1
|
Sun Y, Xu H, Xie Y, Ding K, Liu Q, Li Y, Tao N, Ding S, Wang R. Sulfonated cellulose nanocrystalline- and pea protein isolate-mixture stabilizes the citral nanoemulsion to maintain its functional activity for effectively preserving fruits. Int J Biol Macromol 2025; 289:138725. [PMID: 39672440 DOI: 10.1016/j.ijbiomac.2024.138725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The instability of citral greatly limits its application in food field. This study aimed to develop a safe and green emulsifier-stabilized nanoemulsion (NE) to encapsulate citral for exerting its activities. A series of NEs were prepared using varying proportions (1:2 and 1:3) of sulfonated cellulose nanocrystalline- (CNC-C) and pea protein isolate- (PPI) mixture as emulsifier to encapsulate citral with different content (1 %, 2 %, and 3 %), and their stability, antioxidant and antibacterial activities were evaluated to identify the optimal system. When CNC-C and PPI proportion was 1:3 and citral content was 2 % (CC1-P3-C2), the obtained CC1-P3-C2 incorporated into pectin achieved the excellent preservation effect on kiwifruits and blueberries. It was attributed to the stability and functional activities of CC1-P3-C2. On the one hand, after storage (25 d) or at pH 11 or 100 mM NaCl, its size and polydispersity index were still within acceptance level (<300 nm and 0.3). On the other hand, it showed good antioxidant and antibacterial activities against Escherichia coli, Staphylococcus aureus, Botrytis cinerea, and Botryosphaeria dothidea, which was due to its high encapsulation efficiency (96.78 %). Therefore, CC1-P3-C2 showed a great application potential in fruit preservation, which also provided a feasible strategy to design stable citral NEs.
Collapse
Affiliation(s)
- Yuying Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qike Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yawen Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Moser P, Lopes NA, Locali-Pereira AR, Nicoletti VR. Long-term storage of pink pepper essential oil microencapsulated by chickpea protein/pectin complexes: volatile release, antioxidant and antimicrobial activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2411-2421. [PMID: 39431182 PMCID: PMC11486883 DOI: 10.1007/s13197-024-06007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 10/22/2024]
Abstract
Pink pepper essential oil was microencapsulated with chickpea protein (CP) and chickpea protein/pectin (CP-HMP) by spray drying. The reconstitution and storage properties of the powders were evaluated after drying. The impact of microencapsulation in the volatiles release, antioxidant and antimicrobial activity of oil was evaluated during 135 days of storage. CP resulted in more soluble powders (93.52%), CP/HMP resulted in denser powders (0.39 g/mL) while wall material did not influence the wettability. Free pink pepper essential oil (FEO) showed a slight loss of the predominant terpenes (α-pinene, β-pinene, β-mircene, δ-3-carene and D-limonene) after encapsulation. In general, all samples showed an increase in the volatiles release during storage. The evaluation of mass loss showed that FEO had a high release of volatiles, followed by CP and CP-HMP. The antioxidant activity of the FEO decreased (10.8 μg Trolox/mg of oil) after 135 days of storage, whereas the antioxidant activity of CP (14.9) and CP-HMP (14) increased. Both microcapsules presented antimicrobial activity against Bacillus subtilis and Staphylococcus aureus during storage. CP microcapsules had a strong inhibitory effect against the strains tested, and this advantage was even more evident in long-term storage.
