1
|
Ding Y, Yu Y. Therapeutic potential of flavonoids in gastrointestinal cancer: Focus on signaling pathways and improvement strategies (Review). Mol Med Rep 2025; 31:109. [PMID: 40017144 PMCID: PMC11884236 DOI: 10.3892/mmr.2025.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Flavonoids are a group of polyphenolic compounds distributed in vegetables, fruits and other plants, which have considerable antioxidant, anti‑tumor and anti‑inflammatory activities. Several types of gastrointestinal (GI) cancer are the most common malignant tumors in the world. A large number of studies have shown that flavonoids have inhibitory effects on cancer, and they are recognized as a class of potential anti‑tumor drugs. Therefore, the present review investigated the molecular mechanisms of flavonoids in the treatment of different types of GI cancer and summarized the drug delivery systems commonly used to improve their bioavailability. First, the classification of flavonoids and the therapeutic effects of various flavonoids on human diseases were briefly introduced. Then, to clarify the mechanism of action of flavonoids on different types of GI cancer in the human body, the metabolic process of flavonoids in the human body and the associated signaling pathways causing five common types of GI cancer were discussed, as well as the corresponding therapeutic targets of flavonoids. Finally, in clinical settings, flavonoids have poor water solubility, low permeability and inferior stability, which lead to low absorption efficiency in vivo. Therefore, the three most widely used drug delivery systems were summarized. Suggestions for improving the bioavailability of flavonoids and the focus of the next stage of research were also put forward.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
2
|
Ciudad-Mulero M, Vega EN, García-Herrera P, Fernández-Tomé S, Pedrosa MM, Arribas C, Berrios JDJ, Pan J, Leal P, Cámara M, Fernández-Ruiz V, Morales P. New Gluten-Free Extruded Snack-Type Products Based on Rice and Chickpea and Fortified with Passion Fruit Skin: Extrusion Cooking Effect on Phenolic Composition, Non-Nutritional Factors, and Antioxidant Properties. Molecules 2025; 30:1225. [PMID: 40142002 PMCID: PMC11945582 DOI: 10.3390/molecules30061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The incorporation of pulse flour into gluten-free extruded snacks based on cereals improves the functional properties as well as the nutritional value of these types of products. The aim of this study was to investigate the changes induced by the extrusion process on the functional properties in terms of the concentration of total phenolic compounds (TPC), phenolic families (hydroxybenzoic acids, hydroxycinnamic acids, and flavonols), and non-nutritional factors (inositol phosphates and trypsin inhibitors) of extruded snack-type products developed from novel formulations based on rice-chickpea flours and fortified with different percentages of Fibersol® and passion-fruit-skin flour. The in vitro antioxidant activity of the studied formulations was evaluated to explore their potential for developing sustainable snack-type products with added functional value. The results demonstrated that extrusion treatment caused a statistically significant (p < 0.05) decrease (12-30%) in TPC. Despite this reduction, the extruded formulations preserve an interesting content of these compounds, with hydroxybenzoic acids being the majority in the analyzed formulations. The extrusion process maintained or decreased the content of phytate and total inositol phosphates in samples fortified with passion fruit and Fibersol®. A significant reduction (p < 0.05) of trypsin inhibitor activity (between 86.7% and 95.8%) was observed when comparing extruded samples to their raw counterpart. The antioxidant activity in vitro of the formulations was assessed. The results obtained by the Folin-Ciocalteu method indicated that extrusion caused a decrease in the antioxidant activity of 50% of the analyzed samples, while in the others, no changes were observed. DPPH and FRAP assays tended to demonstrate an increase in antioxidant activity. In general, the highest values were obtained by applying the DPPH method. Additionally, the effects of the ingredients used for fortifying the formulations were investigated. The results highlighted the complexity of the analyzed formulations, revealing that their composition is influenced not only by the presence of Fibersol® and passion fruit but also by the interaction between these two ingredients.
Collapse
Affiliation(s)
- María Ciudad-Mulero
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (E.N.V.); (P.G.-H.); (S.F.-T.); (M.C.); (V.F.-R.); (P.M.)
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (M.M.P.); (C.A.)
| | - Erika N. Vega
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (E.N.V.); (P.G.-H.); (S.F.-T.); (M.C.); (V.F.-R.); (P.M.)
| | - Patricia García-Herrera
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (E.N.V.); (P.G.-H.); (S.F.-T.); (M.C.); (V.F.-R.); (P.M.)
| | - Samuel Fernández-Tomé
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (E.N.V.); (P.G.-H.); (S.F.-T.); (M.C.); (V.F.-R.); (P.M.)
| | - Mercedes M. Pedrosa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (M.M.P.); (C.A.)
| | - Claudia Arribas
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (M.M.P.); (C.A.)
| | - José De J. Berrios
- United States Department of Agriculture-The Agricultural Research Service-Western Regional Research Center (USDA-ARS-WRRC), Albany, CA 94710-1105, USA; (J.D.J.B.); (J.P.); (P.L.)
| | - James Pan
- United States Department of Agriculture-The Agricultural Research Service-Western Regional Research Center (USDA-ARS-WRRC), Albany, CA 94710-1105, USA; (J.D.J.B.); (J.P.); (P.L.)
| | - Priscila Leal
- United States Department of Agriculture-The Agricultural Research Service-Western Regional Research Center (USDA-ARS-WRRC), Albany, CA 94710-1105, USA; (J.D.J.B.); (J.P.); (P.L.)
| | - Montaña Cámara
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (E.N.V.); (P.G.-H.); (S.F.-T.); (M.C.); (V.F.-R.); (P.M.)
| | - Virginia Fernández-Ruiz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (E.N.V.); (P.G.-H.); (S.F.-T.); (M.C.); (V.F.-R.); (P.M.)
| | - Patricia Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (E.N.V.); (P.G.-H.); (S.F.-T.); (M.C.); (V.F.-R.); (P.M.)
| |
Collapse
|
3
|
Ma Y, Bi J, Wu Z, Yi J. Understanding the mechanism of saccharides type and concentration affecting texture of freeze-dried pectin-CMC cryogels through experiment and molecular dynamic simulation. Int J Biol Macromol 2025; 292:139263. [PMID: 39733884 DOI: 10.1016/j.ijbiomac.2024.139263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Saccharides are the dominant factor shaping the texture of freeze-dried products. This study investigated the impact of various molecular-weight saccharides at different concentrations on the physical properties and intermolecular interactions of pectin-CMC cryogels by experiment and molecular dynamic (MD) simulations. Results showed that the increased shrinkage of cryogels and enhanced molecular interactions between saccharides and pectin-CMC were mechanisms that enhanced the hardness of cryogels. Notably, the cryogel with fructose exhibited significantly higher hardness compared to cryogels with other saccharides. The cryogel containing 16 % fructose had the lowest glass transition temperature (Tg), leading to the highest shrinkage (70 %). Moreover, the MD results revealed that fructose had the highest intermolecular interaction energy (coulombic short range) with pectin-CMC (-5316.78 kJ/mol). This study revealed that the intermolecular interactions between the added saccharide and the pectin-CMC, in addition to the density of the cryogel, are critical determinants of the hardness and crispness of cryogels.
Collapse
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Zhonghua Wu
- College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China.
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
4
|
Bashmil YM, Bekes F, Ruderman M, Suleria HAR, Appels R, Dunshea FR. The Physicochemical and Rheological Properties of Green Banana Flour-Wheat Flour Bread Substitutions. PLANTS (BASEL, SWITZERLAND) 2025; 14:207. [PMID: 39861560 PMCID: PMC11768194 DOI: 10.3390/plants14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded. Thus, this study aimed to examine the physicochemical and rheological behavior of wheat flour dough after the addition of varying amounts of Australian, green banana flour (GBF) substitutions (5, 10, 15, 25, and 30%). Using MixoLab 2, we recorded the rheological parameters of the dough that had GBF substitutions. Additionally, the flour color ('L*', 'a*', and 'b*' value) and crumb cell structure analysis were evaluated. Although increasing the amount of GBF replacement generally improved dough quality with all banana cultivars, GBF from Cavendish and Ladyfinger showed a greater improvement than Ducasse. Improved dough mixing stability and increased viscosity, starch gelatinization, and retrogradation were all predicted to contribute to longer bread shelf life. RS content of the enriched bread increased significantly with both Ladyfinger and Ducasse (2.6%), while Ladyfinger bread had the highest DF (9.1%). With increasing GBF, L*, a*, and b* values were changed considerably with a strong linear correlation. A MATLAB analysis indicated substantial variations across samples regarding the small, medium, and total air space counts based on 10% banana flour as a standard level of addition. In conclusion, the processing properties and nutritional value of wheat flour can be enhanced by replacing specific proportions of wheat flour with green banana flour without major detrimental effects on dough processing attributes and thus highlight the possibility of utilizing GBF from different banana varieties for use in fine-tuning composite flour developments.
