1
|
Bereka TY, Zhou X, Sun Z, Jin Z. Debranching by enzymatic extrusion of oat flour for enhanced amylose-lipid complex formation: Effects on in vitro digestibility and functional properties. Food Chem 2025; 477:143489. [PMID: 39999555 DOI: 10.1016/j.foodchem.2025.143489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
The amylose-lipid complex, also known as resistant starch type 5, is classified as dietary fibre with well-recognized health benefits. This study investigated its formation in pre-gelatinized whole oat flour using enzymatic extrusion-debranching and evaluated its effects on in vitro digestibility and functional properties. Whole oat grains were cooked in a steam oven, dried, ground, blended with pullulanase (60 U/g), and extruded enzymatically. Enzymatic extrusion increased oat flour's amylose content from 16.71 % to 26.93 % and resistant starch from 6.87 % to 31.99 %. Enzyme-extruded oat flour exhibited a V-type crystallinity pattern, confirmed amylose-lipid complex formation, and showed good thermal stability with two endothermic peaks at 90-110 °C and 110-130 °C. Additionally, enzymatic extrusion reduced the flour's viscosity and increased the water solubility index. These findings confirm that pullulanase extrusion effectively enhances resistant starch in lipid-rich cereal flour.
Collapse
Affiliation(s)
- Tizazu Yirga Bereka
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Postharvest Management, Jimma University College of Agriculture and Veterinary Medicine, 307 Jimma, Ethiopia
| | - Xing Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenye Sun
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Jiang W, Gao J, Ming J, Li F. Influence of mulberry, pectin, rutin, and their combinations on α-amylase activity and glucose absorption during starch digestion. Food Chem 2025; 465:142136. [PMID: 39602946 DOI: 10.1016/j.foodchem.2024.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
Most studies have primarily focused on the effects of individual sources of pectin or polyphenols on starch digestibility. However, the interactions between pectin and polyphenols in digestive fluids may influence their inhibitory capacity against starch digestion by modulating α-amylase activity (αAA), a relationship that remains poorly understood. This study aims to clarify how pectin affects starch digestion when combined with mulberry fruit powder (MFP), mulberry polyphenol extract (MPE), and rutin (the main phenolic compound in MPE). Results showed that the combination of pectin and MFP initially inhibited αAA but later enhanced it. The combination of pectin and MPE consistently showed stronger inhibition of αAA than MPE alone throughout digestion; similar results were observed for the pectin-rutin combination, though the pectin-MPE pairing exhibited greater inhibition than the latter. Pectin's enhanced inhibitory effect on starch digestion may arise from its interactions with α-amylase, starch, and polyphenols through hydrophobic interactions, hydrogen bonding, and non-covalent forces.
Collapse
Affiliation(s)
- Wei Jiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China
| | - Jiuyi Gao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
3
|
Ye P, Mao C, Song M, Liu T, Xie Y, Pang H, Chen X, Wang Y, Wang Y. Effect of endogenous proteins and lipids on yam flour during radio frequency explosion puffing: Characterization, microstructure, function, and in vitro digestibility. Food Chem 2025; 464:141710. [PMID: 39442211 DOI: 10.1016/j.foodchem.2024.141710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Radio frequency explosion puffing (RFEP) can improve yam flour properties, in which endogenous proteins and lipids play an important role, but the action mechanism is unclear. In this study, native yam flour was defatted and/or deproteinized and then treated with RFEP. The results indicated that RFEP caused protein covering layers on the starch surface to become loose, and these loose layers interacted with lipids and then rewrapped tightly around the starch surface to form compact matrixes. The existence of lipids prevented the shedding of protein covering layers from starch surface during RFEP. The compact matrixes caused decrease in intermolecular hydrogen bonds and relative crystallinity and changes in structure of protein peptide group and protein amide II bands. The compact matrixes reduced the contact of water molecules and enzyme with starch, inhibiting the gelatinization, swelling, and digestibility. Endogenous proteins had a greater impact on yam flour properties during RFEP. These findings offer new insights for the development of yam flour products and the extensive application of RFEP technology in the food industry.