Collapse
Affiliation(s)
- Poliana Moser
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| | - Nathalie Almeida Lopes
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| | - Adilson Roberto Locali-Pereira
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| | - Vânia Regina Nicoletti
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| |
Collapse
|
3
|
Zhang L, Huang Y, Shi Y, Si H, Luo H, Chen S, Wang Z, He H, Liao S. Synthesis, antifungal activity and action mechanism of novel citral amide derivatives against Rhizoctonia solani. PEST MANAGEMENT SCIENCE 2024; 80:4482-4494. [PMID: 38676622 DOI: 10.1002/ps.8153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Rice sheath blight caused by Rhizoctonia solani is a severe threat to the yield and quality of rice. Due to the unscientific abuse of common fungicides causing resistance and environmental issues, the development of new fungicides is necessary. In this study, we used citral as the lead compound, designed and synthesized a series of novel citral amide derivatives, and evaluated their antifungal activity and mode of action against R. solani. RESULT Bioassay results indicated that the antifungal activities of most citral amide derivatives against R. solani were significantly improved compared to citral, with EC50 values ranging from 9.50-27.12 mg L-1. Among them, compound d21 containing the N-(pyridin-4-yl)carboxamide group exhibited in vitro and in vivo fungicidal activities, with curative effects at 500 mg L-1 as effectively as the commercial fungicide validamycin·bacillus. Furthermore, d21 prolonged the lag phase of the growth curve of R. solani, reduced the amount of growth, and inhibited sclerotium germination and formation. Mechanistically, d21 deformed the mycelia, increased cell membrane permeability, and inhibited the activities of antioxidant and tricarboxylic acid cycle (TCA)-related enzymes. Metabolome analysis showed the abundance of some energy-related metabolites within R. solani increased, and simultaneously the antifungal substances secreted by itself reduced. Transcriptome analysis showed that most genes encoding ATP-binding cassette (ABC) transporters and peroxisomes upregulated after the treatment of d21 and cell membrane destruction. CONCLUSION This study indicates that novel citral amide derivatives possess antifungal activity against R. solani and are expected to develop an alternative option for chemical control of rice sheath blight. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Nanchang, China
| | - Yizhong Huang
- College of Life Sciences, Nanchang Normal University, Nanchang, China
| | - Yunfei Shi
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Hongyan Si
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Haohua He
- College of Agronomy, Jiangxi Agricultural University, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Nanchang, China
| | - Shengliang Liao
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| |
Collapse
|
4
|
Ding Y, Yuan J, Wu S, Hu K, Ma Y, Gao Y, Li M, Li R. pH/chitinase dual stimuli-responsive essential oil-delivery system based on mesoporous silica nanoparticles for control of rice blast. PEST MANAGEMENT SCIENCE 2024; 80:3215-3226. [PMID: 38357831 DOI: 10.1002/ps.8024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Owing to their surface modifiability, smart mesoporous silica nanoparticles (MSNs) can be designed to respond to plant disease-microenvironmental stimuli, thereby achieving on-demand release of active ingredients to control disease by effectively improving citral (CT) stability. RESULTS A pH/chitinase dual stimuli-responsive essential oil-delivery system (CT@HMS@CH/TA) was successfully fabricated by encapsulating CT in hollow mesoporous silica (HMS), and coating with tannic acid (TA) and chitosan (CH) within HMS by using the layer-by-layer assembly technique (LbL). CT@HMS@CH/TA with an average particle size of 125.12 ± 0.12 nm and a hollow mesoporous nanostructure showed high CT-loading efficiency (16.58% ± 0.17%). The photodegradation rate of CT@HMS@CH/TA under UV irradiation (48 h) was only 15.31%, indicating a 3.34-fold UV stability improvement. CT@HMS@CH/TA exhibited a higher CT release rate in response to acidic pH and the presence of chitinase, simulating the prevailing conditions as Magnaporthe oryzae infection. Furthermore, CT@HMS@CH/TA exhibited better adhesion without affecting normal rice growth, significantly upregulating chitinase gene expression and enhancing chitinase activity on M. oryzae, thus enhancing CT antifungal activity. CONCLUSION CT@HMS@CH/TA improved CT stability and showed intelligent, controlled release-performance and higher antifungal efficacy, thus providing a new strategy for efficient application of essential oils for green control of rice blast disease. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Jun Yuan
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Shuai Wu
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Ke Hu
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Yue Ma
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Yunhao Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Antioxidant-Mediated Modification of Citral and Its Control Effect on Mildewy Bamboo. Polymers (Basel) 2022; 14:polym14214652. [DOI: 10.3390/polym14214652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
To reduce the oxidative degradation of citral and improve its antimildew performance, citral was modified with natural antioxidants such as tea polyphenols, ascorbic acid, and theaflavin in the present study. Additionally, the effects of these natural antioxidants on the citral degradation rate and DPPH radical-scavenging rate, as well as the effectiveness of antioxidant-modified citral in the antimildew treatment of bamboo were investigated. Ascorbic acid, theaflavin, and tea polyphenols improved the antioxidant performance of citral to some extent, and the tea polyphenols exhibited the best antioxidant performance. When the amount of tea polyphenols added to citral reached 1.0%, the oxidative degradation of citral was effectively prevented. Compared with citral, tea-polyphenol-modified citral could reduce the efficacy of the bamboo antimildew treatment against all four mildews and the effectiveness of the antimildew treatment reached 100%. Citral modification with antioxidants reduced the amount of citral required in the treatment, thereby reducing the treatment cost for bamboo mildew.
