1
|
Hwang HJ, Ye MJ, Chung MS. The impact of movement path of sesame seeds ( Sesamum indicum L.) during treatment with intense pulsed light (IPL) using a continuous pilot-scale device on the reduction of indigenous microorganisms. Food Sci Biotechnol 2024; 33:2877-2886. [PMID: 39184980 PMCID: PMC11339002 DOI: 10.1007/s10068-024-01541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 08/27/2024] Open
Abstract
The objective of this study was to enhance the microbial inactivation efficacy of sesame seeds through the utilization of a pilot-scale IPL device, while also identifying the process variables that influence the microbial inactivation effect. Three different types of IPL processes were employed, each with a distinct arrangement, to treat sesame seeds. The total fluences applied ranged from 1.33 to 53.94 J/cm2. Total aerobic bacteria and fungi exhibited a maximum reduction of 2.27 and 2.77 log, respectively. The curved pathway of the sample flow effectively extended the duration of exposure to the IPL emitted by the lamps. The arrangement of the IPL process using two lamps in parallel but at different locations proved the most efficient for microbial inactivation. The application of IPL was found to be effective in reducing the presence of indigenous microbes in sesame seeds while having no significant impact on the physicochemical properties of the seeds.
Collapse
Affiliation(s)
- Hee-Jeong Hwang
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong, 53064 South Korea
| | - Min-Ji Ye
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 South Korea
| | - Myong-Soo Chung
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 South Korea
| |
Collapse
|
2
|
Gonçalves MPMBB, do Prado-Silva L, Sant'Ana AS. Emergent methods for inactivation of Cronobacter sakazakii in foods: A systematic review and meta-analysis. Int J Food Microbiol 2024; 421:110777. [PMID: 38909488 DOI: 10.1016/j.ijfoodmicro.2024.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Cronobacter sakazakii is a potentially pathogenic bacterium that is resistant to osmotic stress and low aw, and capable of persisting in a desiccated state in powdered infant milks. It is widespread in the environment and present in various products. Despite the low incidence of cases, its high mortality rates of 40 to 80 % amongst neonates make it a microorganism of public health interest. This current study performed a comparative assessment between current reduction methods applied for C. sakazakii in various food matrices, indicating tendencies and relevant parameters for process optimization. A systematic review and meta-analysis were conducted, qualitatively identifying the main methods of inactivation and control, and quantitatively evaluating the effect of treatment factors on the reduction response. Hierarchical clustering dendrograms led to conclusions on the efficiency of each treatment. Review of recent research trend identified a focus on the potential use of alternative treatments, with most studies related to non-thermal methods and dairy products. Using random-effects meta-analysis, a summary effect-size of 4-log was estimated; however, thermal methods and treatments on dairy matrices displayed wider dispersions - of τ2 = 8.1, compared with τ2 = 4.5 for vegetal matrices and τ2 = 4.0 for biofilms. Meta-analytical models indicated that factors such as chemical concentration, energy applied, and treatment time had a more significant impact on reduction than the increase in temperature. Non-thermal treatments, synergically associated with heat, and treatments on dairy matrices were found to be the most efficient.
Collapse
Affiliation(s)
| | - Leonardo do Prado-Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil.
| |
Collapse
|
3
|
Lee GM, Shin JK. Nonthermal Sterilization of Animal-based Foods by Intense Pulsed Light Treatment. Food Sci Anim Resour 2024; 44:309-325. [PMID: 38764504 PMCID: PMC11097036 DOI: 10.5851/kosfa.2024.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 05/21/2024] Open
Abstract
The consumption of meat has been increasing, leading to a dynamic meat and meat processing industry. To maintain the quality and safety of meat products, various technologies have been explored, including intense pulsed light (IPL) technology. Several factors affect the inactivation of microorganisms by IPL treatment, including light intensity (fluence), treatment duration, pulse frequency, and the distance between the lamp and the samples. Meat products have been studied for IPL treatment, resulting in microbial reductions of approximately 0.4-2.4 Log. There are also impacts on color, sensory attributes, and physico-chemical quality, depending on treatment conditions. Processed meat products like sausages and ham have shown microbial reductions of around 0.1-4 Log with IPL treatment. IPL treatment has minimal impact on color and lipid oxidation in these products. Egg products and dairy items can also benefit from IPL treatment, achieving microbial reductions of around 1-7.8 Log. The effect on product quality varies depending on the treatment conditions. IPL technology has shown promise in enhancing the safety and quality of various food products, including meat, processed meat, egg products, and dairy items. However, the research results on animal-based food are not diverse and fragmentary, this study discusses the future research direction and industrial application through a review of these researches.