Collapse
Affiliation(s)
- Yasmeen M. Bashmil
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.R.); (H.A.R.S.); (F.R.D.)
| | | | - Michael Ruderman
- Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.R.); (H.A.R.S.); (F.R.D.)
| | - Hafiz A. R. Suleria
- Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.R.); (H.A.R.S.); (F.R.D.)
| | - Rudi Appels
- Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.R.); (H.A.R.S.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (M.R.); (H.A.R.S.); (F.R.D.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Sitarek P, Merecz-Sadowska A, Sikora J, Dudzic M, Wiertek-Płoszaj N, Picot L, Śliwiński T, Kowalczyk T. Flavonoids and their derivatives as DNA topoisomerase inhibitors with anti-cancer activity in various cell models: Exploring a novel mode of action. Pharmacol Res 2024; 209:107457. [PMID: 39389401 DOI: 10.1016/j.phrs.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Flavonoids, a diverse group of plant-derived secondary metabolites, have garnered significant attention for their potential anti-cancer properties. This review explores the role of flavonoids as inhibitors of DNA topoisomerases, key enzymes essential for DNA replication, transcription, and cell division. The article offers a comprehensive overview of flavonoid classification, biosynthesis, and their widespread natural occurrence. It further delves into the molecular mechanisms through which flavonoids exert their anti-cancer effects, emphasizing their interactions with topoisomerases. The review provides a thorough analysis of both in vitro and in vivo studies that highlight the topoisomerase inhibitory activities of various flavonoids and their derivatives. Key findings demonstrate that flavonoids can function as catalytic inhibitors, poisons, or DNA intercalators, affecting both type I and type II topoisomerases. The structure-activity relationships of flavonoids concerning their topoisomerase inhibitory potency are also examined. This review underscores the potential of flavonoids as promising lead compounds for the development of novel topoisomerase inhibitors, which could have important implications for cancer therapy. However, it also acknowledges the need for further research to fully understand the intricate interactions between flavonoids and topoisomerases within the cellular environment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland.
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, Lodz 90-214, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland
| | - Malwina Dudzic
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Natasza Wiertek-Płoszaj
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle 17042, France
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| |
Collapse
|
6
|
Guo W, Spotti MJ, Portillo-Perez G, Bonilla JC, Bai W, Martinez MM. Molecular changes and interactions of wheat flour biopolymers during bread-making: Implications to upcycle bread waste into bioplastics. Carbohydr Polym 2024; 342:122414. [PMID: 39048204 DOI: 10.1016/j.carbpol.2024.122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
This study aims to understand the molecular and supramolecular transformations of wheat endosperm biopolymers during bread-making, and their implications to fabricate self-standing films from stale white bread. A reduction in the Mw of amylopectin (51.8 × 106 vs 425.1 × 106 g/mol) and water extractable arabinoxylans WEAX (1.79 × 105 vs 7.63 × 105 g/mol), and a decrease in amylose length (245 vs 748 glucose units) was observed after bread-baking. The chain length distribution of amylopectin and the arabinose-to-xylose (A/X) ratio of WEAX remained unaffected during bread-making, suggesting that heat- or/and shear-induced chain scission is the mechanism responsible for molecular fragmentation. Bread-making also resulted in more insoluble cell wall residue, featured by water unextractable arabinoxylan of lower A/X and Mw, along with the formation of a gluten network. Flexible and transparent films with good light-blocking performance (<30 % transmittance) and DPPH-radical scavenging capacity (~8.5 %) were successfully developed from bread and flour. Bread films exhibited lower hygroscopicity, tensile strength (2.7 vs 8.5 MPa) and elastic modulus (67 vs 501 MPa) than flour films, while having a 6-fold higher elongation at break (10.0 vs 61.2 %). This study provides insights into the changes in wheat biopolymers during bread-making and sets a precedent for using stale bread as composite polymeric materials.
Collapse
Affiliation(s)
- Wanxiang Guo
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark
| | - Maria Julia Spotti
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark
| | - Guillermo Portillo-Perez
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark
| | - Jose C Bonilla
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Wenqiang Bai
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark
| | - Mario M Martinez
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
7
|
Wei X, Xu K, Qin W, Lv S, Guo M. Hawthorn (Crataegus pinnatifida) berries ripeness induced pectin diversity: A comparative study in physicochemical properties, structure, function and fresh-keeping potential. Food Chem 2024; 455:139703. [PMID: 38823132 DOI: 10.1016/j.foodchem.2024.139703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
The effect of hawthorn berries ripeness on the physicochemical, structural and functional properties of hawthorn pectin (HP) and its potential in sweet cherry preservation were investigated. With the advanced ripeness of hawthorn berries, the galacturonic acid (GalA) content decreased from 59.70 mol% to 52.16 mol%, the molecular weight (Mw) reduced from 368.6 kDa to 284.3 kDa, the microstructure exhibited variable appearance from thick lamella towards porous cross-linked fragment, emulsifying activity and emulsions stability, antioxidant activities, α-amylase and pancreatic lipid inhibitory capacities significantly increased. The heated emulsion stored for 30 d presented higher creaming index and more ordered oil droplets compared to the unheated emulsion. With the extended berries ripeness, the firmness of HP gels remarkably decreased from 225.69 g to 73.39 g, while the springiness increased from 0.78 to 1.16, HP exhibited a superior inhibitory effect in water loss, browning, softening, and bacterial infection in sweet cherries preservation.
Collapse
Affiliation(s)
- Xueyan Wei
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Kang Xu
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Weishuai Qin
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, China
| | - Shuo Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Mengmeng Guo
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
8
|
Kamble M, Singh A, Singh SV, Upadhyay A, Kondepudi KK, Chinchkar AV. Effect of gastrointestinal resistant encapsulate matrix on spray dried microencapsulated Lacticaseibacillus rhamnosus GG powder and its characterization. Food Res Int 2024; 192:114804. [PMID: 39147504 DOI: 10.1016/j.foodres.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
This study investigated spray drying a method for microencapsulating Lacticaseibacillus rhamnosus GG using a gastrointestinal resistant composite matrix. An encapsulate composite matrix comprising green banana flour (GBF) blended with maltodextrin (MD) and gum arabic (GA). The morphology of resulted microcapsules revealed a near-spherical shape with slight dents and no surface cracks. Encapsulation efficiency and product yield varied significantly among the spray-dried microencapsulated probiotic powder samples (SMPPs). The formulation with the highest GBF concentration (FIV) exhibited maximum post-drying L. rhamnosus GG viability (12.57 ± 0.03 CFU/g) and best survivability during simulated gastrointestinal digestion (9.37 ± 0.05 CFU/g). Additionally, glass transition temperature (Tg) analysis indicated good thermal stability of SMPPs (69.3 - 92.9 ℃), while Fourier Transform infrared (FTIR) spectroscopy confirmed the structural integrity of functional groups within microcapsules. The SMPPs characterization also revealed significant variation in moisture content, water activity, viscosity, and particle size. Moreover, SMPPs exhibited differences in total phenolic and flavonoid, along with antioxidant activity and color values throughout the study. These results suggested that increasing GBF concentration within the encapsulating matrix, while reducing the amount of other composite materials, may offer enhanced protection to L. rhamnosus GG during simulated gastrointestinal conditions, likely due to the gastrointestinal resistance properties of GBF.
