1
|
Ouyang N, Guo L, Hong C, Zhang X, Liu Y, Guo Y, Wang Y, Ma H. Effects of delayed tuber cutting after catalytic infrared heat treatment on browning of fresh-cut potatoes and its potential mechanisms. Food Chem 2025; 480:143834. [PMID: 40112725 DOI: 10.1016/j.foodchem.2025.143834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Heat treatment, a form of thermal stress can confer anti-browning properties to potato tubers. However, the effect of delayed cutting after catalytic infrared heat treatment (DC-CIRHT) on browning inhibition remains unexplored. The study optimized catalytic infrared heat treatment conditions (55 °C for 10 min) and delayed cutting time (3 d). DC-CIRHT significantly inhibited the increase of browning index and browning degree and did not affect the quality of potato tubers. The mechanisms underlying browning inhibition involve two aspects: the reduction of phenolic-enzyme catalysis and the enhancement of the defense system. DC-CIRHT inhibits browning by suppressing polyphenol oxidase, peroxidase and phenylalanine ammonia lyase enzyme activity, reducing total phenol and flavonoid content, enhancing antioxidant activity, reducing membrane permeability and MDA, and balancing amino acid metabolism. This method offers a novel strategy for inhibiting browning during the post-harvest storage and processing of fruits and vegetables.
Collapse
Affiliation(s)
- Ningning Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lina Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Hong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yucheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Pang X, Lin Z, Wang M, Liang H, Zhao Y, Li Y, Yan B, He Y, Wu X, Wang Q, Feng B. Mechanisms underlying the effect of high-temperature curing treatments on the browning response of fresh-cut yams. Food Chem 2025; 476:143317. [PMID: 39965344 DOI: 10.1016/j.foodchem.2025.143317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Fresh-cut yams are prone to browning, which impacts their quality and marketability. This study evaluated the efficacy of a high-temperature curing (HTC) treatment (35 °C for 7 days) in inhibiting the postharvest browning of fresh-cut yams. Results indicated that the HTC treatment primarily mitigated browning by inhibiting key enzymes involved in phenolic oxidation, including polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL), while reducing the accumulation of total phenolics and lignin. HTC also reduced respiration rate and ethylene production, while enhancing flavonoid content. Transcriptomic and metabolomic analyses indicated that HTC inhibited the synthesis of phenolic compounds and lignin, modulated glutathione metabolism and genes involved in starch and sucrose metabolism, all contributing to browning prevention. These findings suggest that HTC functions by both directly inhibiting enzymatic browning and enhancing antioxidant defenses, providing a strategy to preserve the quality and extend the shelf life of fresh-cut yams.
Collapse
Affiliation(s)
- Xi Pang
- College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zixin Lin
- College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mina Wang
- College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huafeng Liang
- College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yaqi Zhao
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Li
- College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - BangJin Yan
- College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yiyi He
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xianxin Wu
- College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Durgawati, Balasubramanian P, Xiao HW, Sutar PP. Effect of cyclic vacuum-steam blanching on the quality characteristics and functional properties of Malabar spinach (Basella alba) dried by non-water infrared refractance window drying. Food Chem 2025; 465:141901. [PMID: 39550962 DOI: 10.1016/j.foodchem.2024.141901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
In the present work, an effluent-free novel method including cyclic vacuum steam pulsed blanching (VSPB) pretreatment and non-water infrared refractance window drying (non-water IR-RWD) was employed to explore its effect on enzyme inactivation, drying behavior, quality and functional properties of dried Malabar spinach. The highest inactivation of peroxidase (90.23 %) and polyphenol oxidase (94.58 %) was observed in the 4th cycle of the VSPB pretreatment. With the increase in VSPB cycles from 1 to 5, the drying time was significantly reduced by 27.27 % to 54.54 % compared to the untreated sample. The color change values (ΔE) of VSPB pretreated non-water IR-RWD samples varied from 7.37 to 8.03. The findings in the current work indicated that vacuum-steam pulsed blanching combined with a non-water IR-RWD process is a promising technique for Malabar spinach powder production.
Collapse
Affiliation(s)
- Durgawati
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
4
|
Xu H, Wu M, Wei W, Ren W, Zheng Z. Chrysanthemum morifolium Ramat. as a traditional tea material: Unraveling the influence of kill-green process on drying characteristics, phytochemical compounds, and volatile profile. Food Res Int 2025; 200:115478. [PMID: 39779126 DOI: 10.1016/j.foodres.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums. Results showed that the kill-green process increased the freedom degree of immobile water, reduced the relative content of free water, and induced microstructure alterations, thus enhancing the water diffusion and shortening the subsequent drying time by up to 46.15 %. Compared to SK, HHAIK more rapidly inactivated PPO and POD, causing an improved color profile of dried samples. Dried samples treated with HHAIK for 60 s exhibited higher retention of 9 individual phenolics, total sugar, amino acids, and volatile compounds, thus resulting in higher sensorial acceptance than those treated with SK for 60 s. This study offers theoretical insights and technical support for the future development of high-quality chrysanthemum products.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhian Zheng
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
5
|
Luo EK, Lin CT, Chang CK, Tsao NW, Hou CY, Wang SY, Chen MH, Tsai SY, Hsieh CW. Investigating the effects of thermal processing on bitter substances in atemoya ( Annona cherimola × Annona squamosa) through sensory-guided separation. Food Chem X 2024; 24:101817. [PMID: 39314540 PMCID: PMC11417199 DOI: 10.1016/j.fochx.2024.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Atemoya (Annona cherimola × Annona squamosa) is a specialty crop in Taiwan. Thermal treatment induces bitterness, complicating seasonal production adjustments and surplus reduction. In this research, sensory-guided separation, metabolomics, and orthogonal partial least squares discrimination analysis (OPLS-DA) are used for identifying the bitterness in atemoya which originates from catechins, epicatechin trimers, and proanthocyanidins. Different thermal treatments (65 °C, 75 °C, and 85 °C) revealed that the glucose and fructose contents in atemoya significantly decreased, while total phenols, flavonoids, and tannins significantly increased. The concentration of 5-hydroxymethylfurfural (5-HMF) increased from 23.16 ng/g in untreated samples to 400.71 ng/g (AP-65), 1208.59 ng/g (AP-75), and 2838.51 ng/g (AP-85). However, these levels are below the 5-HMF bitterness threshold of 3780 ng/g. Combining mass spectrometry analysis with sensory evaluation, OPLS-DA revealed that atemoya treated at 65 °C, 75 °C, and 85 °C exhibited significant bitterness, with the main bitter components being proanthocyanidin dimers and trimers.