Collapse
Affiliation(s)
- Gyeong Mi Lee
- Food Processing Development Major,
Department of Culinary & Food Industry, Jeonju
University, Jeonju 55069, Korea
| | - Jung-Kue Shin
- Department of Korean Cuisine, Jeonju
University, Jeonju 55069, Korea
| |
Collapse
|
4
|
Karuppuchamy V, Heldman DR, Snyder AB. A review of food safety in low-moisture foods with current and potential dry-cleaning methods. J Food Sci 2024; 89:793-810. [PMID: 38221802 DOI: 10.1111/1750-3841.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Food is one of the basic needs of human life. With the increasing population, the production and supply of safe and quality foods are critical. Foods can be classified into different categories including low moisture, intermediate moisture, and high moisture content. Historically, low-moisture foods have been considered safe for human consumption due to the limited amount of moisture for microbial activity. Recalls of these foods due to pathogens such as Salmonella and undeclared allergens have brought attention to the need for improved cleaning and sanitization in dry food manufacturing facilities. In the food industry, cleaning and sanitation activities are the most efficient methods to prevent microbial contamination; however, water is most often required to deliver cleaning and sanitation agents. A well-written and properly implemented sanitation standard operating procedure can take care of microbial and allergen cross-contamination. Nevertheless, there are unique challenges to cleaning and sanitation processes for low-moisture food manufacturing facilities. The introduction of moisture into a low-moisture food environment increases the likelihood of cross-contamination by microbial pathogens. Hence, the use of water during cleaning and sanitation of dry food manufacturing facilities should be limited. However, much less research has been done on these dry methods compared to wet sanitation methods. This review discusses recent foodborne outbreaks and recalls associated with low-moisture foods the accepted methods for cleaning and sanitation in dry food manufacturing facilities and the limitations of these methods. The potential for air impingement as a dry-cleaning method is also detailed.
Collapse
Affiliation(s)
- Veeramani Karuppuchamy
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Dennis R Heldman
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Cechin CDF, Carvalho GG, Bastos CP, Kabuki DY. Cronobacter spp. in foods of plant origin: occurrence, contamination routes, and pathogenic potential. Crit Rev Food Sci Nutr 2023; 63:12398-12412. [PMID: 35866516 DOI: 10.1080/10408398.2022.2101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cronobacter is an emerging bacterial pathogen associated with infections such as necrotizing enterocolitis, sepsis, and meningitis in neonates and infants, related to the consumption of powdered infant formula. In addition, this bacterium can also cause infections in adults by the ingestion of other foods. Thus, this review article aims to report the occurrence and prevalence of Cronobacter spp. in foods of plant origin, as well as the possible sources and routes of contamination in these products, and the presence of pathogenic strains in these foods. Cronobacter was present in a wide variety of cereal-based foods, vegetables, herbs, spices, ready-to-eat foods, and foods from other categories. This pathogen was also found in cultivation environments, such as soils, compost, animal feces, rice and vegetable crops, as well as food processing industries, and domestic environments, thus demonstrating possible contamination routes. Furthermore, sequence types (ST) involved in clinical cases and isolates resistant to antibiotics were found in Cronobacter strains isolated from food of plant origin. The identification of Cronobacter spp. in plant-based foods is of great importance to better elucidate the vehicles and routes of contamination in the primary production chain and processing facility, until the final consumption of the food, to prevent infections.
