1
|
Xu H, Wu M, Wei W, Ren W, Zheng Z. Chrysanthemum morifolium Ramat. as a traditional tea material: Unraveling the influence of kill-green process on drying characteristics, phytochemical compounds, and volatile profile. Food Res Int 2025; 200:115478. [PMID: 39779126 DOI: 10.1016/j.foodres.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums. Results showed that the kill-green process increased the freedom degree of immobile water, reduced the relative content of free water, and induced microstructure alterations, thus enhancing the water diffusion and shortening the subsequent drying time by up to 46.15 %. Compared to SK, HHAIK more rapidly inactivated PPO and POD, causing an improved color profile of dried samples. Dried samples treated with HHAIK for 60 s exhibited higher retention of 9 individual phenolics, total sugar, amino acids, and volatile compounds, thus resulting in higher sensorial acceptance than those treated with SK for 60 s. This study offers theoretical insights and technical support for the future development of high-quality chrysanthemum products.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhian Zheng
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
2
|
Wang B, Jia Y, Li Y, Jiao X, He Y, Wen L, Wang Z. Comprehensive impact of pre-treatment methods on white radish quality, water migration, and microstructure. Food Chem X 2024; 24:101991. [PMID: 39634521 PMCID: PMC11615932 DOI: 10.1016/j.fochx.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
The preprocessing stage is crucial in vegetable processing, significantly influencing the final product's quality. This study investigates the effects of various pre-pre-treatment methods, including cutting, blanching, osmotic, and ultrasound-assisted osmotic treatment, on the quality characteristics, water migration, and microstructure of white radish. The results showed that osmosis and ultrasound-assisted osmosis has the least effect on the total color difference (ΔE) and the greatest water loss (WL) (p < 0.05); blanching has the least effect on the hardness and eutectic points (p < 0.05); and the blanching-ultrasound-assisted osmosis has the greatest solid gain (p < 0.05). The increase of WL led to a decrease in hardness (-0.82). By analyzing the quality characteristics of different pre-treatment methods, contributing to the development of suitable pre-treatment methods for different products and optimization pre-treatments according to requirements. The mechanism of quality characteristics of pre-treatments on products is the future research direction.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuanlong Jia
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuan Jiao
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Wang B, Jia Y, Li Y, Wang Z, Wen L, He Y, Xu X. Dehydration-rehydration vegetables: Evaluation and future challenges. Food Chem X 2023; 20:100935. [PMID: 38144748 PMCID: PMC10739932 DOI: 10.1016/j.fochx.2023.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 12/26/2023] Open
Abstract
In this review, the rehydration kinetics model, the quality factors affecting of vegetables during rehydration process, the future challenges and development direction of rehydration process were comprehensively analyzed. Based on the fitting equation for the change in moisture content during rehydration, a suitable rehydration model can be selected to describe the rehydration process of vegetables. Optimal pre-treatment, drying and rehydration methods were selected by considering quality, energy consumption and environmental aspects, and new technologies were developed to improve the quality characteristics of rehydrated vegetables. It is necessary to classify vegetables according to their shape and type to establish the criteria of rehydration processing through mathematical modeling. Industrial production from pre-treatment to product packaging will be precisely adjusted through process parameters. Furthermore, improvements the quality of rehydrated vegetables can be considered in terms of the structural and compositional aspects of the cell wall and cell membrane.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuanlong Jia
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiuying Xu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
4
|
Xu H, Guan Y, Shan C, Xiao W, Wu M. Development of thermoultrasound assisted blanching to improve enzyme inactivation efficiency, drying characteristics, energy consumption, and physiochemical properties of sweet potatoes. ULTRASONICS SONOCHEMISTRY 2023; 101:106670. [PMID: 37922719 PMCID: PMC10643530 DOI: 10.1016/j.ultsonch.2023.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Thermoultrasound (USB) as a promising alternative to traditional hot water (HWB) blanching was employed to blanch sweet potatoes and its influence on enzyme activity, drying behavior, energy consumption and physiochemical properties of sweet potatoes were investigated. Results showed that successive increases in blanching temperature and time resulted in significant (p < 0.05) decreases in PPO and POD activities. Compared to HWB, USB led to more effective drying by promoting texture softening, moisture diffusion, microstructure alterations, and microchannels formation, which significantly reduced energy consumption and improved the overall quality of the dried sample. Specifically, USB at 65 °C for 15 min improved water holding capacity and ABTS, while USB at 65 °C for 30 min improved color (more red and yellow), total phenolic content, total carotenoid content, and DPPH. Unfortunately, blanching process showed detrimental effects on the amino acid composition of dried samples. Overall, the development of thermoultrasound assisted blanching for sweet potatoes has the potential to revolutionize the processing and production of high-quality sweet potato products, while also improving the sustainability of food processing operations.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yaru Guan
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chun Shan
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanru Xiao
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
5
|