Collapse
Affiliation(s)
- Pengfei Ye
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Chao Mao
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Mingxia Song
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Tong Liu
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Yingman Xie
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Huiyun Pang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Xiangwei Chen
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Yequn Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Yunyang Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Liu M, Liu T, Zhang J, Liu Y, Zhao Y, Zhu Y, Bai J, Fan S, Cui S, He Y, Xiao X. Study on the Mechanism of Effect of Protein on Starch Digestibility in Fermented Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22269-22278. [PMID: 39344594 DOI: 10.1021/acs.jafc.4c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Previous studies have shown that fermented barley has a lower digestion rate. However, it remains unclear whether the antidigestibility of starch in fermented barley is affected by other nonstarch components. In this paper, the removal of protein, lipid, and β-glucan improved the hydrolysis rate of starch and the protein showed the greatest effect. Subsequently, the inhibitory mechanism of protein on starch digestion was elucidated from the perspective of starch physicochemical properties and structural changes. The removal of protein increased the swelling power of starch from 10.09 to 11.14%. The short-range molecular ordered structure and the helical structure content decreased. The removal of protein reduced the coating and particle size of the starch particles, making the Maltese cross more dispersed. In summary, protein in fermented barley enhanced the ordered structure of starch by forming a physical barrier around starch and prevented the expansion of starch, which inhibited the hydrolysis of starch.
Collapse
Affiliation(s)
- Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shumao Cui
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Chen X, Zhu L, Zhang H, Wu G, Cheng L, Zhang Y. A review of endogenous non-starch components in cereal matrix: spatial distribution and mechanisms for inhibiting starch digestion. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38920118 DOI: 10.1080/10408398.2024.2370487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
6
|
Hou Y, Wei M, Wu Y, Ouyang J. In vitro digestibility of starch and protein in cooked wheat and oat whole flours: A comparative study. Food Chem 2024; 440:138203. [PMID: 38104452 DOI: 10.1016/j.foodchem.2023.138203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Whole grains have garnered significant attention in the food industry due to their retained abundant nutrients when compared to refined grains. However, limited knowledge exists regarding the digestive behavior of starch and protein. This study compared the physicochemical properties and in vitro starch and protein digestibility of cooked whole wheat flour (WF) and naked oat flour (NOF), and evaluated the impact of endogenous components (protein, lipid, β-glucan, and polyphenol) on the physicochemical properties and digestibility of WF and NOF. The result indicated that the final hydrolysis rate of WF samples (starch: 23.2 %∼46.3 %; protein: 23.1 %∼63.0 %) was lower than that of NOF samples (starch: 32.1 %∼61.0 %; protein: 32.3 %∼63.6 %). The removal of different endogenous components led to improved digestibility of starch and protein in both WF and NOF. This study contributes to the understanding of the starch and protein digestibility of whole grains, consequently facilitating the development of whole grain products.
Collapse
Affiliation(s)
- Yuqi Hou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Mengjie Wei
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China.
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Wu C, Wang W, Jia J, Guo L, Zhang C, Qian JY. Effect of endogenous protein and lipid removal on the physicochemical and digestion properties of sand rice (Agriophyllum squarrosum) flour. Int J Biol Macromol 2024; 266:131269. [PMID: 38556228 DOI: 10.1016/j.ijbiomac.2024.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The study investigated the effect of removing protein and/or lipid on the physicochemical characteristics and digestibility of sand rice flour (SRF). Morphological images showed that protein removal had a greater impact on exposing starch granules, while lipids acted as an adhesive. The treatment altered starch content in SRF samples, leading to increased starch crystallinity, denser semi-crystalline region, lower onset gelatinization temperature (To), higher peak viscosity and gelatinization enthalpy (ΔH), where Protein removal showed a more pronounced effect on altering physicochemical properties compared to lipid removal. The research revealed a positive correlation between rapidly digestible starch (RDS), maximum degree of starch hydrolysis (C∞), digestion rate constant (k) values and 1047/1022 cm-1 ratio, showing a strong connection between short-range structure and starch digestibility. The presence of endogenous proteins and lipids in SRF hinder digestion by restricting starch swelling and gelatinization, and physically obstructing enzyme-starch interaction. Lipids had a greater impact on starch digestibility than proteins, possibly due to their higher efficacy in reducing digestibility, higher lipid content with greater potential to form starch-lipid complexes. This study provides valuable insights into the interaction between starch and proteins/lipids in the sand rice seed matrix, enhancing its applicability in functional and nutritional food products.