Collapse
Affiliation(s)
- Meenatai Kamble
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India; Department of Food Technology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh 522213, India
| | - Anurag Singh
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India.
| | - Sukh Veer Singh
- Department of Food Technology and Management, Loyola Academy (Degree and PG College), Old Alwal, Secunderabad, Telangana 500010, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India
| | - Kanthi Kiran Kondepudi
- Department of Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India
| |
Collapse
|
9
|
Dibakoane SR, Da Silva LS, Meiring B, Anyasi TA, Mlambo V, Wokadala OC. The multifactorial phenomenon of enzymatic hydrolysis resistance in unripe banana flour and its starch: A concise review. J Food Sci 2024; 89:5185-5204. [PMID: 39150760 DOI: 10.1111/1750-3841.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Unripe banana flour starch possesses a high degree of resistance to enzymatic hydrolysis, a unique and desirable property that could be exploited in the development of functional food products to regulate blood sugar levels and promote digestive health. However, due to a multifactorial phenomenon in the banana flour matrix-from the molecular to the micro level-there is no consensus regarding the complex mechanisms behind the slow enzymatic hydrolysis of unripe banana flour starch. This work therefore explores factors that influence the enzymatic hydrolysis resistance of raw and modified banana flour and its starch including the proportion and distribution of the amorphous and crystalline phases of the starch granules; granule morphology; amylose-amylopectin ratio; as well as the presence of nonstarch components such as proteins, lipids, and phenolic compounds. Our findings revealed that the relative contributions of these factors to banana starch hydrolytic resistance are apparently dependent on the native or processed state of the starch as well as the cultivar type. The interrelatability of these factors in ensuring amylolytic resistance of unripe banana flour starch was further highlighted as another reason for the multifactorial phenomenon. Knowledge of these factors and their contributions to enzymatic hydrolysis resistance individually and interconnectedly will provide insights into enhanced ways of extraction, processing, and utilization of unripe banana flour and its starch.
Collapse
Affiliation(s)
- Siphosethu R Dibakoane
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
| | - Laura Suzanne Da Silva
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Belinda Meiring
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Tonna A Anyasi
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, UK
| | - Victor Mlambo
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
10
|
Munir H, Alam H, Nadeem MT, Almalki RS, Arshad MS, Suleria HAR. Green banana resistant starch: A promising potential as functional ingredient against certain maladies. Food Sci Nutr 2024; 12:3787-3805. [PMID: 38873476 PMCID: PMC11167165 DOI: 10.1002/fsn3.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 06/15/2024] Open
Abstract
This review covers the significance of green banana resistant starch (RS), a substantial polysaccharide. The food industry has taken an interest in green banana flour due to its 30% availability of resistant starch and its approximately 70% starch content on a dry basis, making its use suitable for food formulations where starch serves as the base. A variety of processing techniques, such as heat-moisture, autoclaving, microwaving, high hydrostatic pressure, extrusion, ultrasound, acid hydrolysis, and enzymatic debranching treatments, have made significant advancements in the preparation of resistant starch. These advancements aim to change the structure, techno-functionality, and subsequently the physiological functions of the resistant starch. Green bananas make up the highest RS as compared to other foods and cereals. Many food processing industries and cuisines now have a positive awareness due to the functional characteristics of green bananas, such as their pasting, thermal, gelatinization, foaming, and textural characteristics. It is also found useful for controlling the rates of cancer, obesity, and diabetic disorders. Moreover, the use of GBRS as prebiotics and probiotics might be significantly proved good for gut health. This study aimed at the awareness of the composition, extraction and application of the green banana resistant starch in the future food products.
Collapse
Affiliation(s)
- Haroon Munir
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Hamza Alam
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Riyadh S. Almalki
- Department of Pharmacology and Toxicology, Faculty of PharmacyUmm AL‐Qura UniversityMakkahSaudi Arabia
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Agriculture and Food SystemsThe University of MelbourneMelbourneVictoriaAustralia
| | | |
Collapse
|
11
|
Candice Costa Silva J, Medeiros Santos N, de Sousa Silva N, Cristina Silveira Martins A, Maria Gomes Dutra L, Eduardo Alves Dantas C, Dos Santos Lima M, Fechine Tavares J, Sobral da Silva M, Mangueira do Nascimento Y, Ferreira da Silva E, Eduardo Vasconcelos de Oliveira C, Elieidy Gomes de Oliveira M, Elias Pereira D, Carolina Dos Santos Costa A, Carlo Rufino Freitas J, Késsia Barbosa Soares J, Bordin Viera V. Characterization of flours from the aroeira leaf (Schinus terebinthifolius Raddi), obtained by different drying methods. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124126. [PMID: 38688175 DOI: 10.1016/j.jchromb.2024.124126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The present work aimed at the development and characterization of aroeira leaf flour (Schinus terebinthifolius Raddi), obtained by lyophilization and drying in an air circulation oven. The technological, physical, physico-chemical, morphological, functional, and microbiological aspects were analyzed. Physico-chemical analysis identified the following properties with values provided respectively for fresh leaves (FOin) and flours (FES and FLIO): low water activity (0.984, 0.370, 0.387 g/100 g), moisture (64.52, 5.37, 7.97 g /100 g), ash (2.69, 6.51, and 6.89 g/100 g), pH (0.89, 4.45, 4.48 g/100 g), lipids (0.84, 1.67, 5.23 g/100 g), protein (3.29, 8.23, 14.12 g/100 g), carbohydrates (17.02, 53.12, 33.02 g/100 g), ascorbic acid (19.70, 34.20, 36.90 mg/100 g). Sources of fiber from plant leaves and flours (11.64, 25.1, 32.89 g/100 g) showed increased levels of luminosity. For NMR, the presence of aliphatic and aromatic compounds with olefinic hydrogens and a derivative of gallic acid were detected. The most abundant minerals detected were potassium and calcium. Micrographs identified the presence of irregular, non-uniform, and sponge-like particles. The main sugars detected were: fructose, glucose, and maltose. Malic, succinic, citric, lactic, and formic acids were found. Fifteen phenolic compounds were identified in the samples, highlighting: kaempferol, catechin, and caffeic acid. The values found for phenolics were (447, 716.66, 493.31 mg EAG/100 g), flavonoids (267.60, 267.60, 286.26 EC/100 g). Antioxidant activity was higher using the ABTS method rather than FRAP for analysis of FOin, FES, and FLIO. Since the flours of the aroeira leaf have an abundant matrix of nutrients with bioactive properties and antioxidant activity, they have a potential for technological and functional use when added to food.
Collapse
Affiliation(s)
| | - Nayane Medeiros Santos
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil
| | - Nayara de Sousa Silva
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil
| | | | - Larissa Maria Gomes Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil.
| | - Carlos Eduardo Alves Dantas
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina 56302-100, Brazil
| | - Josean Fechine Tavares
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Yuri Mangueira do Nascimento
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | | | | | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | | | - Juliana Késsia Barbosa Soares
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Vanessa Bordin Viera
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil; Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| |
Collapse
|
12
|
Bashmil YM, Dunshea FR, Appels R, Suleria HAR. Bioaccessibility of Phenolic Compounds, Resistant Starch, and Dietary Fibers from Australian Green Banana during In Vitro Digestion and Colonic Fermentation. Molecules 2024; 29:1535. [PMID: 38611814 PMCID: PMC11013930 DOI: 10.3390/molecules29071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Green bananas contain a substantial amount of resistant starch (RS), dietary fiber (DF), and phytochemicals, which exhibit potent antioxidant capabilities, primarily attributable to the abundance of polyphenols. The objective of this study was to assess the variations in the contents and bioaccessibility of RS, DF, and phenolic compounds in three types of Australian green bananas (Cavendish "Musa acuminata", Ladyfinger "Musa paradisiaca L.", and Ducasse "Musa balbisiana"), along with their antioxidant capacities, and the production of short-chain fatty acids (SCFAs) following in vitro simulated gastrointestinal digestion and colonic fermentation. The studied cultivars exhibited significant levels of RS, with Ladyfinger showing the greatest (49%). However, Ducasse bananas had the greatest DF concentration (38.73%). Greater TPC levels for Ladyfinger (2.32 mg GAE/g), as well as TFC and TTC (0.06 mg QE/g and 3.2 mg CE/g, respectively) in Cavendish, together with strong antioxidant capacities (DPPH, 0.89 mg TE/g in Cavendish), have been detected after both intestinal phase and colonic fermentation at 12 and 24 h. The bioaccessibility of most phenolic compounds from bananas was high after gastric and small intestinal digestion. Nevertheless, a significant proportion of kaempferol (31% in Cavendish) remained detectable in the residue after colonic fermentation. The greatest production of SCFAs in all banana cultivars was observed after 24 h of fermentation, except valeric acid, which exhibited the greatest output after 12 h of fermentation. In conclusion, the consumption of whole green bananas may have an advantageous effect on bowel health and offer antioxidant characteristics.
