice quality. In conclusion, H2-42 rice was better apparent quality, processing characteristics, and aroma compounds. Therefore, H2-42 has the potential for identification and promotion. PRACTICAL APPLICATION: The results from this study will provide data support for the cultivation, application, and quality improvement of high-quality rice varieties. In addition, it gives new ideas and methods for studying rice eating quality.
Collapse
Affiliation(s)
- Sailimuhan Asimi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ren Xin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhang Min
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Li Sixuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Qixin Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Meng Lingqi
- Binhai Agricultural Research Institute, Hebei Academy of Agricultural and Forestry Sciences, Tangshan, Hebei, China
| |
Collapse
|
23
|
Zong X, Wen L, Mou T, Wang Y, Li L. Effects of multiple cycles of sorghum starch gelatinization and fermentation on production of Chinese strong flavor Baijiu. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Gao F, Li X, Li X, Liu Z, Zou X, Wang L, Zhang H. Physicochemical properties and correlation analysis of retrograded starch from different varieties of sorghum. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fei Gao
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Xiaoqiang Li
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Xin Li
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Ziwei Liu
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Xiangyu Zou
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Lidong Wang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
- Daqing Center of Inspection and Testing for Agricultural Products and Processed Products Ministry of Agriculture and Rural Affairs Daqing 163319 China
- Department of National Coarse Cereals Engineering Research Center Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Hongwei Zhang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
| |
Collapse
|
25
|
Sun Q, Song X, Arun S M, Zhang L, Yu X, Zhou C, Tang Y, Yagoub AEA. Effects of blanching drying methods on the structure and physicochemical properties of starch in sweet potato slices. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Kunyanee K, Van Ngo T, Kusumawardani S, Lungsakul N. Ultrasound-chilling assisted annealing treatment to produce a lower glycemic index of white rice grains with different amylose content. ULTRASONICS SONOCHEMISTRY 2022; 87:106055. [PMID: 35667221 PMCID: PMC9168174 DOI: 10.1016/j.ultsonch.2022.106055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
White rice samples, Chai-Nat1 (CN1) and Jasmin rice (KDML105), were treated with the ultrasound-chilling (UC) and combined with annealing treatments (UC + ANN 45, UC + ANN50, and UC + ANN55). Their physicochemical properties and in vitro glycemic index of rice samples were analyzed. UC + ANN treatments presented pasting temperature, gelatinization temperature and crystallinity increased whereas the glycemic index of both rice samples was decreased as compared to its native. Especially, UC + ANN55 treated rice produced the lowest glycemic index and starch hydrolysis. Moreover, UC + ANN treated CN1 rice exhibited delayed gelatinization temperature, increased gelatinization enthalpy, and decreased glycemic index than KDML105 rice. In addition, Pearson's correlation presented that UC + ANN and amylose content had a highly negative correlation with the glycemic index at p < 0.0.1. The result exhibited that UC followed by ANN show an effective way to modify starch granules with delayed starch hydrolysis reduced glycemic index and properties depending on annealing temperature and rice cultivar.
Collapse
Affiliation(s)
- Kannika Kunyanee
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tai Van Ngo
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sandra Kusumawardani
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naphatrapi Lungsakul
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
27
|
Foucher L, Barroca MJ, Dulyanska Y, Correia PMR, Guiné RPF. Development of Innovative Candied Chestnuts from Three Chestnut Cultivars Grown in Portugal. Foods 2022; 11:foods11070917. [PMID: 35407007 PMCID: PMC8998049 DOI: 10.3390/foods11070917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
The main purpose of this work is the development of a value-added product (candied chestnuts) from Portuguese chestnut (Castanea sativa) cultivars (Martainha, Longal and Judia), as a way to minimize product loss and wastes. To accomplish this goal, the effects of rehydration, cooking, and syrup conditions on composition, textural properties, and colour parameters of candied chestnuts were investigated. The obtained results revealed that the optimal conditions to prepare candied chestnuts with a sweet taste, dark brown colour, with a crispy texture on the outside and smooth texture in the inner flesh were rehydration at 45 °C for a period of 5 h, cooking in a pressure pan for 15 min, and an immersion process with sucrose syrup for two days (syrup with 25% of sucrose on the first day and syrup of 50% of sucrose on the second day). During the process, the drying loss, hydration ratio, and cooking gain of the different cultivars were about 90%, 79%, and 130%, respectively. The total colour difference of candied chestnuts ranged from 24.18 (Longal) to 29.95 (Judia), the stickiness was moderately intense, and the adhesiveness was high for the three varieties. Longal candied chestnuts were the softest and Martainha candied chestnuts were the hardest, the most elastic, and cohesive. Moreover, the candied chestnuts presented a moisture content ranging from 52.70% and 54.23%, amounts of carbohydrates in the range of 88.58 to 91.87 g/100 g d.m, values of protein (6.55–9.51 g/100 g d.m.), values of ash (0.78–1.98 g/100 g d.m.), and fat (0.87–1.58 g/100 g d.m.). In conclusion, the chestnuts of Portuguese cultivars Martainha, Longal and Judia reveal a good potential to produce candied products with high added value.
