1
|
Arif M, Raza H, Moussa SB, Alzahrani AYA, Akhter T. Poly(chitosan-N-vinylcaprolactam-methacrylic acid) microgels as microreactor for Ag(I) ions extraction and in-situ silver nanoparticles formation to reduce the toxins. Int J Biol Macromol 2024; 282:136906. [PMID: 39476896 DOI: 10.1016/j.ijbiomac.2024.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
The toxicity of organic molecules and transition metal cations imposes their removal from aqueous medium to protect human health. Traditionally, systems have been designed to target either organic molecules or transition metal cations individually. However, a homogenous poly(chitosan-N-vinylcaprolactam-methacrylic acid) P(CVM) microgel system has been introduced to effectively eliminate both types of pollutants. This P(CVM) system was synthesized using the free radical precipitation polymerization (FRPP) method and employed as an adsorbent for the removal of silver (I) (Ag(I)) ions from aqueous medium under various environments, including different Ag(I) ions content, agitation times, pH levels, and dose of P(CVM). The extraction behavior of Ag(I) ions onto P(CVM) was analyzed using different adsorption isotherms, while the kinetics of the process were studied using Elovich model (ElM), pseudo-second-order (Ps2O), intra-particle-diffusion model (InPDM), and pseudo-first-order (Ps1O) models. Furthermore, silver nanoparticles (Ag NPs) were synthesized by using loaded Ag(I) ions within P(CVM) through in-situ reduction approach. The resulting Ag nanoparticles decorated P(CVM) (Ag-P(CVM)) hybrid microgels exhibited the ability to catalytically reduce various contaminants from water such as p-nitroaniline (PNiA), methyl red (MeR), chromium (VI) ions (CrM), and eosin Y (EoY). The catalytic activity was measured by determining the pseudo-first-order rate constant (kap), which were found to be 1.166 min-1, 0.562 min-1, 0.157 min-1, and 1.350 min-1 for the catalytic reduction of PNiA, MeR, CrM, and EoY, respectively. Overall, the Ag-P(CVM) system shows superb catalytic activity for various pollutants reduction.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Hamid Raza
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
2
|
Pillai AM, Gopinadh SV, Phanendra PVRL, Salini PS, John B, SarojiniAmma S, Devassy MT. Bio-synthesized TiO 2 nanoparticles and the aqueous binder-based anode derived thereof for lithium-ion cells. DISCOVER NANO 2024; 19:69. [PMID: 38632188 PMCID: PMC11024083 DOI: 10.1186/s11671-024-04010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are a promising anode material for Lithium-ion batteries (LIBs) due to their good rate capability, low cost, non-toxicity, excellent structural stability, extended cycle life, and low volumetric change (∼4%) during the Li+ insertion/de-insertion process. In the present paper, anatase TiO2-NPs with an average particle size of ~ 12 nm were synthesized via a green synthesis route using Beta vulgaris (Beetroot) extract, and the synthesized TiO2-NPs were evaluated as anode material in LIBs. Furthermore, we employed an aqueous binder (1:1 mixture of carboxy methyl cellulose and styrene butadiene) for electrode processing, making the process cost-effective and environmentally friendly. The results revealed that the Li/TiO2 half-cells delivered an initial discharge capacity of 209.7 mAh g-1 and exhibited superior rate capability (149 mAh g-1 at 20 C) and cycling performances. Even at the 5C rate, the material retained a capacity of 82.2% at the end of 100 cycles. The synthesis route of TiO2-NPs and the aqueous binder-based electrode processing described in the present work are facile, green, and low-cost and are thus practically beneficial for producing low-cost and high-performance anodes for advanced LIBs.