Collapse
Affiliation(s)
- Yasmeen M. Bashmil
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rudi Appels
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| |
Collapse
|
13
|
Pismag RY, Polo MP, Hoyos JL, Bravo JE, Roa DF. Effect of extrusion cooking on the chemical and nutritional properties of instant flours: a review. F1000Res 2024; 12:1356. [PMID: 38434661 PMCID: PMC10905115 DOI: 10.12688/f1000research.140748.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/05/2024] Open
Abstract
Satisfying the nutritional requirements of consumers has made food industries focus on the development of safe, innocuous, easy-to-prepare products with high nutritional quality through efficient processing technologies. Extrusion cooking has emerged as a prominent technology associated with the nutritional and functional attributes of food products. This review aims to establish a theoretical framework concerning the influence of extrusion parameters on the functional and nutritional properties of precooked or instant flours, both as end-products and ingredients. It highlights the pivotal role of process parameters within the extruder, including temperature, screw speed, and raw materials moisture content, among others, and elucidates their correlation with the modifications observed in the structural composition of these materials. Such modifications subsequently induce notable changes in the ultimate characteristics of the food product. Detailed insights into these transformations are provided within the subsequent sections, emphasizing their associations with critical phenomena such as nutrient availability, starch gelatinization, protein denaturation, enhanced in vitro digestibility, reduction in the content of antinutritional factors (ANFs), and the occurrence of Maillard reactions during specific processing stages. Drawing upon insights from available literature, it is concluded that these effects represent key attributes intertwined with the nutritional properties of the end-product during the production of instant flours.
Collapse
Affiliation(s)
- Remigio Yamid Pismag
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - María Paula Polo
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - José Luis Hoyos
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - Jesús Eduardo Bravo
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - Diego Fernando Roa
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| |
Collapse
|
14
|
Tuárez-García DA, Galván-Gámez H, Erazo Solórzano CY, Edison Zambrano C, Rodríguez-Solana R, Pereira-Caro G, Sánchez-Parra M, Moreno-Rojas JM, Ordóñez-Díaz JL. Effects of Different Heating Treatments on the Antioxidant Activity and Phenolic Compounds of Ecuadorian Red Dacca Banana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2780. [PMID: 37570934 PMCID: PMC10420799 DOI: 10.3390/plants12152780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to different traditional Ecuadorian heating treatments (boiling, roasting, and baking) were evaluated to profile their phenolic content by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and the antioxidant activity by ORAC, ABTS, and DPPH assays. A total of sixty-eight phenolic compounds were identified or tentatively identified in raw banana and treated samples, highlighting the content in flavonoids (flavan-3-ols with 88.33% and flavonols with 3.24%) followed by the hydroxybenzoic acid family (5.44%) in raw banana samples. The total phenolic compound content significantly decreased for all the elaborations evaluated, specifically from 442.12 mg/100 g DW in fresh bananas to 338.60 mg/100 g DW in boiled (23.41%), 243.63 mg/100 g DW in roasted (44.90%), and 109.85 mg/100 g DW in baked samples (75.15%). Flavan-3-ols and flavonols were the phenolic groups most affected by the heating treatments, while flavanones and hydroxybenzoic acids showed higher stability against the heating treatments, especially the boiled and roasted samples. In general, the decrease in phenolic compounds corresponded with a decline in antioxidant activity, evaluated by different methods, especially in baked samples. The results obtained from PCA studies confirmed that the impact of heating on the composition of some phenolic compounds was different depending on the technique used. In general, the heating processes applied to the banana samples induced phytochemical modifications. Even so, they remain an important source of bioactive compounds for consumers.
Collapse
Affiliation(s)
- Diego Armando Tuárez-García
- Faculty of Industry and Production Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, Quevedo 120301, Ecuador; (D.A.T.-G.); (C.Y.E.S.)
| | - Hugo Galván-Gámez
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| | - Cyntia Yadira Erazo Solórzano
- Faculty of Industry and Production Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, Quevedo 120301, Ecuador; (D.A.T.-G.); (C.Y.E.S.)
| | - Carlos Edison Zambrano
- Faculty of Business Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, C.P. 73, Quevedo 120301, Ecuador;
| | - Raquel Rodríguez-Solana
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Gema Pereira-Caro
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Mónica Sánchez-Parra
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| | - José M. Moreno-Rojas
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - José L. Ordóñez-Díaz
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| |
Collapse
|
15
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
16
|
Chen S, Wang X, Cheng Y, Gao H, Chen X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023; 28:4982. [PMID: 37446644 DOI: 10.3390/molecules28134982] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Flavonoids represent the main class of plant secondary metabolites and occur in the tissues and organs of various plant species. In plants, flavonoids are involved in many biological processes and in response to various environmental stresses. The consumption of flavonoids has been known to reduce the risk of many chronic diseases due to their antioxidant and free radical scavenging properties. In the present review, we summarize the classification, distribution, biosynthesis pathways, and regulatory mechanisms of flavonoids. Moreover, we investigated their biological activities and discuss their applications in food processing and cosmetics, as well as their pharmaceutical and medical uses. Current trends in flavonoid research are also briefly described, including the mining of new functional genes and metabolites through omics research and the engineering of flavonoids using nanotechnology. This review provides a reference for basic and applied research on flavonoid compounds.
Collapse
Affiliation(s)
- Shen Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yu Cheng
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hongsheng Gao
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Zhang S, Zhao K, Xu F, Chen X, Zhu K, Zhang Y, Xia G. Study of unripe and inferior banana flours pre-gelatinized by four different physical methods. Front Nutr 2023; 10:1201106. [PMID: 37404857 PMCID: PMC10315463 DOI: 10.3389/fnut.2023.1201106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
This study aimed to prepare the pre-gelatinized banana flours and compare the effects of four physical treatment methods (autoclaving, microwave, ultrasound, and heat-moisture) on the digestive and structural characteristics of unripe and inferior banana flours. After the four physical treatments, the resistant starch (RS) content values of unripe and inferior banana flours were decreased from 96.85% (RS2) to 28.99-48.37% (RS2 + RS3), while C∞ and k values were increased from 5.90% and 0.039 min-1 to 56.22-74.58% and 0.040-0.059 min-1, respectively. The gelatinization enthalpy (ΔHg) and I1047/1022 ratio (short-range ordered crystalline structures) were decreased from 15.19 J/g and 1.0139 to 12.01-13.72 J/g, 0.9275-0.9811, respectively. The relative crystallinity decreased from 36.25% to 21.69-26.30%, and the XRD patterns of ultrasound (UT) and heat-moisture (HMT) treatment flours maintained the C-type, but those samples pre-gelatinized by autoclave (AT) and microwave (MT) treatment were changed to C + V-type, and heat-moisture (HMT) treatment was changed to A-type. The surface of pre-gelatinized samples was rough, and MT and HMT showed large amorphous holes. The above changes in structure further confirmed the results of digestibility. According to the experimental results, UT was more suitable for processing unripe and inferior banana flours as UT had a higher RS content and thermal gelatinization temperatures, a lower degree and rate of hydrolysis, and a more crystalline structure. The study can provide a theoretical basis for developing and utilizing unripe and inferior banana flours.
Collapse
Affiliation(s)
- Siwei Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Kangyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
18
|
Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T, Wang Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023; 28:molecules28083599. [PMID: 37110833 PMCID: PMC10147097 DOI: 10.3390/molecules28083599] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
With the climate constantly changing, plants suffer more frequently from various abiotic and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful environmental conditions. Flavonoids are involved in a variety of biological activities in plants, which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic technologies in order to explore the molecular mechanism of genes associated with flavonoid biosynthesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation of flavonoid content. In the present review, the classification, molecular structure and biological biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic and abiotic stress in plants were also included. In addition, the effect of applying genes associated with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic stresses was also discussed.