Collapse
Affiliation(s)
- Erh-Kang Luo
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402, Taiwan
| | - Chun-Ting Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402, Taiwan
| | - Nai-Wen Tsao
- Program in Specialty Crops and Metabolomics, Academy of Circle Economy, National Chung Hsing University, Nantou city 540, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Nanzi Dist., Kaohsiung City 81157, Taiwan
| | - Sheng-Yang Wang
- Program in Specialty Crops and Metabolomics, Academy of Circle Economy, National Chung Hsing University, Nantou city 540, Taiwan
- Department of Forestry, National Chung-Hsing University, Taichung City 402202, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115201, Taiwan
| | - Min-Hung Chen
- Agriculture and Food Agency, Ministry of Agriculture, No.8 Guang-hwa Rd., Nantou county 540207, Taiwan
| | - Sheng-Yen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 402, Taiwan
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, South Dist., Taichung City 402, Taiwan
| |
Collapse
|
6
|
Palos-Hernández A, González-Paramás AM, Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024; 30:55. [PMID: 39795112 PMCID: PMC11722096 DOI: 10.3390/molecules30010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Phenolic compounds present in plants and foods are receiving increasing attention for their bioactive and sensory properties, accompanied by consumers' interest in products with health benefits derived from natural rather than artificial sources. This, together with the sustainable development goals for the 21st century, has driven the development of green extraction techniques that allow obtaining these compounds with the safety and quality required to be applied in the food, cosmetic and pharmaceutical industries. Green extraction of natural products involves practices aiming at reducing the environmental impact of the preparation processes, based on using natural or less-polluting solvents, lower energetic requirements and shorter extraction times, while providing greater efficiency in the recovery of target compounds. In this article, the principles of sustainable extraction techniques and the advances produced in recent years regarding green isolation of polyphenols from plants, food and food waste are reviewed.
Collapse
Affiliation(s)
- Andrea Palos-Hernández
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
| | - Ana M. González-Paramás
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
7
|
Pang H, Xie Y, Wang X, Jia Y, Ye P, Mao C, Chen X, Fu H, Wang Y, Wang Y. Study on the effects of radio frequency blanching on polyphenol oxidase activity, physicochemical properties, and microstructure of iron yam. J Food Sci 2024; 89:8689-8703. [PMID: 39581594 DOI: 10.1111/1750-3841.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
The effects of radio frequency (RF) and hot water blanching on polyphenol oxidase (PPO) activity, physicochemical properties, and microstructure of iron yams were investigated. The heating rate of RF was the largest, and the heating uniformity was the best at the electrode gap of 160 mm and the material height of 90 mm. The residual activity of PPO was significantly reduced from 49.95% to 4.21%, whereas the RF heating temperature (65-85°C) increased (p < 0.05). The color and texture of yams treated with RF blanching were better preserved compared with those of hot water blanching at a similar degree of enzyme inactivation. The microstructure showed that these changes in physicochemical properties were caused by cellular damage. The surface cells of yams were more severely damaged than the center cells after hot water blanching at 95°C for 3 min. Moreover, the surface cells after hot water blanching also showed more damage than the cells after RF blanching. Thus, RF blanching is a technique with development potential in the food industry.
Collapse
Affiliation(s)
- Huiyun Pang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yingman Xie
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xue Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yiming Jia
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Pengfei Ye
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Chao Mao
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
8
|
Nian X, Wang J, Wang M, Wang Y, Liu S, Cao Y. Influence of ultrasonic pretreatment on the quality attributes and pectin structure of chili peppers (Capsicum spp.). ULTRASONICS SONOCHEMISTRY 2024; 110:107041. [PMID: 39208593 PMCID: PMC11399734 DOI: 10.1016/j.ultsonch.2024.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chili peppers (Capsicum spp.) exhibit a diverse range of quality characteristics and pectin structures, which are influenced by various factors. This study aimed to investigate the effects of ultrasound (US), ultrasonic combined hot blanching (US-BL), and ultrasonic combined freezing and thawing (US-FT) on the quality characteristics and pectin structure of vacuum pulsation-dried (VP) chili peppers. The results indicated that US-BL samples exhibited the highest L* and a* values, retained maximum capsorubin, and showed an increase in vitamin C, total phenols, and rehydration by 14.28 %, 40.87 %, and 8.66 %, respectively. In contrast, the US-FT samples exhibited the highest capsaicin and dihydrocapsaicin content, which increased by 54.97 % and 64.04 %, respectively. Pretreatment resulted in higher pectin linearity, a lower degree of branching, and a reduced molecular weight in the US-BL sample. Atomic force microscopy confirmed the degrading effect of pretreatment on the pectin structure. Pearson's correlation analysis revealed that capsorubin, capsaicin analogs, vitamin C, and total phenols were highly correlated with pectin linearity and molecular weight. This study found that US-BL was the most effective pretreatment method for improving the quality of pulsatile chili peppers and provides theoretical support for the application of VP chili peppers.