Collapse
Affiliation(s)
- Chunsen Wu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| | - Weizhen Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Juan Jia
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Lunan Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| |
Collapse
|
8
|
Yang Y, Wang Y, Zhang R, Jiao A, Jin Z. The impact of different soluble endogenous proteins and their combinations with β-glucan on the in vitro digestibility, microstructure, and physicochemical properties of highland barley starch. Int J Biol Macromol 2024; 260:129417. [PMID: 38224806 DOI: 10.1016/j.ijbiomac.2024.129417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The impacts of protein types and its interaction with β-glucan on the in vitro digestibility of highland barley starch were investigated through analyzing physicochemical and microstructural properties of highland barley flour (HBF) after sequentially removing water- (WP), salt- (SP), alcohol- (AP) and alkali-soluble (AlkP) proteins. Resistant starch (RS) increased significantly in HBF after removing WP and SP, and RS of HBF was lower than that of without β-glucan. After removing WP, SP and AP, swelling powers of HBF without β-glucan (9.33-9.77) were higher than those of HBF (12.09-15.95). Trends of peak viscosity and peak temperature (thermal degradation temperature) were similar as swelling power, and HBF without AP showed the highest peak temperature (310.33 °C). Removals of different proteins improved the crystalline structure and short-range order of starch. There was a blue shift in T2 values and an opposite change in free water proportion. The matrix on starch surface was mainly formed by AP and AlkP, which could be aggregated by β-glucan. But, the inhibitory effect of AP or AlkP was stronger than that of proteins combined with β-glucan. These results help in the development of starch-based foods with different digestive properties by combining different protein types with β-glucan.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruixin Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Chen X, Zhang H, Zhu L, Wu G, Cheng L, Chen Y, Yin X, Zhang Y. The combined actions of the granule surface barrier and multiscale structural evolution of starch on in vitro digestion of oat flour. Int J Biol Macromol 2024; 259:129334. [PMID: 38218298 DOI: 10.1016/j.ijbiomac.2024.129334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
The digestive properties of oat-based food have garnered considerable interest. This study aimed to explore the internal and external factors contributing to different digestion properties of oat flour under actual processing conditions. Analysis of the ordered structure of oat starch revealed that an increase in gelatinization moisture to 60 % led to a decrease in crystallinity, R1047/1022 value, and helical structures content to 0, 0.48 %, and 1.45 %, respectively. Even when the crystal structure was completely destroyed, the short-range structure retained a certain degree of order. Surface structure observations of starch granules and penetration experiments with amylase-sized polysaccharide fluorescence probes indicated that non-starch components and small pores effectively hindered the diffusion of the probes but low-moisture (20 %) gelatinization substantially damaged this barrier. Furthermore, investigations into starch digestibility and starch molecular structure revealed that the ordered structure remaining inside the starch after high gelatinization delayed the digestion rate (0.028 min-1) and did not increase the content of resistant starch (7.10 %). It was concluded that the surface structure and non-starch components of starch granules limited the extent of starch digestion, whereas the spatial barrier of the residual ordered structure affected the starch digestion rate.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yuhang Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianting Yin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
10
|
Xie J, Cheng L, Li Z, Li C, Hong Y, Gu Z. Effect of non-starch components on the structural properties, physicochemical properties and in vitro digestibility of waxy highland barley starch. Int J Biol Macromol 2024; 255:128013. [PMID: 37951447 DOI: 10.1016/j.ijbiomac.2023.128013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Highland barley (HB) endosperm with an amylose content of 0-10 % is called waxy HB (WHB). WHB is a naturally slow-digesting grain, and the interaction between its endogenous non-starch composition and the WHB starch (WHBS) has an important effect on starch digestion. This paper focuses on the mechanisms by which the components of β-glucan, proteins and lipids affect the molecular, granular, crystalline structure and digestive properties of WHBS. After eliminating the main nutrients except for starch, the estimated glycemic index (eGI) of the samples rose from 62.56 % to 92.93 %, and the rapidly digested starch content increased from 60.81 % to 98.56 %, respectively. The resistant starch (RS) content, in contrast, dropped from 38.61 % to 0.13 %. Comparatively to lipids, β-glucan and protein contributed more to the rise in eGI and decline in RS content. The crystalline characteristics of starch were enhanced in the decomposed samples. The samples' gelatinization properties improved, as did the order of the starch molecules. Protein and β-glucan form a dense matrix on the surface of WHBS particles to inhibit WHBS digestion. In summary, this study revealed the mechanism influencing the digestibility of WHBS from the perspective of endogenous non-starch composition and provided a theoretical basis to develop slow-digesting foods.
Collapse
Affiliation(s)
- Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Jiaxing Institute of Future Food, Jiaxing 314050, People's Republic of China.
