1
|
Yan X, Li H, Yi J, Sun C, Yu Q, Wen R. Unravelling the effects of drying techniques on Porphyra yezoensis: Morphology, rehydration properties, metabolomic profile, and taste formation. Food Chem 2025; 464:141562. [PMID: 39396475 DOI: 10.1016/j.foodchem.2024.141562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
This study explored the impact of sun drying (SD), freeze drying (FD), oven drying (OD), and microwave drying (MD) on the morphology, rehydration properties, metabolomic profile, and taste formation of Porphyra yezoensis. FD elicited a brighter colour, smooth surface, porous microstructure, and strong rehydration properties in P. yezoensis, while dramatically maintaining the umami, sweetness, and saltiness. OD and MD decreased structural openness owing to tissue collapse and affected water absorption. Metabolomic analysis revealed 1030 metabolites, among which taste-related compounds, especially free amino acids, nucleotides, organic acids, and their derivatives, were the main biomarkers for distinguishing the different drying methods. Their related metabolic pathways, such as taurine and hypotaurine metabolism; purine metabolism; glyoxylate and dicarboxylate metabolism; and citrate cycle, were the most active. A metabolic pathway network of the main taste compounds was built to provide novel insights into the mechanisms underlying the taste profile changes associated with different drying methods.
Collapse
Affiliation(s)
- Xinlu Yan
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Hongyu Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Jing Yi
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Chengfeng Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Qianqian Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - Rongxin Wen
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
2
|
Baek UB, Kim HY. Physicochemical Properties of Restructured Black Goat Jerky with Various Types of Ultra-Ground Seaweed Powders. Food Sci Anim Resour 2024; 44:483-497. [PMID: 38764507 PMCID: PMC11097035 DOI: 10.5851/kosfa.2024.e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 05/21/2024] Open
Abstract
This study investigated the effects of ultra-ground seaweed powders (USP) on the physicochemical properties (proximate composition, mineral contents, pH, color, shear force, sensory evaluation, electronic nose, and electronic tongue) of restructured black goat jerky. Restructured black goat jerky was prepared using three different treatments, i.e., 3% (w/w) each of ultra-ground sea tangle (ST; Undaria pinnatifida), sea mustard (SM; Saccharina japonica), and sea string (SS; Gracilaria verrucosa) powders. Moisture and ash contents were significantly higher in the USP-treated group than in the control (p<0.05). Potassium, calcium, and zinc contents were significantly higher in the SM than in the other USP-treated groups (p<0.05). In contrast, pH values were significantly higher in the ST and SM than in the control and SS (p<0.05). CIE L*, CIE a*, CIE b*, and shear force were significantly lower in the USP-treated groups than in the control (p<0.05). Sensory evaluation revealed no significant difference in taste, texture, seaweed-like odor, and goaty flavor (p<0.05). Principal component analysis (PCA) and peak graph analysis of the electronic nose showed that the SS differed the most from the control compared with the other USP-treated groups, owing to the seaweed odor of ultra-ground SS powder. The PCA and ranking analysis of the electronic tongue showed that the umami taste of the SM was higher than that of the control and other USP-treated groups. Therefore, the potassium, calcium, zinc contents, and umami taste of reconstituted black goat jerky were significantly higher in the SM than in the control and other USP-treated groups.
Collapse
Affiliation(s)
- Ui-Bin Baek
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute,
Kongju National University, Yesan 32439, Korea
| |
Collapse
|
3
|
Sun D, Wu S, Li X, Ge B, Zhou C, Yan X, Ruan R, Cheng P. The Structure, Functions and Potential Medicinal Effects of Chlorophylls Derived from Microalgae. Mar Drugs 2024; 22:65. [PMID: 38393036 PMCID: PMC10890356 DOI: 10.3390/md22020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.