Collapse
Affiliation(s)
- Xin Nian
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| | - Jitao Wang
- School of Civil and Hydrulic Engineering, Ningxia University, Yinchuan, Ningxia 750000, China; Horticulture Technology Extension Center of Ningxia, Ningxia 750000, China
| | - Mengze Wang
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China.
| | - Yaqi Wang
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| | - Shiwei Liu
- Horticulture Technology Extension Center of Ningxia, Ningxia 750000, China
| | - Yudan Cao
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| |
Collapse
|
9
|
Wu Y, Liu Y, Jia Y, Feng CH, Zhang H, Ren F, Zhao G. Effects of thermal processing on natural antioxidants in fruits and vegetables. Food Res Int 2024; 192:114797. [PMID: 39147492 DOI: 10.1016/j.foodres.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guoping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
10
|
Xu H, Sutar PP, Ren W, Wu M. Revealing the mechanism of post-harvest processing on rose quality based on dynamic changes in water content, enzyme activity, volatile and non-volatile metabolites. Food Chem 2024; 448:139202. [PMID: 38579556 DOI: 10.1016/j.foodchem.2024.139202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Existing studies on post-harvest processing of edible roses have mainly focused on processing techniques and physicochemical properties of the final dried products, with limited studies on how changes in metabolites during processing affect the quality of these products. This study investigated changes in water content and status, enzyme activity, phenolic compounds, and volatile and non-volatile compounds during processing and revealed the mechanisms by which post-harvest processing (drying without blanching (WBD) and drying with blanching (BD)) affects the quality of dried roses by establishing their correlations. Results showed that the blanching reduced the relative content of free water and water activity, thus reducing the subsequent drying time and enzyme activity. The BD method caused higher levels of phenolic compounds than the WBD method in terms of gallic acid, ellagic acid, epicatechin, and quercetin. The OPLS-DA analysis identified 6 differential volatiles out of 72 detected volatiles, contributing to the unique aroma of dried roses by activating olfactory receptors through hydrogen bonding and hydrophobic interactions. 58 differential metabolites were screened from 964 non-volatile metabolites. KEGG pathway analysis revealed that the changes in volatile and non-volatile metabolites induced by different processing methods were due to the effect of blanching on glutathione and fatty acid metabolism. These findings provide a comprehensive understanding of how post-harvest processing affects the quality of dried roses.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
11
|
Teslić N, Pojić M, Stupar A, Mandić A, Pavlić B, Mišan A. PhInd-Database on Polyphenol Content in Agri-Food By-Products and Waste: Features of the Database. Antioxidants (Basel) 2024; 13:97. [PMID: 38247521 PMCID: PMC10812704 DOI: 10.3390/antiox13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Timely access to topic-relevant datasets is of paramount importance for the development of any successful strategy (food waste reduction strategy), since datasets illuminate opportunities, challenges and development paths. PhInd is the first comprehensive database on polyphenol content in plant-based by-products from the agri-food sector or the wastewater sector and was developed using peer-reviewed papers published in the period of 2015-2021. In total, >450 scientific manuscripts and >6000 compound entries were included. Database inclusion criteria were polyphenol contents = determined using HPLC/UHPLC quantitative methods. PhInd can be explored through several criteria which are either 'open' or checkboxes. Criteria are given in subsections: (a) plant source; (b) by-product industrial processing; (c) pre-treatment of by-products before the isolation of polyphenols; and (d) the extraction step of polyphenols. Database search results could be explored on the website directly or by downloading Excel files and graphs. This unique database content is beneficial to stakeholders-the food industry, academia, government and citizens.
Collapse
Affiliation(s)
- Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| |
Collapse
|
12
|
Qingyang L, Ruohui W, Shiman S, Danyu S, Runhong M, Yihua L. Comparison of different drying technologies for walnut ( Juglans regia L.) pellicles: Changes from phenolic composition, antioxidant activity to potential application. Food Chem X 2023; 20:101037. [PMID: 38144737 PMCID: PMC10739750 DOI: 10.1016/j.fochx.2023.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
The analysis of the phenolic profile in the walnut pellicle (WP) and its exploitability can help to promote the valorization of the industrial waste from walnut production. Three forms of 33 monomeric phenols in WPs were quantified based on our previously established LC-MS/MS method. The levels of protocatechuic acid and 4-hydroxybenzoic acid in the WPs were the highest, exceeding 400 μg/g. Antioxidant tests revealed that all three phenolic forms of WPs were effective antioxidants (IC50: 2.12-35.05 µg/mL). The findings also revealed that drying temperature had a substantial type-dependent effect on phenolics and their antioxidant ability in WPs. KEGG enrichment analysis found that drying method has the greatest impact on WPs phenols in six metabolic pathways. Besides, 11 active substances in WPs were identified by a compound-targeted activity screening approach, indicating that WPs could be used as a natural antioxidant source in the development of medical and nutraceutical products.