Collapse
Affiliation(s)
- Wei-Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiao-Chun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Ting Pu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
19
|
Fan J, Gao A, Zhan C, Jin Y. Degradation of soybean meal proteins by wheat malt endopeptidase and the antioxidant capacity of the enzymolytic products. Front Nutr 2023; 10:1138664. [PMID: 36937341 PMCID: PMC10020175 DOI: 10.3389/fnut.2023.1138664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
This study investigated the hydrolysis effect of the endopeptidase from wheat malt on the soybean meal proteins. The results indicated that the endopeptidase broke the peptide bonds of soybean meal proteins and converted the alcohol- and alkali-soluble proteins into water-soluble and salt-soluble proteins. In addition, wheat malt endopeptidase did not break the disulfide bonds between proteins but affected the conformation of disulfide bonds between substrate protein molecules, which were changed from the gauche-gauche-trans (g-g-t) vibrational mode to the trans-gauche-trans (t-g-t) vibrational mode. Wheat malt endopeptidase exhibited the highest enzymatic activity at 2 h of enzymatic digestion, demonstrating the fastest hydrolytic rate of soybean meal proteins. Compared with the samples before enzymatic hydrolysis, the total alcohol- and alkali-soluble proteins were decreased by 11.89% but the water- and salt-soluble proteins were increased by 11.99%, indicating the hydrolytic effect of endopeptidase. The corresponding water-soluble proteins had molecular weights of 66.4-97.2, 29-44.3, and 20.1 kDa, while the salt-soluble proteins had molecular weights of 44.3-66.4, 29-44.3, and 20.1 kDa, respectively. The degree of enzymatic hydrolysis of soybean meal reached the maximum at 8 h. The newly created proteins exhibited significantly antioxidant properties, which were inversely related to the molecular weight. Proteins with molecular weight <3 kDa had the highest antioxidant performance with an antioxidant capacity of 1.72 ± 0.03 mM, hydroxyl radical scavenging rate of 98.04%, and ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging capacity of 0.44 ± 0.04 mM.
Collapse
Affiliation(s)
- Jingxiao Fan
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Aiying Gao
- Food Inspection Department, Institute for Food and Drug Control (Taian Fiber Inspection Institute), Tai'an, China
| | - Chao Zhan
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuhong Jin
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
- *Correspondence: Yuhong Jin
| |
Collapse
|
20
|
Combined calcium pretreatment and ultrasonic/microwave drying to dehydrate black chokeberry: Novel mass transfer modeling and metabolic pathways of polyphenols. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Muñoz-Pabon KS, Roa-Acosta DF, Hoyos-Concha JL, Bravo-Gómez JE, Ortiz-Gómez V. Quinoa Snack Production at an Industrial Level: Effect of Extrusion and Baking on Digestibility, Bioactive, Rheological, and Physical Properties. Foods 2022; 11:foods11213383. [PMID: 36359997 PMCID: PMC9658072 DOI: 10.3390/foods11213383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
This research aimed to produce gluten-free snacks on a pilot scale from quinoa flour. These snacks experienced an extrusion process, followed by baking. The effects of these technological processes on carbohydrate and protein digestibility, extractable phenolic compounds (EPP), hydrolyzable phenolic compounds (HPP), antioxidant capacity, and physical properties were evaluated in raw quinoa flour and extruded snacks. Extrusion increased digestible starch (RDS) from 7.33 g/100 g bs to 77.33 g /100 g bs. Resistant starch (RS) showed a variation of 2 g/100 g bs. It is noteworthy that protein digestibility increased up to 94.58 g/100 bs after extrusion and baking. These processes increased HPP content, while EPP and carotenoid content decreased. The samples showed significant differences (p < 0.05) in the antioxidant properties determined through the DPPH and ABTS methods. Values of 19.72 ± 0.81 µmol T/g were observed in snacks and 13.16 ± 0.2 µmol T/g in raw flour, but a reduction of up to 16.10 ± 0.68 µmol T/g was observed during baking. The baking process reduced the work of crispness (Wcr) from 0.79 to 0.23 N.mm, while the saturation (C*) was higher in baked ones, showing higher color intensity. The baking process did not influence the viscosity profile. The results in this study respond to the growing interest of the food industry to satisfy consumer demand for new, healthy, and expanded gluten-free snacks with bioactive compounds.
Collapse
Affiliation(s)
- Karen Sofia Muñoz-Pabon
- Facultad Ciencias Agrarias, Departamento de Agroindustria, Universidad del Cauca, Sede Las Guacas, Popayán 190002, Colombia
- GIEPRONAL Research Group, School of Basic Sciences, Technology and Engineering, National University Open and Distance (UNAD), Bogotá 110311, Colombia
- Correspondence:
| | - Diego Fernando Roa-Acosta
- Facultad Ciencias Agrarias, Departamento de Agroindustria, Universidad del Cauca, Sede Las Guacas, Popayán 190002, Colombia
| | - José Luis Hoyos-Concha
- Facultad Ciencias Agrarias, Departamento de Agroindustria, Universidad del Cauca, Sede Las Guacas, Popayán 190002, Colombia
| | - Jesús Eduardo Bravo-Gómez
- Facultad Ciencias Agrarias, Departamento de Agroindustria, Universidad del Cauca, Sede Las Guacas, Popayán 190002, Colombia
| | - Vicente Ortiz-Gómez
- GIEPRONAL Research Group, School of Basic Sciences, Technology and Engineering, National University Open and Distance (UNAD), Bogotá 110311, Colombia
| |
Collapse
|
22
|
Nasrollahzadeh F, Roman L, Swaraj V, Ragavan K, Vidal NP, Dutcher JR, Martinez MM. Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Semi-Empirical Mathematical Modeling, Energy and Exergy Analysis, and Textural Characteristics of Convectively Dried Plantain Banana Slices. Foods 2022; 11:foods11182825. [PMID: 36140950 PMCID: PMC9497864 DOI: 10.3390/foods11182825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Thin-layer convective drying of plantain banana was performed at four different temperatures from 50 to 80 °C, with slice thicknesses from 2 to 8 mm. The drying curves, fitted to seven different semi-empirical mathematical models, were successfully used to fit experimental data (R2 0.72−0.99). The diffusion approach had better applicability in envisaging the moisture ratio at any time during the drying process, with the maximum correlation value (R2 0.99) and minimum value of x2 (2.5×10−5 to 1.5×10−4) and RMSE (5.0 ×10−3 to 1.2×10−2). The Deff, hm, and Ea values were calculated on the basis of the experimental data, and overall ranged from 1.11×10−10 to 1.79×10−9 m2 s−1, 3.17×10−8 to 2.20 ×10−7 m s−1 and 13.70 to 18.23 kJ mol−1, respectively. The process energy consumption varied from 23.3 to 121.4 kWh kg−1. The correlation study showed that the drying temperature had a close correlation with hm value and sample hardness. A significant (p < 0.05) increase in hardness of dried plantain banana was observed at 80 °C compared to the other temperatures. Additionally, the sample hardness and process energy consumption were more positively correlated with the thickness of the samples.
Collapse
|
24
|
Ozden S, Kılıç F. Modeling of Drying Kinetics of Banana (Musa spp., Musaceae) Slices with the Method of Image Processing and Artificial Neural Networks. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2022. [DOI: 10.1142/s1469026822500171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, modeling of thin banana slices dried on 316 stainless steel shelves is carried out in an oven working with serial controlled and concentric blower-resistor couple. Changes occurred in banana slices (area and color) during drying process have been recorded by a camera. Additionally, weight has been measured with a load cell which is under the shelf and energy consumption has been measured with electricity consumption meter which is tied to energy input. The main aim of the study is to conduct the drying process of banana slices according to the data obtained from camera. Besides, obtained data have been tested with a powerful modeling technique like Artificial Neural Networks (ANN), and it has been seen that drying process could be modeled according to the data obtained from camera. Energy consumption data have been added in order to increase the performance of ANN and strengthen the modeling. Thus, an automatic drying system that can learn by itself using only a camera without any other sensors will be installed. This has been caused an increase in performance. However, it is obvious that it increases cost. According to the results of modeling process, 99% of “goodness of fit” has been obtained by using the change in banana slices and the number of pixels. It has been found that the developed model performed adequately in predicting the changes of the moisture content. Thus, it has been available to control the food drying process with a digital camera.