Collapse
Affiliation(s)
- Danni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Songlin Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China;
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
4
|
Wang Y, Wang Y, Agarry IE, Zhou C, Shi H, Zeng Q, Cai T, Chen K. Changes in toxicity after mixing imidacloprid and cadmium: enhanced, diminished, or both? From a perspective of oxidative stress, lipid metabolism, and amino acid metabolism in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111099-111112. [PMID: 37801250 DOI: 10.1007/s11356-023-29980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Imidacloprid (IMI) and cadmium (Cd) are pollutants of concern in the environment. Although investigations about their combined toxicity to organisms such as earthworms, aquatic worms, Daphnia magna, and zebrafish have been carried out, their combined toxicity to mammals remains unknow. In this study, twenty-four 8-week-old mice were arbitrarily separated into 4 groups: CK (control group), IMI (15 mg/kg bw/day, 1/10 LD50), Cd (15 mg/kg bw/day, 1/10 LD50), and IMI + Cd (15 mg/kg bw/day IMI + 15 mg/kg bw/d Cd) and the combined toxic effects of IMI and Cd were examined with biochemical (oxidative stress testing) and omics approaches (metabolomics and lipidomics). The results revealed changes in each treatment group in terms of oxidative stress, abnormalities in lipid metabolism, and disturbances in amino acid metabolism. Co-administration had antagonistic effects on MDA accumulation and lipid metabolism disorders while acting synergistically on changes in SOD and GSH-Px activities. It is worth noting that after analysis, the changes caused by mixed administration in vivo were closer to those caused by IMI administration alone. This study provides new insights into the combined toxicity of neonicotinoids and heavy metals, which is helpful for relevant environmental governance and further investigations about their impacts on human health and the environment.
Collapse
Affiliation(s)
- Yuankai Wang
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, People's Republic of China
| | - Yuankui Wang
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China
| | - Israel Emiezi Agarry
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, People's Republic of China
- China-Hungary Cooperative Centre for Food Science, Chongqing, 400715, People's Republic of China
| | - Chunjie Zhou
- Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2nd Road, Yubei, Chongqing, 401121, People's Republic of China
| | - Hui Shi
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, People's Republic of China
- China-Hungary Cooperative Centre for Food Science, Chongqing, 400715, People's Republic of China
| | - Quanheng Zeng
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, People's Republic of China
| | - Tian Cai
- China-Hungary Cooperative Centre for Food Science, Chongqing, 400715, People's Republic of China
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, People's Republic of China.
- China-Hungary Cooperative Centre for Food Science, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
5
|
Agarry IE, Ding D, Li Y, Jin Z, Deng H, Hu J, Cai T, Kan J, Chen K. In vitro bioaccessibility evaluation of chlorophyll pigments in single and binary carriers. Food Chem 2023; 415:135757. [PMID: 36854242 DOI: 10.1016/j.foodchem.2023.135757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Chlorophyll was extracted and microencapsulated using different carrier agents. Subsequently, in vitro digestion was performed, and the bioaccessibility of chlorophyll in the different encapsulation systems was carried out. The zeta potential, particle size, and PDI were significantly modified after the micellarization of digested microcapsules. I-W-Chl presented with the highest total chlorophyll recovery and micellarization rate of 54% and 43%, respectively. In the aqueous micellar fraction, the different encapsulation systems had total chlorophylls, pheophytins, and pheophorbides ranging from 13 to 49%, 42 - 77%, and 3 - 22% respectively. The bioaccessibility of total chlorophyll pigment ranging from 7% to 20% is given in the following order: I-W-Chl > WPI-Chl > Z-Chl > Ca-Chl > SCChlV > SCChlC. The result established in this study shows that the carrier agent type could inhibit or mediate the bioaccessibility of chlorophyll with the potential to be an efficient delivery system for health promoting compounds.