Collapse
Affiliation(s)
- Akhilash Mohanan Pillai
- Energy Systems Development Division, Energy Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695022, India
- University of Kerala, Thiruvananthapuram, 695034, India
| | - Sumol V Gopinadh
- Energy Systems Development Division, Energy Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695022, India
| | - Peddinti V R L Phanendra
- Energy Systems Development Division, Energy Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695022, India
| | - Patteth S Salini
- Energy Systems Development Division, Energy Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695022, India
| | - Bibin John
- Energy Systems Development Division, Energy Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695022, India.
| | - Sujatha SarojiniAmma
- Energy Systems Development Division, Energy Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695022, India
| | - Mercy Thelakkattu Devassy
- Energy Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695022, India
| |
Collapse
|
3
|
Nejad FS, Alizade-Harakiyan M, Haghi M, Ebrahimi R, Zangeneh MM, Farajollahi A, Fathi R, Mohammadi R, Miandoab SS, Asl MH, Asgharian P, Divband B, Ahmadi A. Investigating the effectiveness of iron nanoparticles synthesized by green synthesis method in chemoradiotherapy of colon cancer. Heliyon 2024; 10:e28343. [PMID: 38560153 PMCID: PMC10981048 DOI: 10.1016/j.heliyon.2024.e28343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Current methods of colon cancer treatment, especially chemotherapy, require new treatment methods due to adverse side effects. One important area of interest in recent years is the use of nanoparticles as drug delivery vehicles since several studies have revealed that they can improve the target specificity of the treatment thus lowering the dosage of the drugs while preserving the effectiveness of the treatment thus reducing the side effects. The use of traditional medicine has also been a favorite topic of interest in recent years in medical research, especially cancer research. In this research work, the green synthesis of Fe nanoparticles was carried out using Mentha spicata extract and the synthesized nanoparticles were identified using FT-IR, XRD, FE-SEM and EDS techniques. Then the effect of Mentha spicata, Fe nanoparticles, and Mentha spicata -loaded Fe nanoparticles on LS174t colon cancer cells, and our result concluded that all three, especially Mentha spicata -loaded Fe nanoparticles, have great cytotoxic effects against LS174t cells, and exposure to radiotherapy just further intensified these results. The in vitro condition revealed alterations in the expression of pro-apoptotic BAX and anti-apoptotic Bcl2, suggesting a pro-apoptotic effect from all three components, particularly the Mentha spicata-loaded Fe nanoparticles. After further clinical trials, these nanoparticles can be used to treat colon cancer.
Collapse
Affiliation(s)
- Farshad Seyed Nejad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Alizade-Harakiyan
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rokhsareh Ebrahimi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Farajollahi
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Fathi
- Polymer Research Laboratory, Department of Organic and Biochemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, University of Tabriz, Tabriz, Iran
| | | | | | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Baharak Divband
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Amin Ahmadi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Gaikwad D, Sutar R, Patil D. Polysaccharide mediated nanodrug delivery: A review. Int J Biol Macromol 2024; 261:129547. [PMID: 38278399 DOI: 10.1016/j.ijbiomac.2024.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Polysaccharides have drawn a lot of attention due to their potential as carriers for drugs and other bioactive chemicals. In drug delivery systems, natural macromolecules such as polysaccharides are widely utilized as polymers. This utilization extends to various polysaccharides employed in the development of nanoparticles for medicinal administration, with the goal of enhancing therapeutic efficacy while minimizing side effects. This study not only offers an overview of the existing challenges faced by these materials but also provides detailed information on key polysaccharides expertly engineered into nanoparticles. Noteworthy examples include Bael Fruit Gum, Guar Gum, Pectin, Agar, Cellulose, Alginate, Chitin, and Gum Acacia, each selected for their distinctive properties and strategically integrated into nanoparticles. The exploration of these natural macromolecules illuminates their diverse applications and underscores their potential as effective carriers in drug delivery systems. By delving into the unique attributes of each polysaccharide, this review aims to contribute valuable insights to the ongoing advancements in nanomedicine and pharmaceutical technologies. The overarching objective of this review research is to assess the utilization and comprehension of polysaccharides in nanoapplications, further striving to promote their continued integration in contemporary therapeutics and industrial practices.
Collapse
Affiliation(s)
- Dinanath Gaikwad
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India.