Collapse
Affiliation(s)
- Semih Ozden
- Department of Electronics and Communication Engineering, National Defense University, Ankara 06654, Turkey
| | - Faruk Kılıç
- Department of Machine, Technical Sciences Vocational College, Gazi University, Ankara 06374, Turkey
| |
Collapse
|
25
|
Bhatkar NS, Shirkole SS, Brennan C, Thorat BN. Pre‐processed
fruits as raw materials: part I – different forms, process conditions and applications. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikita S. Bhatkar
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Shivanand S. Shirkole
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Charles Brennan
- School of Science, STEM College RMIT University Melbourne Vic. Australia
| | - Bhaskar N. Thorat
- Department of Chemical Engineering Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| |
Collapse
|
26
|
Pico J, Yan Y, Gerbrandt EM, Castellarin SD. Determination of free and bound phenolics in northern highbush blueberries by a validated HPLC/QTOF methodology. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Walsh SK, Lucey A, Walter J, Zannini E, Arendt EK. Resistant starch-An accessible fiber ingredient acceptable to the Western palate. Compr Rev Food Sci Food Saf 2022; 21:2930-2955. [PMID: 35478262 DOI: 10.1111/1541-4337.12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Dietary fiber intakes in Western societies are concerningly low and do not reflect global recommended dietary fiber intakes for chronic disease prevention. Resistant starch (RS) is a fermentable dietary fiber that has attracted research interest. As an isolated ingredient, its fine particle size, relatively bland flavor, and white appearance may offer an appealing fiber source to the Western palate, accustomed to highly refined, processed grains. This review aims to provide a comprehensive insight into the current knowledge (classification, production methods, and characterization methods), health benefits, applications, and acceptability of RS. It further discusses the present market for commercially available RS ingredients and products containing ingredients high in RS. The literature currently highlights beneficial effects for dietary RS supplementation with respect to glucose metabolism, satiety, blood lipid profiles, and colonic health. An exploration of the market for commercial RS ingredients indicates a diverse range of products (from isolated RS2, RS3, and RS4) with numerous potential applications as partial or whole substitutes for traditional flour sources. They may increase the nutritional profile of a food product (e.g., by increasing the fiber content and lowering energy values) without significantly compromising its sensory and functional properties. Incorporating RS ingredients into staple food products (such as bread, pasta, and sweet baked goods) may thus offer an array of nutritional benefits to the consumer and a highly accessible functional ingredient to be greater exploited by the food industry.
Collapse
Affiliation(s)
- Sarah Kate Walsh
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Alice Lucey
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jens Walter
- APC Microbiome Institute, Cork, Ireland.,School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| |
Collapse
|
28
|
Li P, Li M, Song Y, Huang X, Wu T, Xu ZZ, Lu H. Green Banana Flour Contributes to Gut Microbiota Recovery and Improves Colonic Barrier Integrity in Mice Following Antibiotic Perturbation. Front Nutr 2022; 9:832848. [PMID: 35369097 PMCID: PMC8964434 DOI: 10.3389/fnut.2022.832848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Green banana flour (GBF) is rich in resistant starch that has been used as a prebiotic to exert beneficial effects on gut microbiota. In this study, GBF was evaluated for its capacity to restore gut microbiota and intestinal barrier integrity from antibiotics (Abx) perturbation by comparing it to natural recovery (NR) treatment. C57B/L 6 J mice were exposed to 3 mg ciprofloxacin and 3.5 mg metronidazole once a day for 2 weeks to induce gut microbiota dysbiosis model. Then, GBF intervention at the dose of 400 mg/kg body weight was conducted for 2 weeks. The results showed that mice treated with Abx displayed increased gut permeability and intestinal barrier disruption, which were restored more quickly with GBF than NR treatment by increasing the secretion of mucin. Moreover, GBF treatment enriched beneficial Bacteroidales S24-7, Lachnospiraceae, Bacteroidaceae, and Porphyromonadaceae that accelerated the imbalanced gut microbiota restoration to its original state. This study puts forward novel insights into the application of GBF as a functional food ingredient to repair gut microbiota from Abx perturbation.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ming Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hui Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Cheng Y, Guan Y, Guo F, Wang Z, Zeng M, Qin F, Chen J, Li W, He Z. Effects of dietary fibre and soybean oil on the digestion of extruded and roller‐dried maize starch. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Cheng
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanming Guan
- China National Research Institute of Food and Fermentation Industries Co., Ltd. Beijing 100015 China
| | - Fengxian Guo
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Weiwei Li
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Zhiyong He
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
30
|
|
31
|
Mohamad Salin NS, Md Saad WM, Abdul Razak HR, Salim F. Effect of Storage Temperatures on Physico-Chemicals, Phytochemicals and Antioxidant Properties of Watermelon Juice ( Citrullus lanatus). Metabolites 2022; 12:75. [PMID: 35050198 PMCID: PMC8780985 DOI: 10.3390/metabo12010075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Watermelon (Citrullus lanatus) consists of high moisture content and is favoured for its juice products. The popular fruit has a tempting taste, sweet aroma and attractive flesh colour. It is enriched with phytochemicals and antioxidant properties that are beneficial to human health. Due to convenience, the majority of individuals are likely to consume watermelon juice. However, little is known about the fruit juice storage and temperatures that may affect its beneficial properties. This study investigated the effect of storage temperature at room temperature, refrigerator cold, refrigerator freeze and freeze-dried, and analyzed the juice physico-chemicals (weight loss, pH, ash, moisture, total soluble solid, browning and turbidity), phytochemicals (total phenolic, total flavonoid, lycopene and β-carotene) and antioxidant scavenging activities during 9 days of storage. The results showed that watermelon juice was affected by storage temperatures and conditions with significant changes in physico-chemical appearance and decrease in total phytochemical content, thus consequently affecting their antioxidant activities during 9 days of storage. Although fresh watermelon juice can be consumed for its high nutritional values, freeze-drying is the preferable technique to retain its benefits and to delay juice degradation.
Collapse
Affiliation(s)
- Nur Shafinaz Mohamad Salin
- Centre of Medical Laboratory Technology, Faculty of Health Sciences, Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
| | - Wan Mazlina Md Saad
- Centre of Medical Laboratory Technology, Faculty of Health Sciences, Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
| | - Hairil Rashmizal Abdul Razak
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Fatimah Salim
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
- Centre of Foundation Studies, Dengkil Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Dengkil 43800, Selangor, Malaysia
| |
Collapse
|
32
|
Yan Y, Pico J, Sun B, Pratap-Singh A, Gerbrandt E, Diego Castellarin S. Phenolic profiles and their responses to pre- and post-harvest factors in small fruits: a review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34766521 DOI: 10.1080/10408398.2021.1990849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The consumption of small fruits has increased in recent years. Besides their appealing flavor, the commercial success of small fruits has been partially attributed to their high contents of phenolic compounds with multiple health benefits. The phenolic profiles and contents in small fruits vary based on the genetic background, climate, growing conditions, and post-harvest handling techniques. In this review, we critically compare the profiles and contents of phenolics such as anthocyanins, flavonols, flavan-3-ols, and phenolic acids that have been reported in bilberries, blackberries, blueberries, cranberries, black and red currants, raspberries, and strawberries during fruit development and post-harvest storage. This review offers researchers and breeders a general guideline for the improvement of phenolic composition in small fruits while considering the critical factors that affect berry phenolics from cultivation to harvest and to final consumption.
Collapse
Affiliation(s)
- Yifan Yan
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joana Pico
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bohan Sun
- Wine Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Gerbrandt
- British Columbia Blueberry Council, Abbotsford, British Columbia, Canada
| | | |
Collapse
|
33
|
Šárka E, Sluková M, Henke S. Changes in Phenolics during Cooking Extrusion: A Review. Foods 2021; 10:foods10092100. [PMID: 34574210 PMCID: PMC8469840 DOI: 10.3390/foods10092100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, significant attention is paid to the retention of phenolics in extrudates and their health effects. Due to the large number of recent articles devoted to total phenolic content (TPC) of input mixtures and extrudates, the technological changes are only presented for basic raw materials and the originating extrudates, and only the composites identified has having the highest amounts of TPC are referred to. The paper is also devoted to the changes in individual phenolics during extrusion (phenolic acids, flavonoids, flavonols, proanthocyanidins, flavanones, flavones, isoflavons, and 3-deoxyanthocyanidins). These changes are related to the choice or raw materials, the configuration of the extruder, and the setting the technological parameters. The results found in this study, presented in the form of tables, also indicate whether a single-screw or twin-screw extruder was used for the experiments. To design an extrusion process, other physico-chemical changes in the input material must also be taken into account, such as gelatinization of starch; denaturation of protein and formation of starch, lipids, and protein complexes; formation of soluble dietary fiber; destruction of antinutritional factors and contaminating microorganisms; and lipid oxidation reduction. The chemical changes also include starch depolymerization, the Maillard reaction, and decomposition of vitamins.