Collapse
Affiliation(s)
- Israel Emiezi Agarry
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China
| | - Desheng Ding
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Yunchang Li
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zihan Jin
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Huiling Deng
- Chongqing Chongke Inspection & Testing Co., Ltd, Building B, No. 2, Yangliu Road, 14 North New Area, Chongqing 401121, PR China
| | - Jiang Hu
- Chongqing Chongke Inspection & Testing Co., Ltd, Building B, No. 2, Yangliu Road, 14 North New Area, Chongqing 401121, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Jin Z, Emiezi Agarry I, Li Y, Ding D, Cai T, Chen K. In vitro bioaccessibility evaluation of pheophytins in gelatin/polysaccharides carrier. Food Chem 2023; 408:135252. [PMID: 36566541 DOI: 10.1016/j.foodchem.2022.135252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The type of carrier agent could impact pheophytin stability and bioaccessibility. Hence, it is important to have an elaborate understanding on the extent and type of pheophytin transformation during in vitro digestion of microcapsules. Four kinds of protein/polysaccharides complex were used to fabricate pheophytin microcapsules and investigated for pigments bioaccessibility. With different carriers, pheophytin pigments showed new characteristics influencing particle size and zeta potential during in vitro digestion. Pheophytin b was widely transformed to pheophorbide b, confirming pheophorbidation of the b series in proper condition. No 151-hydroxy lactone chlorophyll or pheophytin derivatives were detected, indicating some protective effect of microencapsulation. Pheophytins loaded in gelatin-pectin complex exhibited a relatively higher recovery rate, micellarization rate, and bioaccessibility index. The result presented in this study shows that the type of carrier agent could initiate the removal of phytyl groups in pheophytins and also inhibit or mediate their bioaccessibility.
Collapse
Affiliation(s)
- Zihan Jin
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Israel Emiezi Agarry
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China
| | - Yunchang Li
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China
| | - Desheng Ding
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing, 400715, PR China.
| |
Collapse
|
7
|
Perez-Vazquez A, Carpena M, Barciela P, Cassani L, Simal-Gandara J, Prieto MA. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants (Basel) 2023; 12:antiox12030612. [PMID: 36978860 PMCID: PMC10045370 DOI: 10.3390/antiox12030612] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Seaweeds are an underutilized food in the Western world, but they are widely consumed in Asia, with China being the world’s larger producer. Seaweeds have gained attention in the food industry in recent years because of their composition, which includes polysaccharides, lipids, proteins, dietary fiber, and various bioactive compounds such as vitamins, essential minerals, phenolic compounds, and pigments. Extraction techniques, ranging from more traditional techniques such as maceration to novel technologies, are required to obtain these components. Pressurized liquid extraction (PLE) is a green technique that uses high temperatures and pressure applied in conjunction with a solvent to extract components from a solid matrix. To improve the efficiency of this technique, different parameters such as the solvent, temperature, pressure, extraction time and number of cycles should be carefully optimized. It is important to note that PLE conditions allow for the extraction of target analytes in a short-time period while using less solvent and maintaining a high yield. Moreover, the combination of PLE with other techniques has been already applied to extract compounds from different matrices, including seaweeds. In this way, the combination of PLE-SFE-CO2 seems to be the best option considering both the higher yields obtained and the economic feasibility of a scaling-up approximation. In addition, the food industry is interested in incorporating the compounds extracted from edible seaweeds into food packaging (including edible coating, bioplastics and bio-nanocomposites incorporated into bioplastics), food products and animal feed to improve their nutritional profile and technological properties. This review attempts to compile and analyze the current data available regarding the application of PLE in seaweeds to determine the use of this extraction technique as a method to obtain active compounds of interest for food industry application.