Collapse
Affiliation(s)
- Laure Foucher
- Department of Food Industry, Agrarian School of Viseu, 3500-606 Viseu, Portugal; (L.F.); (Y.D.); (P.M.R.C.)
- University Institute of Technology, Angers University, 49035 Angers, France
| | - Maria João Barroca
- R&D Unit in Molecular Chemistry-Physics, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Department of Food Technology, Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal
| | - Yuliya Dulyanska
- Department of Food Industry, Agrarian School of Viseu, 3500-606 Viseu, Portugal; (L.F.); (Y.D.); (P.M.R.C.)
- CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Paula M. R. Correia
- Department of Food Industry, Agrarian School of Viseu, 3500-606 Viseu, Portugal; (L.F.); (Y.D.); (P.M.R.C.)
- CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Raquel P. F. Guiné
- Department of Food Industry, Agrarian School of Viseu, 3500-606 Viseu, Portugal; (L.F.); (Y.D.); (P.M.R.C.)
- CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
- Correspondence:
| |
Collapse
|
28
|
Li YH, Wang YS, Li X, Chen HH. Effect of freezing-assisted treatment on the formation of stable V II -type complex of fried sweet potato starch and its mechanism. J Food Sci 2022; 87:543-553. [PMID: 35040132 DOI: 10.1111/1750-3841.16019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
To comprehensively understand the effect of freezing-assisted treatment on the physicochemical properties of the fried sweet potato starch, the structural changes at granular and crystalline level were investigated. The results suggested that the freezing temperature exerted a significant effect on the interactions between sweet potato starch (SPS) and fried oil. With decreasing the freezing-assisted temperature, the gelatinization enthalpy of the fried frozen SPS remarkably increased by 1.5-4.9 J·g-1 and the transition temperatures of the second peak were elevated from 132.5°C to 136.5-141.1°C compared to that of native SPS, which suggested that more stable VII -type starch-lipid complexes were formed during frying. This finding was consistent with the results of the X-ray diffractometer that the intensity of the diffraction peak at 20.1° for V-type complex increased sharply as the temperature decreased from 20°C to -80°C, and the corresponding relative crystallinity and R1047/1022 values were increased from 16.5% and 0.35 to 26.4% and 0.45, respectively. The scanning electron microscopy revealed that the lower freezing-assisted temperature before frying promoted a membrane-like material covered on surfaces. The results showed that decreasing the freezing temperature promoted the formation of stable VII -type complex during frying. PRACTICAL APPLICATION: The purpose of this study was to comprehensively understand the effect of freezing-assisted treatment on the physicochemical properties of the fried sweet potato starch. These results provided useful information and effective method for producing fried starch-based foods with low digestibility.
Collapse
Affiliation(s)
- Ying-Hui Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xin Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
29
|
Li S, Ren X, Zhang M, Asimi S, Lv Q, Wang Z, Liang S, Wang Z, Meng L. New perspective to guide rice breeding: Evaluating the eating quality of japonica rice. Cereal Chem 2022. [DOI: 10.1002/cche.10522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sixuan Li
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Xin Ren
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Min Zhang
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Sailimuhan Asimi
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Qixin Lv
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Zhenhua Wang
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Shan Liang
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Ziyuan Wang
- School of Food and Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing China
| | - Lingqi Meng
- Binhai Agricultural Research Institute Hebei Academy of agricultural and Forestry Sciences Tangshan China
| |
Collapse
|
30
|
Xie F, Zhang H, Xiong Z, Wu Y, Ai L. Effects and mechanism of sucrose on retrogradation, freeze-thaw stability, and texture of corn starch-tamarind seed polysaccharide complexes. J Food Sci 2022; 87:623-635. [PMID: 34997939 DOI: 10.1111/1750-3841.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022]
Abstract