| | - Ravina Sutar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| | - Dhanashri Patil
- Department of Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| |
Collapse
|
5
|
Zhang Y, Sha X, Hu J, Wu J, Li Y, Ma J, Sun H, Yang R. Phytoferritin functions in two interface-loading of natural pigment betanin and caffeic acid with enhanced color stability and the sustained release of betanin. Food Funct 2023; 14:8157-8169. [PMID: 37581488 DOI: 10.1039/d3fo02054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Betanin, a natural red pigment, is sensitive and prone to fading and discoloration, affecting its stability and bioavailability. Phytoferritin is a nano-diameter protein with unique interior-/exterior-interfaces. By the unique interfaces and pH-induced self-assembly of ferritin, a ferritin-betanin complex (FB) with an encapsulation efficiency of 17.66 ± 1.24% was prepared. The caffeic acid-FB (CFB) was further fabricated by attaching ferritin with caffeic acid, and the binding number n of caffeic acid was 88.47 ± 9.49, with a binding constant K of (1.63 ± 0.33) × 104 M-1. Fluorescence and Fourier transform infrared analysis indicated that the encapsulation of betanin and the binding of caffeic acid influenced the ferritin structure. The interaction between caffeic acid and ferritin was mainly through van der Waals forces and hydrogen bonds. TEM and DLS showed that the globular structure and diameter (12 nm) remained in CFB. Furthermore, the ferritin and caffeic acid exhibited a synergistic effect in enhancing thermal, light, and ferric ion stabilities, and controlled the betanin release in a more sustained manner in the simulated gastrointestinal tract. In addition, the antioxidant capacity of CFB was enhanced compared with free betanin. This study promotes the bioavailability of betanin by two interface-loading of ferritin, and guides the use of ferritin nanoparticles as a nanocarrier for pigment stabilization.
Collapse
Affiliation(s)
- Yidan Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Haili Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Muawwadh AL-Balawi A, Zaheer Z, Kosa SA. Silver-platinum bimetallic nanoparticles as heterogeneous persulfate activator for the oxidation of malachite green. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
7
|
Silver-ruthenium bimetallic nanoparticles as sacrificial heterogeneous persulfate activator in situ chemical oxidation of dye. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Wang H, Ouyang Z, Cheng Y, Zhu J, Yang Y, Ma L, Zhang Y. Structure maintainability of safflomin/betanin incorporated gelatin-chitooligosaccharide complexes based high internal phase emulsions and its combinational 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, Simal-Gandara J. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 2022; 64:708-739. [PMID: 35972148 DOI: 10.1080/10408398.2022.2108367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | | | | | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Olga Gorelik
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
- Ural Federal Agrarian Research Center of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
10
|
Solubilization of caffeic acid into the cationic micelles and biogenic synthesis of silver nanoparticles for the degradation of dye. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Arunachalam V, Salgaonkar DC, Kevat NV, Walawalkar BV, Das B. Quantification of Betacyanin content variation of amaranth varieties by an Android App, Colorimeter, and Infrared spectroscopy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Hejazi SA, Zaheer Z, Kosa SA. Chitosan and cetyltrimethylammonium bromide capped Iridium-silver bimetallic nanoparticles: A comparative study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Cao Y, Wang X, Bai H, Jia P, Zhao Y, Liu Y, Wang L, Zhuang Y, Yue T. Fluorescent detection of tetracycline in foods based on carbon dots derived from natural red beet pigment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
CuNPs as an activator of K2S2O8 for the decolorization of diazo dye in aqueous solution. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Silver-Cobalt bimetallic nanoparticles to the generation of hydrogen from formic acid decomposition. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Kamli MR, Malik MA, Lone SA, Sabir JSM, Mattar EH, Ahmad A. Beta vulgaris Assisted Fabrication of Novel Ag-Cu Bimetallic Nanoparticles for Growth Inhibition and Virulence in Candida albicans. Pharmaceutics 2021; 13:1957. [PMID: 34834372 PMCID: PMC8621205 DOI: 10.3390/pharmaceutics13111957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
Beta vulgaris extract contains water-soluble red pigment betanin and is used as a food colorant. In this study, the biogenic Ag-Cu bimetallic nanoparticles were synthesized and characterized by different spectroscopic and microscopic techniques, including UV-Visible, FTIR, TEM. SEM-EDX, XRD, and TGA. Further, Ag-Cu bimetallic nanoparticles capped with Beta vulgaris biomolecules were evaluated for their antifungal activity against Candida albicans via targeting its major virulence factors, including adherence, yeast to hyphae transition, extracellular enzyme secretion, biofilm formation, and the expression of genes related to these pathogenic traits by using standard methods. C. albicans is an opportunistic human fungal pathogen that causes significant morbidity and mortality, mainly in immunocompromised patients. The current antifungal therapy is limited with various shortcomings such as host toxicity and developing multidrug resistance. Therefore, the development of novel antifungal agents is urgently required. Furthermore, NPs were screened for cell viability and cytotoxicity effect. Antifungal susceptibility testing showed potent antifungal activity of the Ag-Cu bimetallic NPs with a significant inhibitory effect on adherence, yeast to hyphae transition, extracellular enzymes secretion, and formation of biofilms in C. albicans at sub-inhibitory and inhibitory concentrations. The RT-qPCR results at an MIC value of the NPs exhibited a varying degree of downregulation in expression levels of virulence genes. Results also revealed the dose-dependent effect of NPs on cellular viability (up to 100%) using MUSE cell analyzer. Moreover, the low cytotoxicity effect of bimetallic NPs has been observed using haemolytic assay. The overall results indicated that the newly synthesized Ag-Cu bimetallic NPs capped with Beta vulgaris are proven to possess a potent anticandidal activity, by affecting the vital pathogenic factors of C. albicans.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shabir Ahmad Lone
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.L.); (A.A.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.L.); (A.A.)