Collapse
Affiliation(s)
- Ana Perez-Vazquez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| |
Collapse
|
8
|
da Silva Junior EC, Babaahmadifooladi M, Folens K, dos Reis AR, Guilherme LRG, Van de Wiele T, Jacxsens L, Du Laing G. Content, speciation and in vitro bioaccessibility of trace elements in seaweeds and derived food products. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Viera I, Herrera M, Roca M. Influence of food composition on chlorophyll bioaccessibility. Food Chem 2022; 386:132805. [PMID: 35509163 DOI: 10.1016/j.foodchem.2022.132805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Chlorophylls are ingested and effectively absorbed by our organism daily, but the effect of food composition on its bioaccessibility is unknown. Therefore, the present research analyses the chlorophyll bioaccessibility of ten commercial foods (guacamole, virgin olive oil, tortellini, basil hummus, creamed spinach, vegetable pasta, green tea chocolate, avocado and kiwi juices, and pesto sauce), selected based on their different nutritional (fat, fiber, protein, and carbohydrates) and chlorophyll composition and content. The most unexpected result was to correlate chlorophyll degradation during in vitro digestion with the salt content of the digested food. Surprisingly, independently of the foods' nutritional composition or the chlorophyll content, the chlorophyll profile after in vitro digestion was formed by 90% pheophytins and 10% chlorophylls and pheophorbides. Such a pattern can only be modified when the ingested food contains a high proportion of pheophorbides (˃20%) that prevailed up to the mixed micelles.
Collapse
Affiliation(s)
- Isabel Viera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - Marta Herrera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| |
Collapse
|
11
|
Effects of Marine Bioactive Compounds on Gut Ecology Based on In Vitro Digestion and Colonic Fermentation Models. Nutrients 2022; 14:nu14163307. [PMID: 36014813 PMCID: PMC9412687 DOI: 10.3390/nu14163307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Digestion and the absorption of food compounds are necessary steps before nutrients can exert a role in human health. The absorption and utilization of nutrients in the diet is an extremely complex dynamic process. Accurately grasping the digestion and absorption mechanisms of different nutrients or bioactive compounds can provide a better understanding regarding the relationship between health and nutrition. Several in vitro models for simulating human gastrointestinal digestion and colonic fermentation have been established to obtain more accurate data for further understanding of the metabolism of dietary components. Marine media is rich in a wide variety of nutrients that are essential for humans and is gaining increased attention as a research topic. This review summarizes some of the most explored in vitro digestion and colonic fermentation models. It also summarizes the research progress on the digestion and absorption of nutrients and bioactive compounds from marine substrates when subjected to these in vitro models. Additionally, an overview of the changes imparted by the digestion process on these bioactive compounds is provided, in order to support those marine resources that can be utilized for developing new healthy foods.
Collapse
|
12
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
SANTOS OVD, CUNHA NSRD, DUARTE SDPDA, SOARES SD, COSTA RSD, MENDES PM, MARTINS MG, NASCIMENTO FDCAD, FIGUEIRA MDS, TEIXEIRA-COSTA BE. Determination of bioactive compounds obtained by the green extraction of taioba leaves (Xanthosoma taioba) on hydrothermal processing. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.22422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
YANG D, REN G, ZHU X. Effects of cooking method and storage temperature on quality of three green vegetable semi-finished products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Xingyi ZHU
- Zhejiang University of Technology, China
| |
Collapse
|
15
|
Nguyen TVL, Nguyen QD, Nguyen NN, Nguyen TTD. Comparison of Phytochemical Contents, Antioxidant and Antibacterial Activities of Various Solvent Extracts Obtained from 'Maluma' Avocado Pulp Powder. Molecules 2021; 26:7693. [PMID: 34946774 PMCID: PMC8709390 DOI: 10.3390/molecules26247693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Although avocado is a superfood rich in phytochemicals with high antioxidant activities, studies on the antibacterial properties of its pulp are limited, except for seed and peel portions. In this study, three types of solvent (acetone, methanol, and diethyl ether) were used to obtain the extracts from "Maluma" avocado pulp powder prepared by infrared drying. The extracts were analyzed for total polyphenols, phytopigments (total chlorophylls and carotenoids), antioxidant activities (ferric-reducing antioxidant power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays), and antibacterial activities against seven pathogens (Shigella sonnei ATCC 9290, Escherichia coli ATCC 8739, Salmonella typhi ATCC 6539, Vibrio parahaemolyticus ATCC 17802, Proteus mirabilis ATCC 25933, Staphylococcus aureus ATCC 6538, and Bacillus cereus ATCC 11778). The results showed that the acetone solvent could extract the highest polyphenols and chlorophylls with the highest antioxidant activity in terms of ABTS and DPPH assays. In contrast, diethyl ether exhibited the most significant content of carotenoids and FRAP values. However, the methanol extract was the best solvent, exerting the strongest antibacterial and meaningful antioxidant activities. For the bacterial activities, Gram-positive pathogens (Bacillus cereus and Staphylococcus aureus) were inhibited more efficiently by avocado extracts than Gram-negative bacteria. Therefore, the extracts from avocado powder showed great potential for applications in food processing and preservation, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Thi-Van-Linh Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 754000, Vietnam; (Q.-D.N.); (N.-N.N.); (T.-T.-D.N.)