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Seh MA, Amin T, Hussain SZ, Bashir O, Bashir S, Makroo HA, Jan S, Yousouf M, Manzoor S, Gani G, Kaur G, Dar BN, Fayaz U, Shah IA. Physicochemical, thermal, pasting, morphological, functional and bioactive binding characteristics of starches of different oat varieties of North-Western Himalayas. Int J Biol Macromol 2023; 253:126612. [PMID: 37652335 DOI: 10.1016/j.ijbiomac.2023.126612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Starches were isolated from five oat varieties (SFO-1, SFO-3, Sabzar, SKO-20 and SKO-96) grown in North-Western Himalayas of India. Moisture content of the varieties ranged from 9.25 ± 0.09 to 13.21 ± 0.11 %, indicating their shelf-stability. Results suggested >90 % purity of starches as was evident from values of ash, proteins, and lipids. Amylose content results showed that all starches fall within category of intermediate-amylose starches. Lambdamax, blue value and OD620/550 were found significantly (p ≤ 0.05) higher in SKO-20. Sabzar exhibited higher starch hydrolysis percentage of 85.16 % whereas, lowest was observed in SKO-20 (78.12 %). Degree of syneresis was higher in SKO-20 however, its freeze-thaw stability was lesser. Wide peak in FTIR spectra at 3320 cm-1 confirms nature of starches. SKO-20 exhibited significantly higher onset gelatinization temperature (65.19 ± 1.06 °C) and enthalpy (15.78 ± 0.15 J/g) whereas, Sabzar exhibited lowest enthalpy. Pasting characteristics indicated lowest and highest final viscosity in SKO-20 (341.30 ± 2.11 mPas) and SKO-96 (1470 ± 4.56 mPas), respectively. SEM results indicated irregular and polygonal shape of starches with size <10 μm. SKO-20 exhibited lowest disintegration time of 2.08 ± 0.01 min and Sabzar showed highest (3.31 ± 0.07 min). SKO-20 released more curcumin (71.28 %) whereas, Sabzar released less. This suggests that SKO-20 could be used as better excipient for delivery of curcumin at target site.
Collapse
Affiliation(s)
- Mohammad Amaan Seh
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India.
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144401, Punjab, India.
| | - Shubli Bashir
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Hilal A Makroo
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, Awantipora 192122, Jammu and Kashmir, India
| | - Samar Jan
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Monisa Yousouf
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Sobiya Manzoor
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Gousia Gani
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Gurkirat Kaur
- Electron Microscopy and Nano-Science Lab, Punjab Agricultural University, Ludhiana, India
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, Awantipora 192122, Jammu and Kashmir, India
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
| | - Immad A Shah
- Indian Council of Medical Research-National Institute of Occupational Health, Ahmedabad 380016, Gujarat, India
| |
Collapse
|
12
|
Feng H, Luo L, Wang L, Ding Y, Sun L, Zhuang Y. Effects of Tremella aurantialba on physical properties, in vitro glucose release, digesta rheology, and microstructure of bread. J Food Sci 2023; 88:4853-4866. [PMID: 37872789 DOI: 10.1111/1750-3841.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
In this study, the functional properties of a mixture consisting of Tremella aurantialba powder (TAP) and wheat flour were investigated. Further, the effects of adding 0%, 1%, 3%, 5%, and 10% TAP on the physical properties of bread, as well as its glucose release, microstructure, and rheology during in vitro simulated digestion were studied. The water-holding, oil-holding, and swelling capacities of wheat flour were significantly enhanced (p < 0.05) with the increase of TAP. The addition of TAP increased the hardness, chewiness, gumminess, and moisture content and darkened the color of the bread. Sensory evaluation showed that adding the 3% of TAP could produce bread that satisfies the requirements of consumers. Furthermore, adding TAP could inhibit the release of glucose from the digesta into the dialysis solution, especially the addition of 10% TAP reduced the release of bread glucose by 23.81%. This phenomenon might be related to the increased viscosity of the digesta and the smooth physical barrier on the surface of starch granules during simulated in vitro digestion of bread. Therefore, as a natural food, T. aurantialba has great potential in improving the functional properties of bread and the application of starch matrix products.