Collapse
|
34
|
Xu K, Debelo H, Roman L, Guo M, Ferruzzi MG, Martinez MM. Co-extruded wheat/okra composite blends result in soft, cohesive and resilient crumbs rich in health-promoting compounds. Food Chem 2021; 364:130395. [PMID: 34175617 DOI: 10.1016/j.foodchem.2021.130395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022]
Abstract
This work investigates the partial solubilization of cell wall polysaccharides in okra flours and the changes in the profile of free and bound phenolics through twin-screw extrusion. The comparison between extruded wheat flour-native okra flour (EWF-OF) and extruded wheat flour-extruded okra flour (EWF-EOF) composite blends revealed that extrusion led to an increase of soluble dietary fiber from 7.76 to 10.02 g/100 g. Extrusion of okra also resulted in a significant increase of free and bound phenolic acids, the latter consisting mostly of ferulic acid, as well as the thermal degradation of free epigallocatechin, and the binding of a small portion of quercetin-3-O-glucoside likely to a carbohydrate fraction. Bread crumbs from EWF-EOF (at 15% replacement level) exhibited a significantly lower hardness and higher elasticity, cohesiveness and resilience (from 28.28 N, 0.94, 0.49 and 0.17 to 7.54 N, 0.99, 0.70 and 0.35, respectively), which closely resembled the textural attributes of wheat bread.
Collapse
Affiliation(s)
- Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China; College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hawi Debelo
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Laura Roman
- College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 9200, Denmark
| | - Mengmeng Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China; College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mario G Ferruzzi
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Mario M Martinez
- College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 9200, Denmark
| |
Collapse
|
35
|
Ramírez‐Bolaños S, Pérez‐Jiménez J, Díaz S, Robaina L. A potential of banana flower and pseudo‐stem as novel ingredients rich in phenolic compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Ramírez‐Bolaños
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| | - Jara Pérez‐Jiménez
- Department of Metabolism and Nutrition Institute of Food Science, Technology and Nutrition (ICTAN‐CSIC) José Antonio Novais 10 Madrid 28040 Spain
| | - Sara Díaz
- Fabricación Integrada y Avanzada Research Group Departamento de Ingeniería de Procesos Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria 35017 Spain
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| |
Collapse
|
36
|
Martinez MM. Starch nutritional quality: beyond intraluminal digestion in response to current trends. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Green banana biomass: Physicochemical and functional properties and its potential as a fat replacer in a chicken mortadella. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Yang B, Yin Y, Liu C, Zhao Z, Guo M. Effect of germination time on the compositional, functional and antioxidant properties of whole wheat malt and its end-use evaluation in cookie-making. Food Chem 2021; 349:129125. [PMID: 33535111 DOI: 10.1016/j.foodchem.2021.129125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study investigated the effect of germination time on compositional changes and functionality of whole wheat malt flour (WMF) as well as its influence on cookie quality. The results illustrated that malting resulted in decreases of starch, protein, fat and ash, while it increased dietary fiber, carbohydrate and energy. Gel hydration, emulsifying and foaming ability, pasting viscosity decreased significantly, particularly during the first 2 days of germination. Both bound and immobilized water in WMF decreased with increasing germination time while the concentration and antioxidant capacity of extractable and hydrolyzable phenolic compounds (EPP and HPP) increased significantly in WMF and malt-based cookies. Flours changed from an integrated granular to an irregular tousy structure during germination. The incorporation of WMF induced a distorted "honey-like" comb structure to the cookies. Conclusively, controlled germination not only improves the physicochemical, functional properties of WMF but also increases nutrition value and technological performance of malt-based cookies.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjing Yin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Liu
- Shandong Taishan Beer Company, Tai'an 271000, China; Shandong Institute of Pomology, Tai'an 271018, Shandong, China
| | - Zhengtao Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Mengmeng Guo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
39
|
New Insights for the Future Design of Composites Composed of Hydrochar and Zeolite for Developing Advanced Biofuels from Cranberry Pomace. ENERGIES 2020. [DOI: 10.3390/en13246600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study provides fundamental insight and offers a promising catalytic hydrothermal method to harness cranberry pomace as a potential bioenergy and/or hydrochar source. The physical and chemical properties of Canadian cranberry pomace, supplied by Fruit d’Or Inc., were examined and the optimum operational conditions, in terms of biocrude yield, were obtained by the I-optimal matrix of Design Expert 11. Afterward, cranberry pomace hydrochar (CPH) and zeolite were separately introduced to the hydrothermal liquefaction (HTL) process to investigate the benefits and disadvantages associated with their catalytic activity. CPH was found to be a better host than zeolite to accommodate cellulosic sugars and showed great catalytic performance in producing hydrocarbons. However, high amounts of corrosive amino and aliphatic acids hinder the practical application of CPH as a catalyst. Alternatively, zeolite, as a commercial high surface area catalyst, had a higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than CPH and resulted in higher selectivity of phenols. Due to the low hydrothermal structural stability, coke formation, and narrow pore size distribution, further activations and modifications are needed to improve the catalytic behavior of zeolite. Our results suggest that a composite composed of CPH and zeolite can resolve the abovementioned limitations and help with the development and commercialization of advanced biofuels from cranberry pomace.
Collapse
|
40
|
Nieto-Figueroa KH, Mendoza-García NV, Gaytán-Martínez M, Wall-Medrano A, Guadalupe Flavia Loarca-Piña M, Campos-Vega R. Effect of drying methods on the gastrointestinal fate and bioactivity of phytochemicals from cocoa pod husk: In vitro and in silico approaches. Food Res Int 2020; 137:109725. [PMID: 33233294 DOI: 10.1016/j.foodres.2020.109725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Cocoa pod husk (CPH) contains many nutraceutical phytochemicals whose gastrointestinal fate and bioactivity can be affected by drying methods. Microwave (MW), forced-air drying (AF), and AF plus extrusion (AF-E) dried CPH samples were chemically characterized, and their phenolic and theobromine (THB) contents were evaluated under oral-gastric-intestinal (in vitro) and colonic fermentation (ex vivo). Absorption, distribution, metabolism, excretion, and toxicity (ADEMT) properties of CPH's small molecules were evaluated in silico. The chemical composition of CPH [mostly carbohydrates/insoluble dietary fiber], polyphenol [total polyphenols > condensed tannin (CT) > monomeric flavonoids] differed minimally among samples, except for THB content (AF/AF-E > MW) and antioxidant capacity (MW > AF/AF-E). Time- trend gastrointestinal (X3 behavior) and colonic bioaccessibility were AF/AF-E > MW, but phenolic acids, procyanidins, and THB fluctuated in a sample-specific fashion. In silico modeling showed that bioactives of CPH easily crossed the intestinal epithelium illustrating their bioaccessibility and, permeability. These bioactives can act as receptor ligands in a structure-dependent manner, suggesting their use as a functional ingredient.
Collapse
Affiliation(s)
- Karen Haydeé Nieto-Figueroa
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico
| | | | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico.
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Departamento de Ciencias de la Salud, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Ciudad Juárez (32310), Chihuahua, Mexico.
| | - Ma Guadalupe Flavia Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro (76010), Qro, Mexico
| |
Collapse
|
41
|
Huang S, Roman L, Martinez MM, Bohrer BM. The effect of extruded breadfruit flour on structural and physicochemical properties of beef emulsion modeling systems. Meat Sci 2020; 172:108370. [PMID: 33223266 DOI: 10.1016/j.meatsci.2020.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The objective was to determine structural and physicochemical properties of beef emulsion modeling systems prepared with native breadfruit flour and four different extruded breadfruit flours. Extrusion conditions for the flours were summarized as two different specific mechanical energies (74 or 145 kJ/kg) and four unique melt temperatures (83 °C, 100 °C, 105 °C, or 126 °C). Meat emulsions formulated at 3% replacement of beef with native or extruded breadfruit flours were compared with control (no additional flour) formulations. Replacement of beef with breadfruit flour (either native or extruded) did not significantly change cooking loss or instrumental redness values of cooked meat emulsions. Interestingly, replacement of beef with the fully gelatinized extruded breadfruit flours altered viscosity during heating as indicated by lower values for storage modulus (44.75% to 62.53% decrease compared with control) and lower values for loss modulus (25.90% to 52.54% decrease compared with control). This resulted in meat emulsions with a significant reduction in textural hardness (28.78% to 37.62% decrease compared with control).