Collapse
Affiliation(s)
- Carine da Fonseca Cechin
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Guimarães Carvalho
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Peixoto Bastos
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Lin Z, Wang G, Zhang K, Jiang S, Li S, Yang H. Metabolomics investigation of global responses of Cronobacter sakazakii against common sanitizing in infant formula processing environments. Food Res Int 2023; 172:113162. [PMID: 37689917 DOI: 10.1016/j.foodres.2023.113162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Cronobacter sakazakii, an opportunistic bacterium, has raised a serious outbreak in powdered infant formula recent years. In this work, four sanitizing strategies used during infant formula processing, including chlorine, quaternary ammonium chloride (QAC), 60 °C heating, and malic acid (MA), were utilized against C. sakazakii among planktonic, air-dried (A), and air-dried & washed (AW) state, followed by an exploration of the metabolic responses induced by these treatments via a dual-platform metabolomics analysis with the ultra-high performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. In the planktonic state, MA was the most effective in inhibiting bacterial growth, followed by chlorine, QAC, and 60 °C heating. Under A state, the efficacy of heating improved considerably, compared to that in the planktonic state, and remained unaltered under AW state. Chlorine and QAC were ineffective to control bacterial growth under A state, but their efficacy rose under AW state. Furthermore, the metabolomic analysis revealed chlorine induces amino acids catabolism, membrane lysis, and depression in carbohydrate and nucleotide metabolism in both planktonic and AW states, while the initiation of antioxidation mechanism was only found under AW state. Although the metabolic change caused by QAC in the planktonic state was similar to chlorine, the accumulation of osmoprotectant and membrane phospholipids within the AW cells reflected the effort to restore intracellular homeostasis upon QAC. Heating was characterized by considerable amino acid anabolism, along with mildly perturbed carbohydrate and nucleotide metabolism for heat shock protein preparation in both states. Lastly, MA promoted amino acid-dependent acid resistance under the planktonic state, and the regulation of antioxidation and osmoprotection under AW state. The metabolomics study elucidated the intracellular perturbation induced by common sanitizing, as well as the bacterial response, which provides insights for novel sanitization development.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Guoshu Wang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Kexin Zhang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Shaoqian Jiang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Songshen Li
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang 312000, China
| |
Collapse
|
7
|
Bermudez-Aguirre D, Niemira BA. A review on egg pasteurization and disinfection: Traditional and novel processing technologies. Compr Rev Food Sci Food Saf 2023; 22:756-784. [PMID: 36537903 DOI: 10.1111/1541-4337.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Salmonella Enteritidis is a pathogen related to many foodborne outbreaks involving eggs and egg products. Regulations about whether eggs should be pasteurized are very different and inconsistent worldwide. In the United States, eggs are not required to be pasteurized. Hence, less than 3% of the eggs in the country are pasteurized. The standard pasteurization method (57°C, 57.5 min) uses a long thermal process that increases the cost of the product and affects its quality. Foodborne outbreaks can be reduced if eggs are properly pasteurized to inactivate Salmonella spp. However, the technology to pasteurize eggs needs to offer a faster and more reliable method that can be scaled up to industry settings at a low cost and without affecting product quality. Several novel technologies have been tested for eggshell disinfection and egg pasteurization. Some thermal technologies have been evaluated for the pasteurization of eggs. Microwave has limited penetration depth and is a technical challenge for egg pasteurization. However, radio frequency can penetrate eggshells effectively to inactivate Salmonella, considerably reduce processing time, and maintain the quality of the product. Nonthermal technologies such as ultraviolet, pulsed light, cold plasma, ozone, pressure carbon dioxide, electrolyzed water, and natural antimicrobials have been explored for surface cleaning of the intact egg as alternatives without affecting the internal quality. This review presents some of these novel technologies and the current challenges. It discusses the possible combination of factors to achieve the egg's internal pasteurization and the eggshell's disinfection without affecting the quality at a low cost for the consumer.
Collapse
Affiliation(s)
- Daniela Bermudez-Aguirre
- USDA-ARS, Eastern Regional Research Center, Food Safety and Intervention Technologies Unit, Wyndmoor, PA, USA
| | - Brendan A Niemira
- USDA-ARS, Eastern Regional Research Center, Food Safety and Intervention Technologies Unit, Wyndmoor, PA, USA
| |
Collapse
|
8
|
Zhong Y, Dong S, Cui Y, Dong X, Xu H, Li M. Recent Advances in Postharvest Irradiation Preservation Technology of Edible Fungi: A Review. Foods 2022; 12:foods12010103. [PMID: 36613319 PMCID: PMC9818174 DOI: 10.3390/foods12010103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Edible fungi have high edible, medicinal and economic value. Rapid development of the edible fungi industry can meet people's consumption demands. However, due to lack of suitable preservation technology after harvest, edible fungi are susceptible to mechanical damage, microbial infection, and discoloration, which could affect the quality and shelf life of fresh edible fungi. Many techniques have been developed to extend the postharvest storage time of fresh edible fungi and irradiation technology has been proven to be one of the potential technologies. This review summarizes the internal and external factors affecting the postharvest quality deterioration of edible fungi, introduces the types of irradiation preservation technology and describes comprehensive advances in the effects of irradiation on shelf life, microbiology, organoleptic qualities, nutritional qualities (proteins, fats, sugars and vitamins) and enzymatic activities of edible fungi from different regions and of different species worldwide. This review uncovers that the postharvest quality decay of edible fungi is a complex process. The irradiation preservation of edible fungi is affected not only by the edible fungus itself and the storage environment but also by the radiation type, radiation dose and radiation source conditions. Future studies need to consider the combined application of irradiation and other novel technologies to further improve the preservation effect of edible fungi, in particular in the area of irradiation's influence on the flavor of edible fungus.