Collapse
Affiliation(s)
- Hui Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lifei Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liyan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
13
|
Shen M, Huang K, Guan X, Xia J, Sun Z, Yu Z, Fang Y. Effects of milling on texture and in vitro starch digestibility of oat rice. Food Chem X 2023; 19:100783. [PMID: 37780273 PMCID: PMC10534086 DOI: 10.1016/j.fochx.2023.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
Compared with other oat products, consumers in China prefer oat rice and porridge made from naked oat. However, this oat product usually has poor sensory acceptance, which is directly related to the texture properties. This study aimed to use the milling method to improve the oat rice texture. The nutrient component, microstructure, pasting, and thermal properties of oat treated with different degrees of milling (0 s, 20 s, 40 s, 60 s, and 80 s) were researched. The results showed that milling would damage the bran layer of oat rice, increasing starch, β-glucan, total leached solids content, and the gelatinization enthalpy (ΔH). Meanwhile, oil, protein content, the pasting viscosity, and the pasting temperature were decreased. Milling made oat rice sticky and soft, and the bound water and non-flowing water migrated like flowing water. The cross-section of oat rice showed that milling damaged the surface of oat rice, which was beneficial to water entry and starch dissolution, and increased the viscosity of oat rice. When the milling time was 40 s and 60 s, the appearance, aroma, taste, texture, and overall acceptability of oat porridge were better. Moreover, rapid digestion fraction (k1) and slow digestion fraction (k2) are the lowest and have the effect of low blood glucose rise rate.
Collapse
Affiliation(s)
- Meng Shen
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai 200093, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Kai Huang
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai 200093, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Xiao Guan
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai 200093, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Jian Xia
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai 200093, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Zhu Sun
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Zhiquan Yu
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, PR China
| |
Collapse
|
14
|
Xiang G, Li J, Lin Q, Zhang Y, Ding Y, Guo X, Pan Q, Liu Q, Fu X, Yang Y, Han W, Fang Y. The effect of heat-moisture treatment changed the binding of starch, protein and lipid in rice flour to affect its hierarchical structure and physicochemical properties. Food Chem X 2023; 19:100785. [PMID: 37780235 PMCID: PMC10534091 DOI: 10.1016/j.fochx.2023.100785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
This study investigated the effect of removing proteins, lipids and starch on the structure, physicochemical properties and digestion properties of rice flour (with 30% moisture) treated with heat moisture treatment (HMT). According to the results, HMT caused the adhesion and agglomeration of the rice flour, promoted the binding between starch, protein and lipid molecular chains and led to the formation of complexes (especially starch-lipid complexes), which hindered the removal of non-starch components. Compared to the untreated rice flour, the HMT treated lipid-removal rice flour had small changes in their crystallinity, gelatinization temperature and viscosity property. After removing protein, the crystallinity, peak viscosity, final viscosity, breakdown and starch digestibility were sharply increased. In particular, the peak viscosity increased from 811 cP to 1746 cP and the enthalpy change increased from 5.33 J/g to 10.18 J/g. These findings are helpful in understanding the contribution of removing endogenous proteins and lipids to the physicochemical changes of HMT treated rice flour during its heating process and thus can be helpful in controlling the quality of rice flour through HMT.
Collapse
Affiliation(s)
- Guiyuan Xiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jiangtao Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yili Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yuqin Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiaofeng Guo
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qianru Pan
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qiongxiang Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiangjin Fu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Ying Yang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wenfang Han
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
15
|
Yang Z, Zhang Y, Wu Y, Ouyang J. Factors influencing the starch digestibility of starchy foods: A review. Food Chem 2023; 406:135009. [PMID: 36450195 DOI: 10.1016/j.foodchem.2022.135009] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Starchy foods are a major energy source of the human diet, their digestion is closely related to human health. Most foods require lots of processing before eating, therefore, many factors can influence starch digestibility. The factors that affect the digestibility of starches have been widely discussed previously, but the extracted starches in those studies were different from those present within the actual food matrix. This review summarizes the factors influencing the starch digestibility in starchy foods. Endogenous non-starch components hinder the starch digestive process. Food ingredients and additives decrease starch digestibility by inhibiting the activity of digestive enzymes or hindering the contact between starch and enzymes. Storage induce the retrogradation of starch, decreasing the digestibility of foods. Therefore, preparing starchy foods with whole grains, processing them as little as possible, using food additives reasonably, and storage conditions may all be beneficial measures for the production of low GI foods.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yuyang Zhang
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Wang Y, Guo J, Wang C, Li Y, Bai Z, Luo D, Hu Y, Chen S. Effects of konjac glucomannan and freezing on thermal properties, rheology, digestibility and microstructure of starch isolated from wheat dough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
The Quality Characteristics Comparison of Stone-Milled Dried Whole Wheat Noodles, Dried Wheat Noodles, and Commercially Dried Whole Wheat Noodles. Foods 2022; 12:foods12010055. [PMID: 36613271 PMCID: PMC9818217 DOI: 10.3390/foods12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
To explore the quality differences between dried wheat noodles (DWNs), stone-milled dried whole wheat noodles (SDWWNs), and commercially dried whole wheat noodles (CDWWNs), the cooking quality, texture properties, microstructure, protein secondary structure, short-range order of starch, antioxidant activity, in vitro digestive properties, and estimated glycemic index (eGI) of the noodles were investigated. The results showed that the cooking loss of SDWWNs was significantly lower than that of CDWWNs. The springiness, cohesiveness, gumminess, chewiness, and resilience of SDWWNs reached the maximum, and the tensile strength was significantly increased. The continuity of the gluten network of SDWWNs was reduced, and more holes appeared. The protein secondary structure of the SDWWNs and CDWWNs was mainly dominated by the β-sheet and β-turn, and the differences in the starch short-range order were not significant. Prior to and after the in vitro simulated digestion, the DPPH radical scavenging activity, the hydroxyl radical scavenging activity, and the total reducing power of the SDWWNs were the highest. Although the digested starch content of SDWWNs did not differ significantly from that of CDWWNs, the eGI was significantly lower than that of the CDWWNs and DWNs. Overall, the SDWWNs had certain advantages, in terms of quality characteristics.