Collapse
Affiliation(s)
- Li Qingyang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Wang Ruohui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Sun Shiman
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Shen Danyu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Mo Runhong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Liu Yihua
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| |
Collapse
|
13
|
Brzezowska J, Hendrysiak A, Wojdyło A, Michalska-Ciechanowska A. Extraction-depended and thermally-modulated physical and chemical properties of powders produced from cranberry pomace extracts. Curr Res Food Sci 2023; 8:100664. [PMID: 38259423 PMCID: PMC10801205 DOI: 10.1016/j.crfs.2023.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Recovering bioactives from botanical by-products in the form of powders has been attempted through a number of multidirectional approaches. Yet understanding the processing of such plant formulations requires dedicated research owing to the manifold factors shaping the quality of powders. Therefore, the study aimed at production of cranberry powders from pomace extracts and to evaluate how different solvent type, carriers and drying techniques modulate their physico-chemical properties. Freeze- and vacuum drying significantly differentiated samples in terms of physical properties, while the extraction solvent and carrier type had substantial impact on chemical ones. For carrier-added products pomace extraction with acidified 50% ethanol resulted in the highest content of identified phenolics in powders (up to 5.87 g · 100 g-1 dry matter), while 30% acetone in the lowest (on average, 3.94 g · 100 g-1 dry matter). Acetone extraction strengthened the formation of hydroxymethyl-L-furfural that was higher when compared to acidified 50% ethanol, while trace amounts were reported for non-acidified counterpart. Similar observation was made in the case of flavan-3-ols. Addition of carriers during powders production led to the lower hydroxymethyl-L-furfural formation even down to 74% with regard to carrier-free samples. The study confirmed feasibility of managing cranberry pomace into high-value powders in extraction-depended and thermally-modulated quality matter.
Collapse
Affiliation(s)
- Jessica Brzezowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Aleksandra Hendrysiak
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| |
Collapse
|
14
|
Xu H, Guan Y, Shan C, Xiao W, Wu M. Development of thermoultrasound assisted blanching to improve enzyme inactivation efficiency, drying characteristics, energy consumption, and physiochemical properties of sweet potatoes. ULTRASONICS SONOCHEMISTRY 2023; 101:106670. [PMID: 37922719 PMCID: PMC10643530 DOI: 10.1016/j.ultsonch.2023.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Thermoultrasound (USB) as a promising alternative to traditional hot water (HWB) blanching was employed to blanch sweet potatoes and its influence on enzyme activity, drying behavior, energy consumption and physiochemical properties of sweet potatoes were investigated. Results showed that successive increases in blanching temperature and time resulted in significant (p < 0.05) decreases in PPO and POD activities. Compared to HWB, USB led to more effective drying by promoting texture softening, moisture diffusion, microstructure alterations, and microchannels formation, which significantly reduced energy consumption and improved the overall quality of the dried sample. Specifically, USB at 65 °C for 15 min improved water holding capacity and ABTS, while USB at 65 °C for 30 min improved color (more red and yellow), total phenolic content, total carotenoid content, and DPPH. Unfortunately, blanching process showed detrimental effects on the amino acid composition of dried samples. Overall, the development of thermoultrasound assisted blanching for sweet potatoes has the potential to revolutionize the processing and production of high-quality sweet potato products, while also improving the sustainability of food processing operations.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yaru Guan
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chun Shan
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanru Xiao
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
15
|
Vo TP, Pham TV, Tran TNH, Vo LTV, Vu TT, Pham ND, Nguyen DQ. Ultrasonic-Assisted and Microwave-Assisted Extraction of Phenolics and Terpenoids from Abelmoschus sagittifolius (Kurz) Merr Roots Using Natural Deep Eutectic Solvents. ACS OMEGA 2023; 8:29704-29716. [PMID: 37599925 PMCID: PMC10433328 DOI: 10.1021/acsomega.3c03929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
This research extracted phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr roots using natural deep eutectic solvent-based novel extraction techniques. Twelve natural deep eutectic solvents (NADESs) were produced for recovering phenolics and terpenoids. Citric acid/glucose and lactic acid/glucose, with a molar ratio of 2:1, were determined as the most appropriate NADESs for extracting phenolics and terpenoids, respectively. Afterward, the proper conditions for NADES-based ultrasonic-assisted and microwave-assisted extraction were investigated. Then, the time and liquid-to-solid ratios of ultrasonic- and microwave-combined extraction methods and the sequence of ultrasound and microwave treatments were examined. The conditions of ultrasonic-assisted extraction were 40 mL/g liquid-to-solid ratio, 40% water content, 30°C, 5 min, and 600 W ultrasonic power for the highest terpenoid recovery at 69 ± 2 mg UA/g dw, while 150 W ultrasonic power was suitable for phenolic recovery at 9.56 ± 0.17 mg GAE/g dw. The conditions of microwave-assisted extraction were 50 mL/g liquid-to-solid ratio, 20% water content, 400 W microwave power, and 2 min to acquire the highest phenolics and terpenoids at 22.13 ± 0.75 mg GAE/g dw and 90 ± 1 mg UA/g dw, respectively. Under appropriate conditions, the biological activities, phenolic content, and terpenoid content of obtained extracts from four extraction methods, including ultrasonic-assisted, microwave-assisted, ultrasonic-microwave-assisted, and microwave-ultrasonic-assisted extraction, were compared to select the most proper method. The conditions of ultrasonic-microwave-assisted extraction were 40 mL/g liquid-to-solid ratio, 5 min sonication, and 1 min microwave irradiation to obtain the highest phenolic and terpenoid contents (27.07 ± 0.27 mg GAE/g dw and 111 ± 3 mg UA/g dw, respectively). Ultrasonic-microwave-assisted extraction showed the highest phenolic content, terpenoid content, and biological activities among the four extraction techniques. The changes in the surface morphology were determined using scanning electron microscopy. This study demonstrated that ultrasonic-microwave-assisted extraction was an effective and sustainable method in food and pharmaceutical industries for recovering phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thuy Vy Pham
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Le Thao Vy Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Trong Thuc Vu
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Ngoc Duyen Pham
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Dinh Quan Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
16
|
Quan H, Cai Y, Lu Y, Shi C, Han X, Liu L, Yin X, Lan X, Guo X. Effect of Microwave Treatments Combined with Hot-Air Drying on Phytochemical Profiles and Antioxidant Activities in Lily Bulbs ( Lilium lancifolium). Foods 2023; 12:2344. [PMID: 37372556 DOI: 10.3390/foods12122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Lily bulbs (Lilium lancifolium Thunb.) are rich in phytochemicals and have many potential biological activities which could be deep-processed for food or medicine purposes. This study investigated the effects of microwaves combined with hot-air drying on phytochemical profiles and antioxidant activities in lily bulbs. The results showed that six characteristic phytochemicals were identified in lily bulbs. They also showed that with an increase in microwave power and treatment time, regaloside A, regaloside B, regaloside E, and chlorogenic acid increased dramatically in lily bulbs. The 900 W (2 min) and the 500 W (5 min) groups could significantly suppress the browning of lily bulbs, with total color difference values of 28.97 ± 4.05 and 28.58 ± 3.31, respectively, and increase the content of detected phytochemicals. The highest oxygen radical absorbance activity was found in the 500 W, 5 min group, a 1.6-fold increase as compared with the control (57.16 ± 1.07 μmol TE/g DW), which was significantly relevant to the group's phytochemical composition. Microwaves enhanced the phytochemicals and antioxidant capacity of lily bulbs, which could be an efficient and environmentally friendly strategy for improving the nutrition quality of lily bulbs during dehydration processing.