Collapse
|
9
|
Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Liu Z, Sheng L, Canakapalli SS, Wang L. Evaluation of the microbial control efficacies of commonly used home-drying and storage practices of dried peaches. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Morasi RM, Rall VLM, Dantas STA, Alonso VPP, Silva NCC. Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. J Food Sci 2022; 87:2310-2323. [PMID: 35478321 DOI: 10.1111/1750-3841.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/17/2023]
Abstract
The occurrence of disease outbreaks involving low-water-activity (aw ) foods has gained increased prominence due in part to the fact that reducing free water in these foods is normally a measure that controls the growth and multiplication of pathogenic microorganisms. Salmonella, one of the main bacteria involved in these outbreaks, represents a major public health problem worldwide and in Brazil, which highlights the importance of good manufacturing and handling practices for food quality. The virulence of this pathogen, associated with its high ability to persist in the environment, makes Salmonella one of the main challenges for the food industry. The objectives of this article are to present the general characteristics, virulence, thermoresistance, control, and relevance of Salmonella in foodborne diseases, and describe the so-called low-water-activity foods and the salmonellosis outbreaks involving them.
Collapse
Affiliation(s)
- Rafaela Martins Morasi
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Stéfani Thais Alves Dantas
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vanessa Pereira Perez Alonso
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Liu Z, Hu S, Soteyome T, Bai C, Liu J, Wang Z, Kjellerup BV, Xu Z. Intense pulsed light for inactivation of foodborne gram-positive bacteria in planktonic cultures and bacterial biofilms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Agregán R, Munekata PES, Putnik P, Pateiro M, Bursać Kovačević D, Zavadlav S, Lorenzo JM. The Use of Novel Technologies in Egg Processing. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1980887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico De La Carne De Galicia, Adva, Ourense, Spain
| | | | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Mirian Pateiro
- Centro Tecnológico De La Carne De Galicia, Adva, Ourense, Spain
| | | | - Sandra Zavadlav
- Department of Food Technology, Karlovac University of Applied Sciences, Karlovac Croatia
| | - José M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Adva, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| |
Collapse
|
14
|
A New Insight into the Bactericidal Mechanism of 405 nm Blue Light-Emitting-Diode against Dairy Sourced Cronobacter sakazakii. Foods 2021; 10:foods10091996. [PMID: 34574108 PMCID: PMC8470084 DOI: 10.3390/foods10091996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
(1) Background: Limited evidence exists addressing the action of antimicrobial visible light against Cronobacter sakazakii. Here, we investigated the antimicrobial effects of blue-LED (light emitting diode) at 405 nm against two persistent dairy environment sourced strains of C. sakazakii (ES191 and AGRFS2961). (2) Methods: Beside of investigating cell survival by counts, the phenotypic characteristics of the strains were compared with a reference strain (BAA894) by evaluating the metabolic rate, cell membrane permeability, and ROS level. (3) Results: The two environment isolates (ES191 and AGRFS2961) were more metabolic active and ES191 showed dramatic permeability change of the outer membrane. Notably, we detected varied impacts of different ROS scavengers (catalase > thiourea > superoxide dismutase) during light application, suggesting that hydrogen peroxide (H2O2), the reducing target of catalase, has a key role during blue light inactivation. This finding was further strengthened, following the observation that the combined effect of external H2O2 (sublethal concentration) and 405 nm LED, achieved an additional 2–4 log CFU reduction for both stationary phase and biofilm cells. (4) Conclusions: H2O2 could be used in combination with blue light to enhance bactericidal efficacy and form the basis of a new hurdle technology for controlling C. sakazakii in dairy processing plants.