Collapse
|
18
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Lu WC, Cheng YT, Chan YJ, Li PH. Food safety assessments of acrylamide formation and characterizations of flaky rolls enriched with black rice (Oryza sativa). Front Nutr 2022; 9:1027800. [PMID: 36337666 PMCID: PMC9633999 DOI: 10.3389/fnut.2022.1027800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate the physicochemical composition, textural parameters, and chemical constituent of flaky rolls incorporated with different proportions of black rice flour. According to farinographic characteristics, the addition of black rice flour could reduce the stability and increase the dough development time and water absorption (%). While for the extensographic properties, addition of black rice flour resulted in significantly different maximum resistance to extension (BU) and extensibility (cm) vs. the control. With the addition of black rice flour in flaky rolls, the crude protein, total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF) were significantly improved. Glucose released was much lower with 10 and 20% black rice than the control and 5% black rice because of the higher black rice inclusion. With increasing black rice incorporation, total anthocyanin content, and antioxidant capacity was also improved. The content of asparagine, acrylamide, hydroxymethylfurfural (HMF), furfural, methylglyoxal, and glyoxal in flaky rolls was also increased. The proper content of black rice flour (5%) could significantly enhance the stability of the dough properties; control the final volume, texture, and appearance; and retain good protein and fiber composition, antioxidant capacity, and overall acceptance of the flaky roll.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi City, Taiwan
| | - Yu-Tsung Cheng
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- *Correspondence: Po-Hsien Li
| |
Collapse
|
20
|
Gu Y, Qian X, Sun B, Tian X, Wang X, Ma S. Effect of roasting treatment on the micromorphology, gelatinization, structure, and digestibility of whole oat flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gasiński A, Kawa-Rygielska J, Błażewicz J, Leszczyńska D. Malting procedure and its impact on the composition of volatiles and antioxidative potential of naked and covered oat varieties. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Zou X, Wang X, Zhang M, Peng P, Ma Q, Hu X. Pre-baking-steaming of oat induces stronger macromolecular interactions and more resistant starch in oat-buckwheat noodle. Food Chem 2022; 400:134045. [DOI: 10.1016/j.foodchem.2022.134045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022]
|
23
|
Streimikyte P, Kailiuviene J, Mazoniene E, Puzeryte V, Urbonaviciene D, Balciunaitiene A, Liapman TD, Laureckas Z, Viskelis P, Viskelis J. The Biochemical Alteration of Enzymatically Hydrolysed and Spontaneously Fermented Oat Flour and Its Impact on Pathogenic Bacteria. Foods 2022; 11:2055. [PMID: 35885298 PMCID: PMC9316710 DOI: 10.3390/foods11142055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Avena sativa (A. sativa) oats have recently made a comeback as suitable alternative raw materials for dairy substitutes due to their functional properties. Amylolytic and cellulolytic enzyme-assisted modifications of oats produce new products that are more appealing to consumers. However, the biochemical and functional alteration of products and extracts requires careful selection of raw materials, enzyme cocktails, and technological aspects. This study compares the biochemical composition of different A. sativa enzyme-assisted water extracts and evaluates their microbial growth using spontaneous fermentation and the antimicrobial properties of the ferment extracts. Fibre content, total phenolic content, and antioxidant activity were evaluated using traditional methodologies. The degradation of A. sativa flour was captured using scanning electron microscopy (SEM); moreover, sugar and oligosaccharide alteration were identified using HPLC and HPLC-SEC after INFOGEST in vitro digestion (IVD). Additionally, taste differentiation was performed using an electronic tongue with principal component analysis. The oat liquid extracts were continuously fermented using two ancient fermentation starters, birch sap and Tibetan kefir grains. Both starters contain lactic acid bacteria (LAB), which has major potential for use in bio-preservation. In fermented extracts, antimicrobial properties against Gram-positive Staphylococcus aureus and group A streptococci as well as Gram-negative opportunistic bacteria such as Escherichia coli and Pseudomonas aeruginosa were also determined. SEM images confirmed the successful incorporation of enzymes into the oat flour. The results indicate that using enzyme-assisted extraction significantly increased TPC and antioxidant activity in both the extract and residues. Additionally, carbohydrates with a molecular mass (MM) of over 70,000 kDa were reduced to 7000 kDa and lower after the incorporation of amylolytic and cellulolytic enzymes. The MM impacted the variation in microbial fermentation, which demonstrated favourable antimicrobial properties. The results demonstrated promising applications for developing functional products and components using bioprocessing as an innovative tool.