Collapse
Affiliation(s)
- Hong Quan
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Tibet Agricultural and Animal Husbandry University, Nyingchi, Lhasa 860000, China
| | - Yixi Cai
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| | - Yazhou Lu
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Tibet Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Lhasa 860000, China
| | - Caifeng Shi
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| | - Xinghao Han
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Tibet Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Lhasa 860000, China
| | - Linlin Liu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| | - Xiu Yin
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Tibet Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Lhasa 860000, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Tibet Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Lhasa 860000, China
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| |
Collapse
|
17
|
Gao Y, Ma K, Zhu Z, Zhang Y, Zhou Q, Wang J, Guo X, Luo L, Wang H, Peng K, Liu M. Modified Erchen decoction ameliorates cognitive dysfunction in vascular dementia rats via inhibiting JAK2/STAT3 and JNK/BAX signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154797. [PMID: 37037084 DOI: 10.1016/j.phymed.2023.154797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Vascular dementia (VaD) is one of the most common clinical syndromes of progressive neurocognitive dysfunction with uncertain mechanisms. Modified Erchen decoction (MECD), developed from "Erchen decoction (ECD)" recorded in "Taiping Huimin Heji Jufang", showed a good effect in the treatment of VaD. However, its therapeutic mechanism is still unclear. PURPOSE This study aimed to elucidate the multi-target mechanisms of MECD against VaD in vivo and in vitro. METHODS VaD model was established by two-vessel obstruction (2-VO) in Sprague-Dawley rats. Six groups, including the control, 2-VO operation, MECD treatment (2.5, 5.0 and 10.0 g kg-1 d-1), donepezil hydrochloride (positive control, 0.45 g kg-1 d-1) were designed in the whole experiment. After oral administration for 4 weeks, the effects of MECD were verified by behavioral experiments, histological observation, and biochemical index analysis. The chemical profiling of MECD was performed by UHPLC-Orbitrap Fusion-HRMS, and a "compound-target-pathway" multivariate network was constructed to validate and elucidate its pharmacological mechanisms. RESULTS Compared with 2-VO group, MECD treatment significantly alleviated anxiety and improved spatial memory in VaD rats according to the open field test (OFT) and Y-maze test. A significant increase in neuron number was observed from hematoxylin and eosin (H&E) stained images in cornu ammonis 1 (CA1) of the hippocampal region after MECD treatment. On the one hand, MECD reduced the plasma levels of triglyceride (TG), low-density lipoprotein (LDL), malondialdehyde (MDA), and amyloid-beta 42 (Aβ42), and inhibited mRNA expression of interleukin-1 beta (Il-1β) and Il-6 in the hippocampus. On the other hand, superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were significantly increased after treatment with MECD. Moreover, MECD reduced the mRNA expression and protein expression of janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK), and BCL2-associated X (BAX) in the brain of 2-VO rats. Furthermore, 71 compounds were identified from the extract of MECD. Among them, liquiritin and isochlorogenic acid C gave inhibiting effects on the mRNA expression of Jnk. In addition, liquiritin and hesperetin were conformed with the inhibition of Jak2 transcription level in vitro experiments. CONCLUSION MECD has demonstrated a significant amelioration effect on cognitive dysfunction in VaD rats via JAK2/STAT3 and JNK/BAX signaling pathways, which represents an innovative insight into the "activate blood and eliminate phlegm" theory.
Collapse
Affiliation(s)
- Yinhuang Gao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ke Ma
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhibo Zhu
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Zhang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiong Zhou
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowen Guo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liuting Luo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kang Peng
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Menghua Liu
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Saini R, Kaur S, Aggarwal P, Dhiman A. The influence of conventional and novel blanching methods on potato granules, phytochemicals, and thermal properties of colored varieties. Front Nutr 2023; 10:1178797. [PMID: 37215207 PMCID: PMC10196190 DOI: 10.3389/fnut.2023.1178797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Colored potatoes comprise many bioactive compounds that potentially support human health. Polyphenols present in them have associated therapeutic benefits like antimutagenic and anticarcinogenic properties. Method The current study aimed to explore the effects of different blanching methods (steam blanching, hot water blanching, and microwave-assisted blanching) on the phytochemical and structural aspects of PP-1901 and Lady Rosetta (LR) potato varieties. Changes in the antioxidant activity, color, total ascorbic acid, phenolic, and flavonoid content were based on the variations in parameters including temperature (blanching using hot water and steam) and capacity 100- 900 W (blanching using microwave). Results For both PP-1901 and LR varieties, all the blanching methods led to a significant reduction in residual peroxidase activity, as well as affecting their color. The preservation of bioactive substances exhibited a microwave steam>hot water blanching trend. Blanching significantly increased the antioxidant activity of all the samples. Additionally, Fourier-transform infrared spectroscopy revealed that phytocompounds were retained to their maximum in microwave-blanched samples, especially at 300 W. The type of blanching method significantly affected the thermal properties of potatoes by disrupting the ordered structure of the matrix. Discussion Microwaves at 300 W can be used as a novel and suitable alternative technique for blanching potatoes, which successfully retained the original quality of it in comparison to steam and hot water blanching.