In this work, we investigated the effects of sucrose (0%-30%, w/w) on the pasting properties, retrogradation, freeze-thaw stability, texture, and the possible interaction with corn starch-tamarind seed polysaccharide (CS-TSP) mixtures. Sucrose increased the gelatinization temperature (from 76.4 ± 0.1 to 87.6 ± 0.0°C), peak viscosity (from 3358.0 ± 1.4 to 7732.5 ± 44.5 cP), and final viscosity (from 3514.0 ± 31.1 to 7724.5 ± 142.1 cP) of CS-TSP mixtures. Further, sucrose limited the increase in the storage modulus of the mixture pastes, transfer of bound water to free water, and water syneresis during the freeze-thaw process. Additionally, sucrose resulted in a more complete gel structure with stronger resistance. Scanning electron microscope and fluorescence labeling analysis showed that the presence of sucrose helped in tight entanglement or cross-link between amylose or between amylose and TSP. Thus, these results in this study could help to improve physicochemical properties of starch-based products, such as glue pudding and other starch desserts.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
31
|
Structural and functional properties of chestnut starch based on high-pressure homogenization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
QIN Y, GAO H, ZENG J, LIU Y, DAI Y. Hydration, microstructural characteristics and rheological properties of wheat dough enriched with zinc gluconate and resistant starch. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.95021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yueqi QIN
- Henan Institute of Science and Technology, China
| | - Haiyan GAO
- Henan Institute of Science and Technology, China
| | - Jie ZENG
- Henan Institute of Science and Technology, China
| | - Yufen LIU
- Henan Institute of Science and Technology, China
| | - Yunfei DAI
- Henan Institute of Science and Technology, China
| |
Collapse
|
33
|
|
34
|
Corona P, Frangipane MT, Moscetti R, Lo Feudo G, Castellotti T, Massantini R. Chestnut Cultivar Identification through the Data Fusion of Sensory Quality and FT-NIR Spectral Data. Foods 2021; 10:2575. [PMID: 34828856 PMCID: PMC8618948 DOI: 10.3390/foods10112575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
The world production of chestnuts has significantly grown in recent decades. Consumer attitudes, increasingly turned towards healthy foods, show a greater interest in chestnuts due to their health benefits. Consequently, it is important to develop reliable methods for the selection of high-quality products, both from a qualitative and sensory point of view. In this study, Castanea spp. fruits from Italy, namely Sweet chestnut cultivar and the Marrone cultivar, were evaluated by an official panel, and the responses for sensory attributes were used to verify the correlation to the near-infrared spectra. Data fusion strategies have been applied to take advantage of the synergistic effect of the information obtained from NIR and sensory analysis. Large nuts, easy pellicle removal, chestnut aroma, and aromatic intensity render Marrone cv fruits suitable for both the fresh market and candying, i.e., marron glacé. Whereas, sweet chestnut samples, due to their characteristics, have the potential to be used for secondary food products, such as jam, mash chestnut, and flour. The research lays the foundations for a superior data fusion approach for chestnut identification in terms of classification sensitivity and specificity, in which sensory and spectral approaches compensate each other's drawbacks, synergistically contributing to an excellent result.
Collapse
Affiliation(s)
- Piermaria Corona
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
- CREA Research Centre for Forestry and Wood, 52100 Arezzo, Italy
| | - Maria Teresa Frangipane
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
| | - Roberto Moscetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
| | - Gabriella Lo Feudo
- CREA Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy;
| | - Tatiana Castellotti
- CREA Research Centre for Agricultural Policies and Bioeconomy, 87036 Rende, Italy;
| | - Riccardo Massantini
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (P.C.); (R.M.); (R.M.)
| |
Collapse
|
35
|
Dhua S, Kheto A, Singh Sharanagat V, Singh L, Kumar K, Nema PK. Quality characteristics of sand, pan and microwave roasted pigmented wheat (Triticum aestivum). Food Chem 2021; 365:130372. [PMID: 34218111 DOI: 10.1016/j.foodchem.2021.130372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Present study investigated the effect of sand, pan and microwave roasting on physico-chemical, functional and rheological properties of yellow (YW), purple (PW), and black wheat (BW). All roasting methods enhanced the browning index (BI), water absorption capacity (WAC) and oil absorption capacity (OAC) roasted wheat flour. Microwave roasting showed significantly higher impact on BI (58.61% for YW, 131% for BW and 83.85% for PW) and WAC (47.93% for YW, 44.63% for BW and 32.09% for PW). However, the decrease in density, emulsifying capacity (EC), foaming capacity (FC), total phenolic content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC), and antioxidant activity was observed on roasted wheat flour. Roasting also affected the pasting properties of wheat flours and peak, trough, breakdown and final viscosity decreased.