Collapse
Affiliation(s)
- Paulina Streimikyte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | | | - Edita Mazoniene
- Roquette Amilina, 35101 Panevėžys, Lithuania; (J.K.); (E.M.)
| | - Viktorija Puzeryte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Aiste Balciunaitiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | | | - Zygimantas Laureckas
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| |
Collapse
|
24
|
Yang Y, Jiao A, Liu Q, Ren X, Zhu K, Jin Z. The effects of removing endogenous proteins, β-glucan and lipids on the surface microstructure, water migration and glucose diffusion in vitro of starch in highland barley flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
He M, Ding T, Wu Y, Ouyang J. Effects of Endogenous Non-Starch Nutrients in Acorn (Quercus wutaishanica Blume) Kernels on the Physicochemical Properties and In Vitro Digestibility of Starch. Foods 2022; 11:foods11060825. [PMID: 35327248 PMCID: PMC8947623 DOI: 10.3390/foods11060825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The present study investigated the multi-scale structure of starch derived from acorn kernels and the effects of the non-starch nutrients on the physicochemical properties and in vitro digestibility of starch. The average polymerization degree of acorn starch was 27.3, and the apparent amylose content was 31.4%. The crystal structure remained as C-type but the relative crystallinity of acorn flour decreased from 26.55% to 25.13%, 25.86% and 26.29% after the treatments of degreasing, deproteinization, and the removal of β-glucan, respectively. After the above treatments, the conclusion temperature of acorn flour decreased and had a significant positive correlation with the decrease in the crystallinity. The aggregation between starch granules, and the interactions between starch granules and both proteins and lipids, reduced significantly after degreasing and deproteinization treatments. The endogenous protein, fat, and β-glucan played key roles in reducing the digestibility of acorn starch relative to other compounds, which was dictated by the ability for these compounds to form complexes with starch and inhibit hydrolysis.
Collapse
Affiliation(s)
- Mohe He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China; (M.H.); (T.D.)
| | - Tianyi Ding
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China; (M.H.); (T.D.)
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China;
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China; (M.H.); (T.D.)
- Correspondence: ; Tel.: +86-10-62336700
| |
Collapse
|
26
|
Liu M, Yang Q, Wu Y, Ouyang J. Effects of Endogenous Polyphenols in Acorn (
Quercus wutaishanica
Blume) Kernels on the Physicochemical Properties of Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengyu Liu
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Qinxue Yang
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
27
|
Shen Y, Wu D, Fogliano V, Pellegrini N. Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased γ-oryzanol bioaccessibility. Food Funct 2021; 12:11547-11556. [PMID: 34708854 DOI: 10.1039/d1fo03039f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The amount and distribution of rice endosperm lipids can influence starch digestibility and nutritional properties of white rice. However, this aspect has been poorly investigated thus far. We investigated the digestion properties of five rice varieties and common rice having different lipid contents (8.1-24.2 g kg-1) showing that the lipid content is positively correlated with the resistant starch content and negatively correlated with digestion extent (C∞) and estimated glycemic index (eGI). After non-starch lipid (NSL) removal from selected high-lipid mutants (ALK3 and RS4), C∞ was significantly enhanced compared to native samples when digested by α-amylase, while this phenomenon was not observed in low-lipid rice (GZ93). When pancreatin was used, starch digestion was only delayed; triglycerides were gradually hydrolyzed by pancreatic lipase and the lipids-starch complex became no longer resistant to hydrolysis by α-amylase. These results indicated that rice endosperm lipids inhibited starch digestion, by transforming part of the starch into a slowly digestible starch fraction. High-lipid mutants also had a higher total amount of, and more bioaccessible, γ-oryzanol than low-lipid varieties. This study indicates that high-lipid white rice has great potential in designing functional rice-based foods, combining a relatively lower eGI and a high γ-oryzanol content.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.,Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.,Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, PR China
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, Udine, 33100, Italy.