Collapse
Affiliation(s)
- Rajni Saini
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sukhpreet Kaur
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Poonam Aggarwal
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Atul Dhiman
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| |
Collapse
|
19
|
Chandel R, Kumar V, Kaur R, Kumar S, Gill MS, Sharma R, Wagh RV, Kumar D. Functionality enhancement of osmo-dried sand pear cubes using different sweeteners: quality, bioactive, textural, molecular, and structural characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Evaluation of dry microwave and hot water blanching on physicochemical, textural, functional and organoleptic properties of Indian gooseberry ( Phyllanthus emblica). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [PMCID: PMC9898692 DOI: 10.1007/s11694-023-01833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Indian gooseberry (Phyllanthus emblica) is a seasonal and highly nutritious fruit with shorter shelf-life and astringent taste limiting its utilization. The enzymatic browning and flavor loss are major concerns which makes pre-processing a crucial step for further processing. In this context, dry microwave blanching (MWB) was explored as an alternative to hot-water (HW) blanching to reduce its nutrition losses particularly ascorbic acid (AA) and makes it easier for removal of seed kernel. This study focused on the effect of MW power level (200–500 W) and blanching time (50–100 s) on AA content, color attributes (L*, a*, b*), and enzymatic inhibition in Indian gooseberry. The optimized MWB conditions were 294 W MW power with 70 s blanching time providing satisfactory enzymatic inhibition (75.47%), and retention of AA (417.70 mg/100 g pulp) and color attributes (L*: 58.42, a*: 4.57, b*: 26.23). As compared to HWB (80 °C, 5 min), MWB showed least AA degradation, higher total phenolic content and softening percent with less total color difference owing to its shorter processing time and dry blanching. Quantitative descriptive analysis (QDA) demonstrated that raw and MW blanched Indian gooseberries are the most accepted, followed by HW blanched samples. MWB showed better nutrient retention than HWB with easier seed removal showed the application of MW radiation for blanching of other fruits.
Collapse
|
21
|
Huang Y, Sun Y, Lu T, Chen X. Effects of hot-air drying on the bioactive compounds, quality attributes, and drying and color change kinetics of coffee leaves. J Food Sci 2023; 88:214-227. [PMID: 36533940 DOI: 10.1111/1750-3841.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Drying is a key step that affects the chemical composition and quality of tea. In the present study, we reported the impacts of drying temperature and time on drying and color change kinetics, phytochemical composition, antioxidant activity, and surface microstructure of coffee leaves during hot-air drying. The results showed that drying temperature was positively (p < 0.05) correlated with the drying rate (DR), color index a* and total color change ΔE, and total soluble sugar (TSS), while negatively correlated with color indexes b* and L*, soluble protein content, and the DPPH scavenging capacity. Drying time has similar impacts on the color indexes and soluble protein as drying temperature. The content of total free amino acid and TSS increased by 62.5% and 47.4%, respectively, when coffee leaves were dried at 160°C for 24 min, under which the total phenolic content and DPPH and ABTS scavenging capacities reached the maximum of 108.04 mg GAE/g, 515.07 µmol Trolox/g, and 606.70 µmol Trolox/g, respectively. Drying significantly decreased the contents of chlorogenic acids and mangiferin and antioxidant activity, while high-temperature short-time drying helped retain phenolic compounds in coffee leaves. The DR fitted Page kinetic model. The color changes fitted the first-order kinetic models and the activation energies ranged from 16.00 to 31.06 kJ·mol-1 . Prolonged drying time caused serious wrinkles on the surface of coffee leaves and the stomata closed. PRACTICAL APPLICATION: Drying decreased soluble protein while increasing free amino acid and soluble sugar. High-temperature short-time drying helps retain phenolics in the coffee leaves. The color change of coffee leaves during drying follows first-order kinetic. Prolonged drying time resulted in loosened texture of coffee leaves. Our study suggested that drying coffee leaves at 160°C for 24 min results in the coffee leaf tea being of better quality.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Effects of hot-air microwave rolling blanching pretreatment on the drying of turmeric (Curcuma longa L.): Physiochemical properties and microstructure evaluation. Food Chem 2023; 398:133925. [DOI: 10.1016/j.foodchem.2022.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
23
|
Pozzobon RG, Rutckeviski R, Carlotto J, Schneider VS, Cordeiro LMC, Mancarz GFF, de Souza LM, Mello RG, Smiderle FR. Chemical Evaluation of Liquidambar styraciflua L. Fruits Extracts and Their Potential as Anticancer Drugs. Molecules 2023; 28:molecules28010360. [PMID: 36615553 PMCID: PMC9822488 DOI: 10.3390/molecules28010360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Liquidambar styraciflua L. is an aromatic species, popularly used in traditional Chinese medicine to treat diarrhea, dysentery, coughs, and skin sores. The present study was designed to investigate the chemical composition and biological potential of extracts obtained from the fruits of this plant. For the chemical evaluation, it was used mainly liquid and gas chromatography, plus NMR, and colorimetric methods. The aqueous extract (EA) originated two other fractions: an aqueous (P-EA) and an ethanolic (S-EA). The three extracts were composed of proteins, phenolic compounds, and carbohydrates in different proportions. The analyses showed that the polysaccharide extract (P-EA) contained pectic polysaccharides, such as acetylated and methyl esterified homogalacturonans together with arabinogalactan, while the fraction S-EA presented phenolic acids and terpenes such as gallic acid, protocathecuic acid, liquidambaric acid, combretastatin, and atractyloside A. EA, P-EA, and S-EA showed antioxidant activity, with IC50 values of 4.64 µg/mL, 16.45 µg/mL, and 3.67 µg/mL, respectively. The cytotoxicity followed the sequence S-EA > EA > P-EA, demonstrating that the toxic compounds were separated from the non-toxic ones by ethanol precipitation. While the fraction S-EA is very toxic to any cell line, the fraction P-EA is a promising candidate for studies against cancer due to its high toxicity to tumoral cells and low toxicity to normal cells.