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
17
|
Alsubaie H, Zaheer Z, Aazam ES. Role of ionic surfactants on the nucleation and growth of silver nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Zaheer Z, Kosa SA, Akram M. Interactions of Ag+ ions and Ag-nanoparticles with protein. A comparative and multi spectroscopic investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
2-Hydroxy-1, 4-napthoquinone solubilization, thermodynamics and adsorption kinetics with surfactant. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Khabeeri OM, Al-Thabaiti SA, Khan Z. Citrus sinensis peel waste assisted synthesis of AgNPs: effect of surfactant on the nucleation and morphology. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Zaheer Z, Albukhari SM. Fabrication of zinc/silver binary nanoparticles, their enhanced microbial and adsorbing properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
22
|
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11595-11611. [PMID: 33040529 DOI: 10.1021/acs.jafc.0c04241] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yi Xie
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting-Yi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta T9E 7C5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
23
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
24
|
Biogenic synthesis of silver nanoparticles, sensing and photo catalytic activities for bromothymol blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2020. [DOI: 10.1016/j.jpap.2020.100010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Al-Ghamdi AD, Zaheer Z, Aazam ES. Sennoside A drug capped biogenic fabrication of silver nanoparticles and their antibacterial and antifungal activities. Saudi Pharm J 2020; 28:1035-1048. [PMID: 32792848 PMCID: PMC7414101 DOI: 10.1016/j.jsps.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 01/14/2023] Open
Abstract
Sennoside A (dianthrone glycoside) shows laxative properties and used as a folk traditional medicine. Sennoside A capped silver nanoparticles (Ag/sennoside A) were synthesized at room temperature for the first time by using sennoside A as reducing and capping agent. UV-visible spectroscopic data reveals that the absorption peaks of pure sennoside A was appeared at 266, and 340 nm, which red shifted to 304, and 354 nm at higher sennoside A concentration. Upon addition of the Ag+ ions, an additional peak also observed at 398 nm, indicating the formation of spherical sennoside A capped silver nanoparticles (Ag/sennoside A). Cetyltrimethylammonium bromide (CTAB) was used a stabilizing agent to determine the role of cationic micelles on the nucleation and growth processes of Ag/sennoside A NPs formation. The 2,2-diphenyl-1-picrylhydrazyl nitrogen radical (DPPH · ), two bacteria strains (Staphylococcus aureus and Escherichia coli) and two yeast strains (Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019) were used to determine the antioxidant and antimicrobial properties of Ag/sennoside A NPs. In addition, Rhein-9-anthrone (4,5-dihydroxy-10-oxo-9H-anthracene-2-carboxylate) was isolated from the acidic hydrolysis of glycoside linkage of sennoside A and characterized. The antioxidant and antimicrobial activities of rhein-9-anthrone were also determined against DPPH radical, antibacterial and antifungal strains. The minimum inhibitory concentration was determined and discussed.
Collapse
Affiliation(s)
- Areej Dhawi Al-Ghamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Zoya Zaheer
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Effect of CTAB on the surface resonance plasmon intensity of silver nanoparticles: Stability and oxidative dissolution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Cao Y, Liu Y, Li F, Guo S, Shui Y, Xue H, Wang L. Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|