| |
Collapse
|
28
|
Informative title: Incorporation of finger millet affects in vitro starch digestion, nutritional, antioxidative and sensory properties of rice noodles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Nutritional Composition, In Vitro Antioxidant Activity and Phenolic Profile of Shortcrust Cookies Supplemented by Edible Flowers. Foods 2021; 10:foods10112531. [PMID: 34828812 PMCID: PMC8620082 DOI: 10.3390/foods10112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, the changes in nutritional composition, phenolic compounds and antioxidant activity in free and bound fractions of shortcrust cookies were investigated. By incorporating ingredients such as kamut, matcha tea, dried mango and jasmine flowers, the contents of crude and neutral-detergent fibre reached up to 2.0% and 5.0%, respectively. Similar increments were observed in phenolic compound contents and 2,2-diphenyl-1-picrylhydrazyl scavenging activity values. Concerning cookies supplemented with matcha tea, the total phenolic compound content raised from 1.0 to 4.8 mg gallic acid equivalent/g and the antioxidant activity value increased from 0.5 to 5.7 mg trolox equivalent/g on a dry weight basis. For determining the antioxidant activity values in water-soluble and insoluble phenolic fractions of the cookies, a photochemiluminiscence assay was separately applied, and they were found up to 0.8 mg ascorbic acid equivalent/g and 3.2 mg trolox equivalent/g, respectively. The main phenolic compounds in all supplemented cookies were neochlorogenic, gallic and vanillic acids.
Collapse
|
30
|
Endogenous bioactive compounds of naked oats (Avena nuda L.) inhibit α-amylase and α-glucosidase activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Effect of removal of endogenous non-starch components on the structural, physicochemical properties, and in vitro digestibility of highland barley starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Zhou Y, Jiang Q, Ma S, Zhou X. Effect of quercetin on the in vitro Tartary buckwheat starch digestibility. Int J Biol Macromol 2021; 183:818-830. [PMID: 33965481 DOI: 10.1016/j.ijbiomac.2021.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 05/02/2021] [Indexed: 11/29/2022]
Abstract
Tartary buckwheat is one of the few pseudocereals with abundant flavonoids and starch. However, there are different views on the digestibility of Tartary buckwheat starch (TBS) because of its particle size and structure. In this study, fluorescence spectrum methods and enzymatic kinetics were used to investigate the interaction between TBS /two glycosidase (α-amylase and α-glucosidase) and quercetin to explore its digestive properties and provide a perspective regarding the application of TBS in functional starch products. The results showed that the interaction between TBS and quercetin was probably weak hydrophobic force and hydrogen bonding. The inhibitory effect of quercetin on α-amylase was better than that on α-glucosidase. The half inhibitory concentrations (IC50) of quercetin to α-amylase and α- glucosidase was (270 ± 3.31) and (544 ± 9.01) μg/mL, respectively. The intrinsic fluorescence of two enzymes was statically quenched by forming a complex with quercetin. Quercetin also increased the microenvironment hydrophilicity of tryptophan residues in glycosidase. In vitro digestion experiment demonstrated that quercetin and TBS co-gelatinized together was more effective to inhibit TBS hydrolysis than quercetin itself alone. In the first-order kinetic and LOS model, quercetin-starch gel structure and quercetin inhibitory activity against enzymes had synergistic effects of the TBS digestion.
Collapse
Affiliation(s)
- Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingyi Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Sijia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
33
|
Liu T, Wang K, Xue W, Wang L, Zhang C, Zhang X, Chen Z. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Ding Y, Cheng J, Lin Q, Wang Q, Wang J, Yu G. Effects of endogenous proteins and lipids on structural, thermal, rheological, and pasting properties and digestibility of adlay seed (Coix lacryma-jobi L.) starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Shi XD, Huang JJ, Han JZ, Wang SY. Physicochemical and Functional Properties of Starches from Pachyrhizus erosus with Low Digestibility. EFOOD 2021. [DOI: 10.2991/efood.k.210626.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
36
|
Zhang K, Zhang Y, Xu N, Yang X, Zhang G, Zhang Y, Liu Q. Study of the protein, antioxidant activity, and starch during in vitro simulated digestion of green wheat and wheat cooked flours. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1754234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yun Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Ning Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xue Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Guozhi Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yu Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qinghao Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| |
Collapse
|