Wang B, Li Y, Lv Y, Jiao X, Wang Z, He Y, Wen L. Dehydration-rehydration mechanism of vegetables at the cell-wall and cell-membrane levels and future research challenges. Crit Rev Food Sci Nutr 2023; 64:11179-11195. [PMID: 37435799 DOI: 10.1080/10408398.2023.2233620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The quality of dehydrated vegetables is affected by the degree to which they are returned to their original state during rehydration (restorability). At present, whether this mechanism occurs at the cell-wall or cell-membrane level is unclear. This paper reviews the important factors affecting the mechanism of dehydration-rehydration, focusing on the analysis of the composition and structure of the cell wall and cell membrane, and summarizes the related detection and analytical techniques that can be used to explore the mechanisms of dehydration-rehydration at the cell-wall and cell-membrane levels. The integrity and permeability of the cell membrane affect water transport during the dehydration-rehydration process. The cell wall and cell membrane are supporting materials for tissue morphology. The arabinan side chains of the primary structure and fibers are important for water retention. Water transport may be classified as symplastic and apoplastic. Cell membrane disruption occurs with symbiotic transport but increases the drying rate. An in-depth analysis of the dehydration-rehydration mechanism of vegetables will help develop and improve their processing methods and inspire new applications.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yingchi Lv
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xuan Jiao
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Chandel R, Kumar V, Kaur R, Kumar S, Gill MS, Sharma R, Wagh RV, Kumar D. Functionality enhancement of osmo-dried sand pear cubes using different sweeteners: quality, bioactive, textural, molecular, and structural characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Guo Y, Chen X, Gong P, Wang R, Qi Z, Deng Z, Han A, Long H, Wang J, Yao W, Yang W, Wang J, Li N. Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods 2023; 12:foods12051046. [PMID: 36900561 PMCID: PMC10000407 DOI: 10.3390/foods12051046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The king oyster mushroom (Pleurotus eryngii) is a delicious edible mushroom that is highly prized for its unique flavor and excellent medicinal properties. Its enzymes, phenolic compounds and reactive oxygen species are the keys to its browning and aging and result in its loss of nutrition and flavor. However, there is a lack of reviews on the preservation of Pl. eryngii to summarize and compare different storage and preservation methods. This paper reviews postharvest preservation techniques, including physical and chemical methods, to better understand the mechanisms of browning and the storage effects of different preservation methods, extend the storage life of mushrooms and present future perspectives on technical aspects in the storage and preservation of Pl. eryngii. This will provide important research directions for the processing and product development of this mushroom.
Collapse
Affiliation(s)
| | | | - Pin Gong
- Correspondence: ; Tel.: +86-13772196479
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Study of Water Distribution, Textural and Colour Properties of Cold Formulated and Air-Dried Apple Snacks. Foods 2022; 11:foods11050731. [PMID: 35267364 PMCID: PMC8909109 DOI: 10.3390/foods11050731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Vacuum impregnation is considered a cold formulation technology since it allows the incorporation of a desired functional compound into porous plant tissue without applying any heat. It is widely used in combination with the drying process to obtain added-value snacks. The aim of this work was to evaluate the effect of two trehalose concentrations (5 and 10% w/w) on: (i) the water state and texture evolution during the air drying (50 °C, 8 h) of apple snacks vacuum impregnated with blueberry juice, and on (ii) the colour of the final dried apple snacks. The results of nuclear magnetic resonance (NMR) showed that trehalose affects the water mobility of the samples during drying especially after 200–300 min of drying. In terms of textural properties, trehalose could increase the crispier characteristic of the samples impregnated with trehalose at the end of drying. Significative changes were found in terms of chroma and hue angle.
Collapse
|
9
|
Kaur GJ, Orsat V, Singh A. Application of central composite face centered design for the optimization of multiple-pass ultrasonication with mechanical homogenization (MPUMH) for carrot puree processing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Rybak K, Wiktor A, Pobiega K, Witrowa-Rajchert D, Nowacka M. Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Kaur GJ, Orsat V, Singh A. An overview of different homogenizers, their working mechanisms and impact on processing of fruits and vegetables. Crit Rev Food Sci Nutr 2021; 63:2004-2017. [PMID: 34459296 DOI: 10.1080/10408398.2021.1969890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fruits and vegetables (F&V) are the second highest recommended foods, rich in antioxidants, vitamins and minerals, vital for building immunity against chronic diseases. F&V processing involves particle size reduction, for which different types of homogenizers, categorized as mechanical homogenizers, pressure homogenizers and ultrasonic homogenizers are used. The review discusses different types of homogenizers, their working mechanism, and application in F&V processing. Among mechanical homogenizers, knife mills are used for primary size reduction, ball mills for the micronization of dried F&V and rotor-stator homogenizers for emulsification. Use of the ultrasonic homogenizer is limited to extraction of bioactive compounds or as a pre-treatment for dehydration of F&V. High-pressure homogenizers are most widely used and reported due to the synergistic effect of homogenization and temperature increase, resulting in longer shelf-life and better physicochemical properties of the product. Additionally, the review also explains the effect of homogenization on the physicochemical, sensory and nutraceutical properties of the product.