| | | | | | | |
Collapse
|
16
|
Ho KKHY, Redan BW. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 2020; 62:508-526. [DOI: 10.1080/10408398.2020.1821598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kacie K. H. Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Bedford Park, Illinois, USA
| |
Collapse
|
17
|
Pérez-Gálvez A, Viera I, Roca M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants (Basel) 2020; 9:E505. [PMID: 32526968 PMCID: PMC7346216 DOI: 10.3390/antiox9060505] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 01/06/2023] Open
Abstract
Chlorophylls and carotenoids are natural pigments that are present in our daily diet, especially with the increasing tendency towards more natural and healthy behaviors among consumers. As disturbed antioxidant homeostasis capacities seem to be implicated in the progress of different pathologies, the antioxidant properties of both groups of lipophilic compounds have been studied. The objective of this review was to analyze the state-of-the-art advances in this field. We conducted a systematic bibliographic search (Web of Science™ and Scopus®), followed by a comprehensive and critical description of the results, with special emphasis on highly cited and more recently published research. In addition to an evaluative description of the methodologies, this review discussed different approaches used to obtain a physiological perspective, from in vitro studies to in vivo assays using oxidative biomarkers. From a chemical viewpoint, many studies have demonstrated how a pigment's structure influences its antioxidant response and the underlying mechanisms. The major outcome is that this knowledge is essential for interpreting new data in a metabolic networks context in the search for more direct applications to health. A promising era is coming where the term "antioxidant" is understood in terms of its broadest significance.
Collapse
Affiliation(s)
| | | | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain; (A.P.-G.); (I.V.)
| |
Collapse
|
18
|
Tomsone L, Galoburda R, Kruma Z, Cinkmanis I. Characterization of dried horseradish leaves pomace: phenolic compounds profile and antioxidant capacity, content of organic acids, pigments and volatile compounds. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03521-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractHorseradish (Armoracia rusticana) leaves pomace, which contains high-value bioactive compounds, is the product resulting from pressing horseradish leaves for juice production. The aim of the current research was to investigate the effect of convective, microwave-vacuum and freeze-drying on the content of bioactive compounds in horseradish leaves pomace. Convective hot air-drying was performed at 40, 60 and 80 °C. The total phenolic content (TPC), total flavonoid content (TFC), total flavan-3-ol content, total phenolic acid content, total flavonol content, chlorophylls and total carotenoids, and antioxidant activity were determined by spectrophotometric methods. Individual profiles of phenols and organic acids are estimated by high-performance liquid chromatography (HPLC), but volatile compounds are estimated by gas chromatography (GC). Totally, 14 individual phenolic compounds, 8 organic acids, and 49 volatile compounds were analysed in the studied samples. The main phenolic compound identified in horseradish leaves pomace was rutin (3231 mg/100 g DW), among organic acids—quinic and malic acids, and volatile compounds—allyl isothiocyanate, 3-butenenitrile and benzyl alcohol. In the drying process, the content of some (total flavan-3-ols, total carotenoids content) compounds increased, but others (TPC, total organic acids content) decreased, and it was drying method-dependent. Freeze-drying caused the reduction of TPC by 29%, whereas convective drying by 53–59%. Fresh pomace contains such isothiocyanates as allyl isothiocyanate and butyl isothiocyanate, which were completely lost in the drying process. Freeze-drying allowed the best retention of various phenolic and volatile compounds in horseradish leaves pomace.
Collapse
|