Collapse
|
6
|
Wang X, Xie W, Zhang S, Shao Y, Cai J, Cai L, Wang X, Shan Z, Zhou H, Li J, Cui W, Wang L, Qiao X, Li Y, Jiang Y, Tang L. Effect of Microencapsulation Techniques on the Stress Resistance and Biological Activity of Bovine Lactoferricin-Lactoferrampin-Encoding Lactobacillus reuteri. Foods 2022; 11:3169. [PMID: 37430918 PMCID: PMC9602003 DOI: 10.3390/foods11203169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
Bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri (LR-LFCA) has been found to benefit its host by strengthening its intestinal barrier. However, several questions remain open concerning genetically engineered strains maintaining long-term biological activity at room temperature. In addition, probiotics are vulnerable to harsh conditions in the gut, such as acidity and alkalinity, and bile salts. Microencapsulation is a technique to entrap probiotic bacteria into gastro-resistant polymers to carry them directly to the intestine. We selected nine kinds of wall material combinations to encapsulate LR-LFCA by spray drying microencapsulation. The storage stability, microstructural morphology, biological activity, and simulated digestion in vivo or in vitro of the microencapsulated LR-LFCA were further evaluated. The results showed that LR-LFCA had the highest survival rate when microcapsules were prepared using a wall material mixture (skim milk, sodium glutamate, polyvinylpyrrolidone, maltodextrin, and gelatin). Microencapsulated LR-LFCA increased the stress resistance capacity and colonization abilities. In the present study, we have identified a suitable wall material formulation for spray-dried microencapsulation of genetically engineered probiotic products, which would facilitate their storage and transport.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Xu R, Deng W, Dai Y, Hu J. pH-responsive citral microcapsules with tannic acid-Fe III coordination complexes. Food Chem 2022; 397:133715. [PMID: 35905617 DOI: 10.1016/j.foodchem.2022.133715] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Citral is one of the most important aromatic ingredients in foods and beverages for its distinct lemon-like odor. However, the fast evaporation and oxidation limit these applications. Herein, citral microcapsules were constructed by tannic acid-FeIII coordination complexes (citral@TA-FeIII). The morphologies, structure, citral loading amount, pH responsiveness, oxidative stability and olfactory sensory evaluation were investigated. The obtained citral@TA-FeIII microcapsules presented core-shell structure with the average size of 528.16 nm. Citral loading amount was 12.79 %. Citral release exhibited pH-responsiveness with a sustained release rate at neutral pH and a fast release under acidic condition. Citral microcapsules retained excellent sensory profile due to the antioxidant capsule shells. Citral@TA-FeIII microcapsules efficiently inhibited bacteria (S. aureus and E. coli) growth, and the performance is enhanced under acidic condition by citral pH-responsive release. This work may open a new path for hydrophobic unsaturated aroma compounds encapsulation, widening their applications with multifunctionalities.
Collapse
Affiliation(s)
- Ruoyi Xu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, PR China
| | - Weijun Deng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, PR China; School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, PR China
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, PR China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, PR China.
| |
Collapse
|
8
|
Peng R, Du C, Hu A, Li Q, Zhang J, Zhang W, Sun F. Fabrication of core-shell type poly(NIPAm)-encapsulated citral and its application on bamboo as an anti-molding coating. RSC Adv 2021; 11:36884-36894. [PMID: 35494364 PMCID: PMC9043580 DOI: 10.1039/d1ra06352a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Bamboo is a widely used renewable and degradable biomass material; however, its sustainable utilisation is hindered by its susceptibility to mold. The current bamboo anti-mold technology is mainly based on organic chemical agents; these agents can easily induce mold resistance in bamboo with long-term use, and can even adversely affect human health. In the present study, the poly(N-isopropyl acrylamide) (PNIPAm)/citral nanohydrogel was prepared by encapsulating the natural antibiotic citral in PNIPAm for the anti-mold treatment of bamboo. The results revealed that this nanohydrogel exhibited a core-shell system with citral as the 'core' and PNIPAm as the 'shell', an average hydrodynamic diameter of 88.1 nm, and a low critical solution temperature (LCST) of 35.4 °C. After the high-pressure impregnation with the nanohydrogel, the bamboo strips showed excellent control effects toward common bamboo molds. Therefore, the nanohydrogel demonstrated high efficiency and it may become an ideal alternative to organic chemical anti-mold agents, thus showcasing its significant potential in the field of mold prevention for bamboo.