Collapse
Affiliation(s)
- Subhamoy Dhua
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| | - Ankan Kheto
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India.
| | - Lochan Singh
- Contract Research Organization, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| | - Kshitiz Kumar
- Department of Food Processing Technology, A. D. Patel Institute of Technology, New Vidynagar, Gujarat, India
| | - Prabhat K Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| |
Collapse
|
36
|
Luo X, Cheng B, Zhang W, Shu Z, Wang P, Zeng X. Structural and functional characteristics of Japonica rice starches with different amylose contents. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1927194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xianli Luo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Bei Cheng
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Inspection and Testing Center of Weifang, Weifang, China
| | - Zaixi Shu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Pingping Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
37
|
Hu N, Li L. Optimization of chestnut starch acetate synthesis by response surface methodology and its effect on dough properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Hu
- Asset and Laboratory Management Office Hebei University of Science and Technology Shijiazhuang PR China
| | - Luning Li
- Assets Equipment Management Office Shijiazhuang University Shijiazhuang PR China
| |
Collapse
|
38
|
Xiao J, Gu C, He S, Zhu D, Huang Y, Zhou Q. Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castanea mollissima Bl.) calcification process. Food Res Int 2021; 141:110128. [PMID: 33641995 DOI: 10.1016/j.foodres.2021.110128] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Chestnut calcification is a quality deterioration due to fast water loss, which has been of deep concern for chestnut quality control because its mechanism is unclear. In order to find out the different key metabolites and metabolic pathways related to the occurrence of chestnut calcification, in this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) based widely targeted metabolomics analysis was performed on chestnuts that were stored at 50%-55% (low relative humidity, LRH) at 25 °C and 85%-90% (high relative humidity, HRH) at 25 °C. A total of 611 metabolites were detected, and 55 differentially accumulated metabolites were identified as key metabolites involved in chestnut calcification process. The decrease in some monosaccharides accompanied with the increase in some unsaturated fatty acids indicated the degradation of chestnut cell wall and cell membrane during calcification process. As a stress response, amino acid metabolism related to membrane stability was significantly activated. In addition, the enhancement of phenylpropanoid biosynthesis pathway and flavonoid biosynthesis pathway characterized by the accumulation of lignin precursors and antioxidants suggested that lignification process was triggered in calcified chestnut. Therefore, the degradation and hardening of the cell wall and membrane damage were proposed to be associated with the calcification occurrence of chestnut. The metabolic profile of chestnut characterized in this study provided new insights into chestnut calcification process and laid a foundation for further chestnut quality control.
Collapse
Affiliation(s)
- Jiaqi Xiao
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Caiqin Gu
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; Institute for NanoScale Scale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia.
| | - Dongxue Zhu
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yukai Huang
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Qiqin Zhou
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
39
|
Yang Z, Hao H, Wu Y, Liu Y, Ouyang J. Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. Int J Biol Macromol 2020; 168:656-662. [PMID: 33220369 DOI: 10.1016/j.ijbiomac.2020.11.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Moisture and amylose are important factors affecting the quality of heat-treated starches. The amylose content in heat-treated rice starch increased as moisture content (MC) increased from 8% to 30%, but decreased at MC of 70%. With the increase of MC, the paste transmittance, gelatinization temperature, and digestibility of starch increased, whereas the swelling power and enthalpy decreased. The long- and short-range molecular order and the digestive properties of starch with MC ≤ 30% changed moderately, but high MC (70%) gelatinized the starch and drastically changed the physicochemical properties. High amylose content in rice starch led to low long- and short-range molecular order, swelling power, and gelatinization temperature, but increased resistant starch. The results indicated that 30% of MC separates effects of heat treatment of starch, where low MC (≤30%) and high amylose lowers digestibility, which is beneficial for diabetics, while high MC (>30%) promotes solubility and transparency.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Henan Hao
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
40
|
Zheng Y, Tian J, Kong X, Wu D, Chen S, Liu D, Ye X. Proanthocyanidins from Chinese berry leaves modified the physicochemical properties and digestive characteristic of rice starch. Food Chem 2020; 335:127666. [PMID: 32739821 DOI: 10.1016/j.foodchem.2020.127666] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Proanthocyanidins extracted from Chinese berry leaves (CBLPs) were heated with rice starch in aqueous solution to prepare polyphenols-starch complexes. The physicochemical properties of the complexes were characterized with XRD, DSC, RVA and FT-IR and starch constituents were also analyzed with an enzyme method. Results indicated that the addition of CBLPs destroyed the long ordered structure of rice starch rather than the short ordered structure, since the crystallinity decreased from 21.96% to 18.90% and the ratio of 1047 cm-1/1022 cm-1 showed little difference, consistent with the lower ΔH of complexes with higher CBLPs content. Additionally, the CBLPs-rice starch complexes showed a significantly lower content of rapidly digested starch (RDS, 45.64 ± 3.25%) than that of the native rice starch (67.76 ± 2.15%). These results indicated that CBLPs complexes with rice starch might be a novel way to prepare functional starch with slower digestion.