Collapse
Affiliation(s)
- Rafaela G. Pozzobon
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Renata Rutckeviski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Juliane Carlotto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | - Vanessa S. Schneider
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | - Lucimara M. C. Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | | | - Lauro M. de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Rosiane Guetter Mello
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Fhernanda Ribeiro Smiderle
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence: ; Tel.: +55-41-33101035
| |
Collapse
|
24
|
Sánchez M, Laca A, Laca A, Díaz M. Towards food circular economy: hydrothermal treatment of mixed vegetable and fruit wastes to obtain fermentable sugars and bioactive compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3901-3917. [PMID: 35962165 DOI: 10.1007/s11356-022-22486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Due to processing activity, fruits and vegetables generate notable amounts of wastes at the processing, retail, and consumption level. Following the European goals for reducing food wastes and achieving a circular economy of resources, these biowastes should be valorized. In this work, hydrothermal hydrolysis at different conditions (temperatures, times, waste/water ratio, pH values) were tested to treat for first time; biowastes composed of mixed overripe fruits or vegetables to maximize the extraction of fermentable sugars that can be used as substrates in bioprocesses. Experimental data were fitted by a model based on irreversible first-order reactions, and kinetic constants were obtained. When hydrolysis of fruit wastes was carried out at 135 °C and pH 5 during 40 min, more than 40 g of reducing sugars per 100 g of waste (dry weight) could be obtained (represents an extraction of 97% of total carbohydrates). Concentrations of inhibitor compounds (HMF, furfural, acetic acid) in the hydrolysates were very low and, as example, a fermentation to obtain bioethanol was successfully carried out with an efficiency above 95%. Additionally, the production by hydrothermal treatment of bioactive compounds was investigated and the best results obtained were 92% DPPH inhibition and 12 mg GAE/g (dry weight) for antioxidant activity and phenolic compounds, respectively. These values are similar or even higher than those reported in literature using specific parts of fruits and vegetables.
Collapse
Affiliation(s)
- Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| |
Collapse
|
25
|
Liu R, Yang Y, Zhao M, Wang Y, Meng X, Yan T, Ho C. Effect of heat‐treating methods on components, instrumental evaluation of color and taste, and antioxidant properties of sea buckthorn pulp flavonoids. J Food Sci 2022; 87:5442-5454. [DOI: 10.1111/1750-3841.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Ran Liu
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Yunning Yang
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Menghan Zhao
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Yanqun Wang
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Xianjun Meng
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Tingcai Yan
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick New Jersey USA
| |
Collapse
|
26
|
Hot-Air Flow Rolling Dry-Blanching Pretreatment Improves the Drying Quality of Acanthopanax sessiliflorus by Increasing the Drying Rate and Inactivating Enzymes. Foods 2022. [PMCID: PMC9601497 DOI: 10.3390/foods11203186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The processing of Acanthopanax sessiliflorus has attracted interest due to its health benefits. In this work, an emerging blanching technology, called hot-air flow rolling dry-blanching (HMRDB), was employed to treat A. sessiliflorus before drying. The effects of varied blanching times (2–8 min) on enzyme inactivation, drying characteristics, bioactive compound retention, and microstructure were examined. The results demonstrated that blanching for 8 min rendered polyphenol oxidase and peroxidase nearly inactive. The blanching process reduced the drying time of samples by up to 57.89% compared to an unblanched sample. The Logarithmic model showed good fitting performance for the drying curves. The total phenolic and flavonoid content of the dried product increased as blanching time increased. The total anthocyanin content of the samples blanched for 6 min was 3.9 times higher than that of the unblanched samples, and 8 min of blanching produced the greatest DPPH• and ABTS• scavenging capabilities. The retention of active compounds in a dried product is a result of the inactivation of enzymes and a reduced drying period. Changes in the porous structure of the blanched samples would be responsible for the accelerated drying rate, according to microstructural analysis. These results indicate that HMRDB enhances the drying process and improves drying quality when applied to A. sessiliflorus before drying.