Collapse
Affiliation(s)
- Rui Peng
- College of Chemistry and Materials Engineering, Zhejiang A & F University Hangzhou 311300 Zhejiang China
| | - Chungui Du
- College of Chemistry and Materials Engineering, Zhejiang A & F University Hangzhou 311300 Zhejiang China
| | - Ailian Hu
- College of Chemistry and Materials Engineering, Zhejiang A & F University Hangzhou 311300 Zhejiang China
| | - Qi Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University Hangzhou 311300 Zhejiang China
| | - Jingjing Zhang
- College of Chemistry and Materials Engineering, Zhejiang A & F University Hangzhou 311300 Zhejiang China
| | - Weigang Zhang
- College of Chemistry and Materials Engineering, Zhejiang A & F University Hangzhou 311300 Zhejiang China
| | - Fangli Sun
- College of Chemistry and Materials Engineering, Zhejiang A & F University Hangzhou 311300 Zhejiang China
| |
Collapse
|
9
|
Wang W, Ren Z, Wang L, Cai Y, Ma H, Fang L, Su J. Nanoparticle-stabilized encapsulation of borneol and citral: Physicochemical characteristics, storage stability, and enhanced antibacterial activities. J Food Sci 2021; 86:4554-4565. [PMID: 34519054 DOI: 10.1111/1750-3841.15910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
Combinations of phytochemical(s) and engineered nanoparticles have attracted immense research interest due to their superior antimicrobial effects against contaminations. Herein, a Pickering emulsion is developed with capsulized phytochemicals including borneol and citral (BC-Cap) stabilized by hydrophilic amine-functionalized silica nanoparticles (SiO2 ─NH2 NPs). The droplet sizes of Pickering emulsion were 5.2 ± 1.4 µm under the condition that the concentrations of SiO2 ─NH2 NPs ranged from 0.6 to 1.2 wt.%, and the emulsion showed desirable stability during storage at 40°C for 365 days. In addition, the antibacterial and antibiofilm activities of the Pickering emulsion were investigated. The antibacterial effect of BC-Cap increased by two- to fourfold compared with citral or borneol alone. Treatment of BC/BC-Cap for 4 h eliminated the formation of biofilms generated by Listeria monocytogenes (at 5/1.25 mg/ml; 2 × MIC concentration) and Pseudomonas aeruginosa (at 5/2.5 mg/ml; 2 × MIC concentration). Further mechanistic studies revealed that the antibiofilm effects of BC-Cap were attributed to its ability to increase the porosity and lytic effects on the cell membrane of bacteria. Findings from the current study support the antibacterial and antibiofilm effects of BC-Cap Pickering emulsion as a promising food additive. PRACTICAL APPLICATION: The Pickering emulsion has potential applications as bacteriostatic agent in packaging materials and general surface disinfectant. The combination of borneol and citral is stabilized by hydrophilic amine-functionalized silica nanoparticles (SiO2 ─NH2 NPs). With the synergistic effects of borneol and citral, the Pickering emulsion shows a promising elimination effect against the formation of biofilms produced by Listeria monocytogenes and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Sino-Singapore International Joint Research Institute, Guangzhou, China
| | - Zhihui Ren
- Operation Development Center, Haid Group, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ying Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Liming Fang
- Sino-Singapore International Joint Research Institute, Guangzhou, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Sino-Singapore International Joint Research Institute, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
10
|
Yu H, Xue C, Qin Y, Wen Y, Zhang L, Li Y. Preparation and performance of green targeted microcapsules encapsulating surfactants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Khelissa S, Gharsallaoui A, Fadel A, Barras A, Jama C, Jbilou F, Chihib NE. Microencapsulation of benzalkonium chloride enhanced its antibacterial and antibiofilm activities against Listeria monocytogenes and Escherichia coli. J Appl Microbiol 2021; 131:1136-1146. [PMID: 33484234 DOI: 10.1111/jam.15010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/26/2022]
Abstract
AIMS In this study, benzalkonium chloride (BAC) microcapsules were developed for surface disinfection purpose and were evaluated against Listeria monocytogenes and Escherichia coli biofilms. METHODS AND RESULTS Microcapsules were prepared with two different strategies: uncomplexed BAC-microcapsules (UBM) containing BAC and maltodextrins, and complexed BAC-microcapsules (CBM) containing BAC complexed by pectin and maltodextrins. The minimum inhibitory concentrations (MICs) of free and microencapsulated BAC were investigated against two food pathogens: L. monocytogenes and E. coli. The antibiofilm activities of UBM and CBM against L. monocytogenes and E. coli biofilms formed on stainless steel at 37°C were evaluated and compared to BAC used under its free form. MICs of encapsulated BAC were up to fourfold lower than those of free BAC. The UBM and CBM showed higher antibiofilm effect when compared to the free BAC. CONCLUSIONS Overall, results demonstrated that microencapsulation enhanced the antibacterial activity of BAC against L. monocytogenes and E. coli biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY The application of such BAC microcapsule-based delivery systems can improve surface disinfection procedures and reduce the required BAC concentrations and the related cytotoxicity of this antimicrobial compound.