Collapse
Affiliation(s)
- Shiqi Huang
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Laura Roman
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | - Mario M Martinez
- School of Engineering, University of Guelph, Guelph, Ontario, Canada; Department of Food Science, iFOOD Multidisciplinary Center, Aarhus University, Aarhus, Denmark
| | - Benjamin M Bohrer
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada; Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
Li M, Griffin LE, Corbin S, Neilson AP, Ferruzzi MG. Modulating Phenolic Bioaccessibility and Glycemic Response of Starch-Based Foods in Wistar Rats by Physical Complexation between Starch and Phenolic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13257-13266. [PMID: 32689794 DOI: 10.1021/acs.jafc.0c01387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study assessed the impact of caffeic and ferulic acid complexation with maize amylopectin or potato starch on glycemic parameters. In comparison to starch-phenolic mixtures, starch-phenolic complexes resulted in significant modification of phenolic bioaccessibility and cellular uptake (p < 0.05). In addition, glucose release from in vitro digestion of starch was modestly reduced in the complexes compared to native starch alone (21.2-26.8 versus 29.8-30.5 mM). Furthermore, intestinal glucose transport, assessed in Caco-2 cell monolayers, was not affected by the presence of complexes (82.4-124 versus 100% at 90 min). However, a reduced glycemic response was evident in a Wistar rat model, with significant reduction in 240 min of blood glucose area under the curve following oral administration of the potato starch-ferulic acid complex compared to native potato starch (26 170 ± 556 versus 28 951 ± 486 mg min dL-1; p < 0.001). These alterations were attributed to complexation-induced resistant starch formation and phenolic entrapment, providing an alternative mechanistic approach to modulate glycemic properties of starch-based foods.
Collapse
Affiliation(s)
- Min Li
- Plants for Human Health Institutes, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Laura E Griffin
- Plants for Human Health Institutes, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Sydney Corbin
- Plants for Human Health Institutes, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Andrew P Neilson
- Plants for Human Health Institutes, North Carolina State University, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Mario G Ferruzzi
- Plants for Human Health Institutes, North Carolina State University, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
43
|
Dhull SB, Malik T, Kaur R, Kumar P, Kaushal N, Singh A. Banana Starch: Properties Illustration and Food Applications—A Review. STARCH-STARKE 2020. [DOI: 10.1002/star.202000085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology CDLU Sirsa 125055 India
| | - Tanu Malik
- Centre of Food Science and Technology CCS HAU Hisar 125001 India
| | - Ramandeep Kaur
- Department of Food Science and Technology PAU Ludhiana 141001 India
| | - Pradyuman Kumar
- Department of Food Engineering and Technology SLIET Sangrur 148106 India
| | - Naveet Kaushal
- Department of Agriculture Mata Gujri College Fatehgarh Sahib 140406 India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh Sahib 140406 India
| |
Collapse
|
44
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Modification of Physicochemical Properties of Breadfruit Flour Using Different Twin-Screw Extrusion Conditions and Its Application in Soy Protein Gels. Foods 2020; 9:foods9081071. [PMID: 32781693 PMCID: PMC7465982 DOI: 10.3390/foods9081071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
The objective was to modify functional properties of breadfruit flours using twin-screw extrusion and test the physicochemical properties of the extruded flours. Extruded breadfruit flours were produced with twin-screw extrusion using different last barrel temperature (80 °C or 120 °C) and feed moisture content (17% or 30%). These conditions resulted in four extruded flours with different mechanical (specific mechanical energy, SME) and thermal (melt temperature) energies. At temperatures below the gelatinization of the native starch (<70 °C), swelling power was increased in all extruded treatments. Solubility was dramatically increased in high-SME extruded flours at all tested temperatures. Water holding capacity was dramatically increased in the low-SME extruded flours. A two-fold higher cold peak viscosity was obtained for low SME-high temperature extruded flour compared with the other extruded flours. Low SME-low temperature extruded flour still exhibited a hot peak viscosity, which occurred earlier than in native flour. Setback was decreased in all extruded flours, especially in high-SME treatments. The incorporation of extruded flours into soy protein gels did not affect cooking loss, while hardness and springiness decreased with the addition of extruded flours. Overall, extrusion of breadfruit flour altered functional flour properties, including water holding capacity and pasting properties, and modified the texture of soy protein gels.
Collapse
|
46
|
The dynamics of starch hydrolysis and thickness perception during oral processing. Food Res Int 2020; 134:109275. [DOI: 10.1016/j.foodres.2020.109275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
|
47
|
Fine structure, physicochemical and antioxidant properties of LM-pectins from okra pods dried under different techniques. Carbohydr Polym 2020; 241:116272. [DOI: 10.1016/j.carbpol.2020.116272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
|
48
|
Okra seed and seedless pod: Comparative study of their phenolics and carbohydrate fractions and their impact on bread-making. Food Chem 2020; 317:126387. [DOI: 10.1016/j.foodchem.2020.126387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 01/04/2023]
|
49
|
Wu TY, Tsai SJ, Sun NN, Dai FJ, Yu PH, Chen YC, Chau CF. Enhanced thermal stability of green banana starch by heat-moisture treatment and its ability to reduce body fat accumulation and modulate gut microbiota. Int J Biol Macromol 2020; 160:915-924. [PMID: 32504706 DOI: 10.1016/j.ijbiomac.2020.05.271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022]
Abstract
The physicochemical properties (including morphology, pasting, and thermal properties) of resistant starch (RS) in green banana starch were analyzed after the heat-moisture treatment in the presence of citric acid (CAHMT) at different temperatures. Moreover, this study evaluated whether the administration of CAHMT banana starch could reduce body fat accumulation and modulate gut microbiota. Our results demonstrated that the CAHMT process (90 °C) resulted in a higher retention (80.9%) and thermal stability of RS, alteration in the crystalline structure of starch from B-type to A-type, and increased solubility (27.9-fold) and gelatinization temperatures (from 66.26-78.89 °C to 81.48-92.11 °C). A reduction in swelling power (-57.7%) and a loss of pasting viscosity were also noted. Even after a 30 min boil, the retention rate of residual RS (CAHMT at 90 °C) was up to 50% (4.3-fold higher than the control). Rats fed the CAHMT banana starch resulted in significantly (p < 0.05) lower total visceral fat (-18.1%) and Firmicutes to Bacteroidetes ratio as well as higher total fecal short chain fatty acids. The CAHMT process at 90 °C enhanced the thermal stability of banana RS allowing a wider range of applications in functional foods.
Collapse
Affiliation(s)
- Tsung-Yen Wu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Council of Agriculture, No. 189, Zhongzheng Road, Wufeng District, Taichung 41362, Taiwan
| | - Shwu-Jene Tsai
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Council of Agriculture, No. 189, Zhongzheng Road, Wufeng District, Taichung 41362, Taiwan
| | - Nan-Nong Sun
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Fan-Jhen Dai
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Po-Hsuan Yu
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Yi-Ching Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Chi-Fai Chau
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Xingda Road, South District, Taichung 40227, Taiwan.
| |
Collapse
|
50
|
Physico-Chemical Characterization of Tunisian Canary Palm ( Phoenix canariensis Hort. Ex Chabaud) Dates and Evaluation of Their Addition in Biscuits. Foods 2020; 9:foods9060695. [PMID: 32481574 PMCID: PMC7353613 DOI: 10.3390/foods9060695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/02/2023] Open
Abstract
Phoenix canariensis Hort. Ex Chabaud, also known as the Canary Island palm or ornamental palm, is an endemic species of the Canary Islands and has been widely propagated globally. It has become one of the most important and appreciated ornamental plants, especially in the Mediterranean climate. The fruits are edible but used only for feed as they are bitter. Despite its diffusion, not much data on the composition of these fruits and their application as food are available. The aim of this study was to define the chemical characteristics, especially those of the polyphenolic constituents, of red and yellow varieties of Canary palm dates, and to evaluate their use alone or in different mixes in biscuit production. The yellow variety had higher quantities of fiber (36.88% DW (Dry Weight)) and polyphenolic compounds, while the red variety had a high content of sugars, mainly glucose (22.8% DW). Epicatechin is the most important polyphenol of dates (562 μg/g DW). The use of date palm powder on biscuit production resulted in an increase in hardness, polyphenol and fiber content, and antioxidant activity. Sensory analysis showed that the biscuits obtained with a 25/75 mix of red/yellow date powder had the most overall liking.
Collapse
|