Collapse
Affiliation(s)
- Gagan Jyot Kaur
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Valerie Orsat
- Department of Bioresource Engineering, McGill University, Montreal, QC, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Energy and Quality Aspects of Freeze-Drying Preceded by Traditional and Novel Pre-Treatment Methods as Exemplified by Red Bell Pepper. SUSTAINABILITY 2021. [DOI: 10.3390/su13042035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Freeze-drying is one of the most expensive and most energy intensive processes applied in food technology. Therefore, there have been significant efforts to reduce the freeze-drying time and decrease its energy consumption. The aim of this work was to analyze the effect of pulsed electric field (PEF), ultrasound (US), and hybrid treatment (PEF-US) and compare them with the effect of blanching (BL) on the freeze-drying kinetics, energy consumption, greenhouse gasses emission, and physical quality of the product. The freeze-drying process was applied to red bell peppers after pretreatment operations. Results showed that application of BL, PEF, US, or PEF-US reduces freeze-drying time and decreases energy consumption. Among the tested methods, the combination of PEF performed at 1 kJ/kg and US was the most effective in reduction of greenhouse gas emission. BL samples exhibited the highest porosity, but from a statistical point of view, most of the PEF-US treated materials did not differ from it. The smallest color changes were noted for US pre-treated bell peppers (ΔE = 9.4), whereas BL, PEF, and PEF-US material was characterized by ΔE of 15.2–28.5. Performed research indicates the application of pre-treatment may improve the sustainability of freeze-drying process and quality of freeze-dried bell pepper.
Collapse
|
13
|
Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ultrasound (US) is a promising technology, which can be used to improve the efficacy of the processes in food technology and the quality of final product. US technique is used, e.g., to support mass and heat transfer processes, such as osmotic dehydration, drying and freezing, as well as extraction, crystallization, emulsification, filtration, etc. Osmotic dehydration (OD) is a well-known process applied in food processing; however, improvements are required due to the long duration of the process. Therefore, many recent studies focus on the development of OD combined with sonication as a pretreatment method and support during the OD process. The article describes the mechanism of the OD process as well as those of US and changes in microstructure caused by sonication. Furthermore, it focuses on current applications of US in fruits and vegetables OD processes, comparison of ultrasound-assisted osmotic dehydration to sonication treatment and synergic effect of US and other innovative technics/treatments in OD (such as innovative osmotic solutions, blanching, pulsed electric field, reduced pressure and edible coatings). Additionally, the physical and functional properties of tissue subjected to ultrasound pretreatment before OD as well as ultrasound-assisted osmotic dehydration are described.
Collapse
|
14
|
Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non-Thermal Methods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09276-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ciurzyńska A, Falacińska J, Kowalska H, Kowalska J, Galus S, Marzec A, Domian E. The Effect of Pre-Treatment (Blanching, Ultrasound and Freezing) on Quality of Freeze-Dried Red Beets. Foods 2021; 10:foods10010132. [PMID: 33435149 PMCID: PMC7827667 DOI: 10.3390/foods10010132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 01/28/2023] Open
Abstract
This paper presents the influence of blanching, ultrasonic processing and freezing conditions on selected physical properties of freeze-dried red beet, i.e., water activity, structure, porosity and shrinkage. Red beets subjected to a selected pre-treatment using its various parameters were frozen by three methods and then freeze-dried. Ultrasound reduced the water activity of samples. Blanching in water reduced shrinkage and improved porosity. In addition to the type of pre-treatment applied, the quality was also affected by freezing conditions before drying. Combined freezing resulted in the highest shrinkage and the lowest porosity and water activity. Slowly frozen samples were characterized by the best porosity.
Collapse
|
16
|
Establishment of Lower Hygroscopicity and Adhesion Strategy for Infrared-Freeze-Dried Blueberries Based on Pretreatments Using CO2 Laser in Combination with Ultrasound. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02543-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Influence of microwave hot-air flow rolling dry-blanching on microstructure, water migration and quality of pleurotus eryngii during hot-air drying. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107228] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|