Collapse
Affiliation(s)
- S Khelissa
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - A Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - A Fadel
- Univ Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC -Institut Michel-Eugène Chevreul, Lille, France
| | - A Barras
- Univ Lille, CNRS, Centrale Lille Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France
| | - C Jama
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | | | - N-E Chihib
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| |
Collapse
|
12
|
Locali-Pereira AR, Lopes NA, Menis-Henrique MEC, Janzantti NS, Nicoletti VR. Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single- and double-layer structured matrices. Int J Food Microbiol 2020; 335:108890. [PMID: 32971300 DOI: 10.1016/j.ijfoodmicro.2020.108890] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022]
Abstract
The bioactivity of essential oils applied in foods to act as natural preservatives can be reduced due to interactions with other components of the food matrix. Microencapsulation can help to increase the functionality of these compounds. In addition, the electrostatic interaction between proteins and polysaccharides can result in double-layered encapsulating structures, ensuring greater protection to essential oils than using only protein as surface active agent. In this work, pink pepper essential oil was microencapsulated by spray drying of single-layer emulsions, stabilized by soy protein isolate (SPI), and of double-layer emulsions, stabilized by soy protein isolate/high methoxyl pectin (SPI/HMP). Pink pepper essential oil showed predominance of α-pinene, β-pinene, β-mircene, δ-3-carene, d-limonene, and germacrene D. Compared to SPI microcapsules, SPI/HMP microcapsules better preserved the total volatile content identified in pure oil, showed less water adsorption during storage at relative humidity ≥75% and improved antimicrobial properties. When stored for 20 days (25 °C/RH = 52.8%), both microcapsules allowed more gradual release of volatiles compared with non-encapsulated oil. Microencapsulation by spray drying did not have negative effects on the antioxidant activity of the encapsulated oil, as the microcapsules showed similar results to the non-encapsulated oil, around 11 μg Trolox/mg of oil. After storage, however, the non-encapsulated oil showed greater losses of its antioxidant activity due to higher rates of volatile release. In the in vitro antimicrobial activity assay, both microcapsules inhibited growth of Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Listeria innocua, although no inhibition was observed against Gram-negative bacteria. When added in milk, both microcapsules reduced bacterial growth, whereas non-encapsulated oil showed no satisfactory inhibition. Faster reduction of microbial growth in milk was observed for SPI/HMP microcapsules. Inhibition results were better for skim milk than for whole milk, suggesting that the interaction of essential oil with other lipids present in milk decreased its bioactivity. Microencapsulation positively affected the functionality of pink pepper essential oil, highlighting its potential for application as a natural preservative in food products.
Collapse
Affiliation(s)
- Adilson Roberto Locali-Pereira
- Unesp, São Paulo State University, Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, SP, Brazil.
| | - Nathalie Almeida Lopes
- Unesp, São Paulo State University, Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Michele Eliza Cortazzo Menis-Henrique
- Unesp, São Paulo State University, Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Natália Soares Janzantti
- Unesp, São Paulo State University, Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, SP, Brazil.
| | - Vânia Regina Nicoletti
- Unesp, São Paulo State University, Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, SP, Brazil.
| |
Collapse
|