Collapse
Affiliation(s)
- Yuxue Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Zhang Y, Yang Z, Liu G, Wu Y, Ouyang J. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Food Chem 2020; 324:126847. [PMID: 32344340 DOI: 10.1016/j.foodchem.2020.126847] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to investigate the inhibitory effect of chestnut inner skin extract (CISE) on the activity of postprandial blood sugar-related enzymes. In total, 12 flavonoids were identified by HPLC-TOF-MS. CISE showed strong and weak inhibition on α-amylase and α-glucosidase, with the IC50 of 27.2 and 2.3 μg/mL, respectively. The inhibition modes of CISE against α-amylase and α-glucosidase were mixed-type and non-competitive type, respectively. Epicatechin gallate noncompetitively inhibited α-amylase, α-glucosidase and dipeptidyl peptidase IV (DPP-IV). Analysis by ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism suggested that flavonoids altered the hydrophobicity and microenvironment of these enzymes. CISE decreased the starch bioavailability by reducing the enzymatic hydrolysis rate and increasing the fraction of undigested starch. The extract reduced the rapidly digestible starch and increased the resistant starch after incorporation into A-, B- or C- crystallinity starch. Thus, the chestnut inner skin is a useful resource for regulating postprandial blood sugar level.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Gege Liu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
42
|
Transcriptome Sequencing and Differential Expression Analysis Reveal Molecular Mechanisms for Starch Accumulation in Chestnut. FORESTS 2020. [DOI: 10.3390/f11040388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chestnuts are popular edible nuts that are rich in starch. In order to enhance the transcriptomic resources and further understand starch and sucrose metabolism in maturing chestnuts, a comparative transcriptomic study of Chinese chestnut kernels was conducted at three ripening stages (70, 82, and 94 DAF). At 82 and 94 days after flowering (DAF), starch continued to accumulate, and the amylopectin/amylose ratio increased. Transcriptomic profiling of kernels at 70 (stage I), 82 (stage II), and 94 DAF (stage III) indicated that soluble starch synthase and α-1,4-glucan branching enzyme genes are actively expressed at 82 and 94 DAF. The starch degradation enzymes amylase, phosphoglucan phosphatase DSP4, and maltose exporter did not show differential gene expression, while glycogen phosphorylase-encoding unigenes were significantly down-regulated at 94 DAF. In addition to starch and sucrose metabolism, RNA transport, RNA degradation, pyrimidine metabolism, purine metabolism, plant hormone signal transduction, plant–pathogen interactions, and glycerophospholipid metabolism were found to be significantly enriched in all comparisons included in the study. As Chinese chestnut matured, the unique enriched pathways switched from ribosomal biogenesis and RNA polymerase of eukaryotes to endocytosis and spliceosomes. These genomic resources and findings are valuable for further understanding starch and sucrose metabolism in the Chinese chestnut.
Collapse
|
43
|
Physicochemical and digestibility characterisation of maize starch–caffeic acid complexes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108857] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Huang J, Yuan M, Kong X, Wu D, Zheng Z, Shu X. A novel starch: Characterizations of starches separated from tea (Camellia sinensis (L.) O. Ktze) seed. Int J Biol Macromol 2019; 139:1085-1091. [PMID: 31400418 DOI: 10.1016/j.ijbiomac.2019.08.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
The physicochemical, thermal and crystal properties of starches isolated from 3 different tea (Camellia sinensis (L.) O. Ktze) seeds were analyzed in this study. The shape of tea starch granules were flat spherical or oval shape, showed unimodal or bimodal distribution with average size of around 9 μm. Tea starch was typical A-type starch. Apparent amylose contents of three tea seed starches ranged from 27.06% to 33.17%. The chains having degree of polymerization (DP) 13-24 were over 50% of the total detectable chains for tea amylopectin. Peak gelatinization temperature of tea starch ranged from 65 to 77 °C and the water solubility reached up to 9.70%. The peak viscosity of tea starches were as high as 5300 cP and final viscosity ranged from 4000 to 6700 cP. The results indicated that tea seed starch had potential as gel reagents and provide some guides for comprehensive utilization of tea starch in food and non-food applications.
Collapse
Affiliation(s)
- Jiajia Huang
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, PR China
| | - Ming'an Yuan
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, Zhejiang Province, PR China
| | - Xiangli Kong
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, PR China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhaisheng Zheng
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, Zhejiang Province, PR China.
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|