Collapse
|
15
|
Ma Y, Zhang Y, Chen K, Zhang L, Zhang Y, Wang X, Xia X. The role of PhoP/PhoQ two component system in regulating stress adaptation in Cronobacter sakazakii. Food Microbiol 2021; 100:103851. [PMID: 34416955 DOI: 10.1016/j.fm.2021.103851] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023]
Abstract
Cronobacter sakazakii is an opportunistic foodborne bacterial pathogen that shows resistance to multiple stress conditions. The PhoP/PhoQ two component system is a key regulatory mechanism of stress response and virulence in various bacteria, but its role in C. sakazakii has not been thoroughly studied. In this study, we found the PhoP/PhoQ system in C. sakazakii ATCC BAA-894 enhanced bacterial growth in conditions with low Mg2+, acid pH, and the presence of polymyxin B. Moreover, the ΔphoPQ strain significantly reduced survival following exposure to heat, high osmotic pressure, oxidative or bile salts compared with WT strain. Furthermore, the RNA-seq analysis indicated that 1029 genes were upregulated and 979 genes were downregulated in ΔphoPQ strain. The bacterial secretion system, flagella assembly, beta-Lactam resistance and two-component system pathways were significantly downregulated, while the ABC transporters and microbial metabolism in diverse environments pathways were upregulated. qRT-PCR analysis further confirmed that twelve genes associated with stress tolerance were positively regulated by the PhoP/PhoQ system. Therefore, these findings suggest that the PhoP/PhoQ system is an important regulatory mechanism for C. sakazakii to resist various environmental stress.
Collapse
Affiliation(s)
- Yan Ma
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Yingying Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Lingzhu Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Yibei Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034, China.
| |
Collapse
|
16
|
Kang MW, Chen D, Ruan R, Vickers ZM. The effect of intense pulsed light on the sensory properties of nonfat dry milk. J Food Sci 2021; 86:4119-4133. [PMID: 34383322 DOI: 10.1111/1750-3841.15865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Our objectives were to examine (1) how intense pulsed light (IPL) processing parameters (exposure time and initial temperature) affected aroma, flavor, and mouthfeel of nonfat dry milk, (2) which levels of each parameter produced aroma, flavor, and mouthfeel changes from an untreated control sample, and (3) whether minimal or intense processing conditions produced a noticeable appearance change from the control. Four exposure times (1, 2, 3, and 4 passes through the IPL chamber) and three initial temperatures (25, 30, and 35℃) were studied with untreated milk powder as the control. The samples were prepared as both milk powder and reconstituted milk for sensory evaluation. Using standard evaluating protocols, trained descriptive analysis panelists rated the aroma, flavor, and mouthfeel of these samples. Panelists compared the appearance of the IPL-treated samples that underwent a minimal or intense processing condition to the control by using a two-out-of-five difference test. Increasing the exposure time led to increased intensities of overall flavor, burnt flavor, and umami taste in both milk powder and reconstituted milk, while increasing temperature increased animal and sulfur aromas in reconstituted milk only. Compared to the control, all levels of exposure time at any initial temperature resulted in increased aroma and flavor including cardboard aroma, sulfur aroma, and brothy flavor in both milk powder and reconstituted milk. Only the 4-pass exposure at the initial temperature of 25℃ changed the appearance of milk powder. However, the appearance change was not noticeable in reconstituted milk. PRACTICAL APPLICATION: The standard evaluation protocols and lexicons provide useful tools for research on milk powder. Additionally, the understanding of critical factors impacting sensory properties will contribute to a better implementation of this decontamination technology.
Collapse
Affiliation(s)
- Myung-Woo Kang
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Dongjie Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Roger Ruan
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Zata M Vickers
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
17
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
18
|
Dittrich AJ, Ludewig M, Rodewald S, Braun PG, Wiacek C. Pulsed-Light Treatment of Dried Parsley: Reduction of Artificially Inoculated Salmonella and Impact in Given Quality Parameters. J Food Prot 2021; 84:1421-1432. [PMID: 33793779 DOI: 10.4315/jfp-20-469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/27/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Dried parsley is regularly contaminated with foodborne pathogens, especially Salmonella. Application of contaminated ingredients in ready-to-eat dishes without further thermal treatment represents a considerable health risk. This study examined the suitability of pulsed light as a novel decontamination method of Salmonella in dried parsley, along with the impact on selected quality parameters (chlorophyll content, phenolic compounds, color, and odor) and product characters (temperature and water activity value). Samples were inoculated with one of three Salmonella isolates (Salmonella Cerro or one of two isolates of Salmonella Agona) at two contamination levels of 103 or 107 CFU/g and treated under various experimental factors, including distance to the light source and exposure time, resulting in fluences in the range of 1.8 to 19.9 J/cm2. At selected parameter settings (9.8 and 13.3 J/cm2), the effect of prolonged storage time (48 h) of inoculated samples before treatment on the reduction of Salmonella Cerro was examined. Samples treated at the same fluences were also stored for 35 days at 22 to 25°C. The three Salmonella isolates were significantly reduced by pulsed light (P < 0.05). Reduction factors ranged between 0.3 and 5.2 log CFU with varying sensitivities of the isolates. In general, increasing fluences (depending on exposure time and distance to the light source) resulted in increasing reductions of Salmonella. However, on closer examination, exposure time and distance to the light source had a varying influence on the reduction of the different Salmonella isolates. Decreasing reduction factors were observed by increasing the contamination level and prolonging the storage time of inoculated samples before treatment. No undesirable changes in quality parameters and sensory analysis were detectable at fluences of 9.8 and 13.3 J/cm2, indicating that pulsed light may be a suitable alternative for the decontamination of dried parsley. HIGHLIGHTS
Collapse
Affiliation(s)
- Anna J Dittrich
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Fachbereich Lebensmittelsicherheit, Freiimfelder Str. 68, 06112 Halle (Saale), Germany
| | - Martina Ludewig
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany.,Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Steffen Rodewald
- Institute of Pharmacy-Pharmaceutical Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Peggy G Braun
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Claudia Wiacek
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Sirohi R, Tarafdar A, Kumar Gaur V, Singh S, Sindhu R, Rajasekharan R, Madhavan A, Binod P, Kumar S, Pandey A. Technologies for disinfection of food grains: Advances and way forward. Food Res Int 2021; 145:110396. [PMID: 34112399 DOI: 10.1016/j.foodres.2021.110396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Growing demand from the consumers for minimally processed and high-quality food products has raised the scientific quest for foods with improved natural flavours in conjunction with a restricted supplement of additives. In this context, achieving quality and safe food grains and the identification of suitable processing and disinfection technologies have also become the key issues. Microbial contamination is one of the major reasons responsible for the spoilage of food grains. Various sources of contamination such as air and water (both contaminated with dust and dirt), animals (insects, birds, rodents), environmental conditions (rainfall, drought, temperature), unhygienic handling, harvesting, processing equipment and improper storage conditions are responsible for the microbial spoilage of food grains. In order to maintain the food grains safe and un-contaminated, several food processing technologies have been explored and implemented, with the ultimate purpose of maintaining the safety, freshness and nutritional attributes of the food products. Among these technologies, microwave, radiofrequency, infrared, ohmic heating, novel drying methods along with non-thermal methods such as cold plasma, irradiation, ozonation and nanotechnology have attracted much attention because of considerable reduction in the overall processing time with minimum energy consumption. This review aims to discuss the advances involving the said technologies for controlling the microbial contamination of food grains in accordance with their inactivation. Current research status of the thermal and non-thermal emerging technologies for the preservation of food grains as well as perspectives for further research in this area are also elaborated in detail.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Technology Development Centre, CSIR-National Environmental Engineering Research Institute, Nagpur 440 020, India; Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Vivek Kumar Gaur
- Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Shikhangi Singh
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India
| | | | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India
| | - Sunil Kumar
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute, Nagpur 440 020, India
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Faculty of Applied Sciences, Durban University of Technology, Durban 4000 South Africa.
| |
Collapse
|
21
|
Ge X, Ma F, Zhang B. Effect of intense pulsed light on
Lactobacillus bulgaricus
exopolysaccharide yield, chemical structure and antioxidant activity. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xinyu Ge
- College of Food Science Shenyang Agricultural University Shenyang110866China
| | - Fengming Ma
- College of Food Science Shenyang Agricultural University Shenyang110866China
| | - Baiqing Zhang
- College of Food Science Shenyang Agricultural University Shenyang110866China
| |
Collapse
|
22
|
Pérez-López AJ, Rodríguez-López MI, Burló F, Carbonell-Barrachina ÁA, Gabaldón JA, Gómez-López VM. Evaluation of Pulsed Light to Inactivate Brettanomyces bruxellensis in White Wine and Assessment of Its Effects on Color and Aromatic Profile. Foods 2020; 9:foods9121903. [PMID: 33352670 PMCID: PMC7766888 DOI: 10.3390/foods9121903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Brettanomyces bruxellensis is a wine spoilage yeast that could be inactivated by pulsed light (PL); however, this technology may induce changes in the quality of this alcoholic drink. The present research aimed to determine the potential of PL to inactivate B. bruxellensis inoculated in white wine and to assess the effect of this technology on the color and aromatic profile of the wine. For this, a cocktail of B. bruxellensis strains was inoculated into the wine and its inactivation by PL was determined and fitted to a microbial inactivation model. Along with this, the effect of PL on instrument-measured color, and the volatile compounds of the wine were evaluated by GC/MS and descriptive sensory analysis, respectively. B. bruxellensis was inactivated according to the Geeraerd model including the tail effect, with a maximum inactivation of 2.10 log reduction at 10.7 J/cm2; this fluence was selected for further studies. PL affected wine color but the total color difference was below the just noticeable difference at 10.7 J/cm2. The concentration of 13 out of 15 volatile compounds decreased due to the PL, which was noticeable by the panel. It is not clear if these compounds were photolyzed or volatilized in the open reactor during treatment. In conclusion, PL is able to inactivate B. bruxellensis in white wine but the treatment impairs the volatile profile. The use of a closed reactor under turbulent flow is recommended for disaggregating yeast clumps that may cause the tailing of the inactivation curve, and to avoid the possible escape of volatile compounds during treatment.
Collapse
Affiliation(s)
- Antonio J. Pérez-López
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (A.J.P.-L.); (M.I.R.-L.); (J.A.G.)
| | - María I. Rodríguez-López
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (A.J.P.-L.); (M.I.R.-L.); (J.A.G.)
| | - Francisco Burló
- Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), 03312 Orihuela, Spain; (F.B.); (Á.A.C.-B.)
| | - Ángel A. Carbonell-Barrachina
- Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), 03312 Orihuela, Spain; (F.B.); (Á.A.C.-B.)
| | - José A. Gabaldón
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (A.J.P.-L.); (M.I.R.-L.); (J.A.G.)
| | - Vicente M. Gómez-López
- Cátedra Alimentos para la Salud, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
- Correspondence: ; Tel.: +34-968-278-638
| |
Collapse
|
23
|
Deng LZ, Tao Y, Mujumdar AS, Pan Z, Chen C, Yang XH, Liu ZL, Wang H, Xiao HW. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Koçer Alaşalvar G, Keklik NM. Modeling of
Listeria monocytogenes
survival and quality attributes of sliced mushroom (
Agaricus bisporus
) subjected to pulsed
UV
light. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Gamze Koçer Alaşalvar
- Department of Food Processing, Vocational School Bilecik Şeyh Edebali University Bilecik Turkey
- Department of Food Engineering, Faculty of Engineering Sivas Cumhuriyet University Sivas Turkey
| | - Nene Meltem Keklik
- Department of Food Engineering, Faculty of Engineering Sivas Cumhuriyet University Sivas Turkey
| |
Collapse
|
25
|
Chen D, Mosher W, Wiertzema J, Peng P, Min M, Cheng Y, An J, Ma Y, Fan X, Niemira BA, Baumler DJ, Chen C, Chen P, Ruan Chen R. Effects of intense pulsed light and gamma irradiation on Bacillus cereus spores in mesquite pod flour. Food Chem 2020; 344:128675. [PMID: 33277126 DOI: 10.1016/j.foodchem.2020.128675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023]
Abstract
This study was conducted to evaluate the inactivation of Bacillus cereus spore in mesquite flour with intense pulsed light (IPL) and gamma radiation. The physical, chemical, and toxicity of treated mesquite flour were also investigated. The results showed that up to 3.51 log10CFU/g B. cereus spore inactivation was achieved with 8 kGy of gamma radiation, and up to 1.69 log10CFU/g reductions could be achieved after 28s of catalytic IPL exposure. Although chemometric analysis showed 9-hydroxy-10,12-octadecadienoic acid was slightly increased after a 28s-catalytic IPL treatment, the concentration is within the acceptable range. No significant increase in acetic or propionic acids (typical off-flavor volatile compounds) was observed after either treatment. For cytotoxicity, the Caco-2 cell viability analysis revealed that these two technologies did not induce significant cytotoxicity to the treated mesquite flour. Overall, these two technologies exhibit strong potential for the decontamination of B. cereus in mesquite flour.
Collapse
Affiliation(s)
- Dongjie Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Wes Mosher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Justin Wiertzema
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Peng Peng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Min Min
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Jun An
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Xuetong Fan
- USDA ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | | | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Roger Ruan Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
26
|
|
27
|
Chen D, Wiertzema JR, Peng P, Cheng Y, Wang Y, Liu J, Ma Y, Mosher W, Kang M, Min M, Chen P, Baumler DJ, Chen C, Lee L, Vickers Z, Feirtag J, Ruan R. Catalytic intense pulse light inactivation of Cronobacter sakazakii and other pathogens in non-fat dry milk and wheat flour. Food Chem 2020; 332:127420. [PMID: 32622191 DOI: 10.1016/j.foodchem.2020.127420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
The outbreaks of Cronobacter sakazakii, Salmonella spp, and Bacillus cereus in powdered foods have been increasing in worldwide. However, an effective method to pasteurize powdered foods before consumption remains lacking. A prototype Intense Pulsed Light (IPL) system was developed to disinfect powdered foods under different IPL and environmental conditions. Synergistic effect of IPL and TiO2 photocatalysis on microbial inactivation was studied. The results show that high energy intensity of each pulse, high peak intensity, and short pulsed duration contributed to a high microbe inactivation. With TiO2 photocatalysis, one additional log10 reduction was achieved, bringing the total log reduction to 4.71 ± 0.07 (C. sakazakii), 3.49 ± 0.01 (E. faecium), and 2.52 ± 0.10 (B. cereus) in non-fat dry milk, and 5.42 ± 0.10 (C. sakazakii), 4.95 ± 0.24 (E. faecium), 2.80 ± 0.23 (B. cereus) in wheat flour. IPL treatment combined with the TiO2 photocatalysis exhibits a strong potential to reduce the energy consumption in improving the safety of powdered foods.
Collapse
Affiliation(s)
- Dongjie Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Justin R Wiertzema
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Peng Peng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yunpu Wang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; National Key Laboratory of Food Science, Nanchang University, Jiangxi, China
| | - Juer Liu
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Wes Mosher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Myungwoo Kang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Min Min
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | | | - Zata Vickers
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Joellen Feirtag
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
28
|
Aguilar CN, Ruiz HA, Rubio Rios A, Chávez-González M, Sepúlveda L, Rodríguez-Jasso RM, Loredo-Treviño A, Flores-Gallegos AC, Govea-Salas M, Ascacio-Valdes JA. Emerging strategies for the development of food industries. Bioengineered 2020; 10:522-537. [PMID: 31633446 PMCID: PMC6844418 DOI: 10.1080/21655979.2019.1682109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Undoubtedly, the food industry is undergoing a dynamic process of transformation in its continual development in order to meet the requirements and solve the great problems represented by a constantly growing global population and food claimant in both quantity and quality. In this sense, it is necessary to evaluate the technological trends and advances that will change the landscape of the food processing industry, highlighting the latest requirements for equipment functionality. In particular, it is crucial to evaluate the influence of sustainable green biotechnology-based technologies to consolidate the food industry of the future, today, and it must be done by analyzing the mega-consumption trends that shape the future of industry, which range from local sourcing to on-the-go food, to an increase in organic foods and clean labels (understanding ingredients on food labels). While these things may seem alien to food manufacturing, they have a considerable influence on the way products are manufactured. This paper reviews in detail the conditions of the food industry, and particularly analyzes the application of emerging technologies in food preservation, extraction of bioactive compounds, bioengineering tools and other bio-based strategies for the development of the food industry.
Collapse
Affiliation(s)
- Cristóbal N Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Anilú Rubio Rios
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Mónica Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Leonardo Sepúlveda
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Araceli Loredo-Treviño
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Adriana C Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Mayela Govea-Salas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Juan A Ascacio-Valdes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|