Collapse
|
27
|
Zhang Y, Yan Y, Li W, Huang K, Li S, Cao H, Guan X. Microwaving released more polyphenols from black quinoa grains with hypoglycemic effects compared with traditional cooking methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5948-5956. [PMID: 35442520 DOI: 10.1002/jsfa.11947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polyphenols were reported to exhibit inhibitory effects on digestive enzymes to regulate carbohydrates and lipid digestion. However, different cooking methods might cause differences in the composition of polyphenols in cereal grains and thus further affect their activities. RESULTS The present study used boiling, roasting and microwaving to cook black quinoa and extracted polyphenols from them. Their total phenolic content (TPC) and total flavonoids content were determined, and phenolic composition was analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS). Compared with other cooking methods, phenolic extract from microwaved black quinoa (PEM) showed the highest TPC value (about 2.64 mg GAE g-1 ). Microwaving released more phenolic acids (ferulic acid and gallic acid) from black quinoa grains. PEM also exhibited the strongest antioxidant and α-glucosidase inhibitory activities. Lineweaver-Burk plots showed that PEM inhibited α-glucosidase in an uncompetitive mode, which was supported by circular dichroism analysis. PEM further reduced about 20.04% of digested starch in an in vitro digestion model and suppressed postprandial blood glucose increases (about 16.91% reduction) in vivo. CONCLUSION Collectively, our data suggested that microwaving could be an ideal method to cook quinoa in regards of its polyphenols in management of postprandial blood glucose. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Yu Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wanqi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
28
|
Ma Y, Yi J, Jin X, Li X, Feng S, Bi J. Freeze-Drying of Fruits and Vegetables in Food Industry: Effects on Phytochemicals and Bioactive Properties Attributes - A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
29
|
Chemical, structural and functional properties of pectin from tomato pulp under different peeling methods. Food Chem 2022; 403:134373. [DOI: 10.1016/j.foodchem.2022.134373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
|
30
|
Zhu L, Hu W, Murtaza A, Iqbal A, Li J, Zhang J, Li J, Kong M, Xu X, Pan S. Eugenol treatment delays the flesh browning of fresh-cut water chestnut ( Eleocharis tuberosa) through regulating the metabolisms of phenolics and reactive oxygen species. Food Chem X 2022; 14:100307. [PMID: 35492256 PMCID: PMC9043673 DOI: 10.1016/j.fochx.2022.100307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
1.5 % EUG exhibited best inhibitory effect on browning in fresh-cut water chestnut. Phenylalanine ammonia-lyase of surface tissue was inhibited after eugenol treatment. Eugenol inhibited browning in fresh-cut water chestnut by regulating ROS metabolism. Eugenol enhanced ROS-scavenging enzymes and antioxidant capacity in surface tissue. Eugenol increased phenolic content and antioxidant capacity of inner tissue.
The potential mechanism behind the browning inhibition in fresh-cut water chestnuts (FWC) after eugenol (EUG) treatment was investigated by comparing the difference in browning behavior between surface and inner tissues. EUG treatment was found to inactivate browning-related enzymes and reduce phenolic contents in surface tissue. Molecular docking further confirmed the hydrophobic interactions and hydrogen bonding between EUG and phenylalanine ammonia-lyase (PAL). Moreover, EUG also enhanced reactive oxygen species (ROS)-scavenging enzyme activities, ultimately decreasing the O2- generation rates. Regarding inner tissue, EUG induced the accumulation of colorless phenolic compounds and increased the antioxidant capacity. In conclusion, 1.5 % EUG exhibited the best inhibitory effect on FWC browning, which partly attribute to the direct inhibitory effects on PAL activity. Furthermore, EUG could also enhance the enzymatic/non-enzymatic antioxidant capacity and alleviate the ROS damage to membranes, thereby, preventing the contact between oxidative enzymes and phenols and indirectly inhibiting the enzymatic browning in FWC.
Collapse
Key Words
- APX, Ascorbate peroxidase
- BI, Browning index
- Browning
- CAT, Catalase
- EUG, Eugenol
- Eugenol
- FWC, Fresh-cut water chestnut
- MDA, Malondialdehyde
- MIO, 4-methylidene-imidazole-5-one
- Molecular docking
- PAL, Phenylalanine ammonia-lyase
- PBS, Sodium phosphate buffer
- POD, Peroxidase
- PPO, Polyphenol oxidase
- Phenolics metabolism
- Phenylalanine ammonia-lyase
- ROS, Reactive oxygen species
- Reactive oxygen species metabolism
- SOD, Superoxide dismutase
- T-AOC, Total antioxidant capacities
- TPC, Total phenols content
- Water chestnut
Collapse
Affiliation(s)
- Lijuan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Wanfeng Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Ayesha Murtaza
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Aamir Iqbal
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Jiaxing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Jiao Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Junjie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Mengjie Kong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.,Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China
| |
Collapse
|
31
|
Dukare A, Samota MK, Bibwe B, Dawange S. Using convective hot air drying to stabilize mango peel (Cv-Chausa): evaluating effect on bioactive compounds, physicochemical attributes, mineral profile, recovery of fermentable sugar, and microbial safety. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Yao Y, Zhang B, Zhou L, Wang Y, Fu H, Chen X, Wang Y. Steam-assisted Radio Frequency Blanching to Improve Heating Uniformity and Quality Characteristics of Stem Lettuce Cuboids. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Headspace Solid-Phase Micro-extraction for Determination of Volatile Organic Compounds in Apple Using Gas Chromatography–Mass Spectrometry. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Assessment of Bioactive Compounds, Physicochemical Properties, and Microbial Attributes of Hot Air–Dried Mango Seed Kernel Powder: an Approach for Quality and Safety Evaluation of Hot Air–Dried Mango Seed Kernel Powder. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
He J, Chiu C, Gavahian M, Ho C, Chu Y. Development and Application of Edible Coating on Dried Pineapple Exposed to Ohmic Blanching. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jia‐Jing He
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology Pingtung Taiwan
| | - Chun‐Hui Chiu
- Graduate Institute of Health Industry and Technology Research Center for Chinese Herbal Medicine Research Center for Food and Cosmetic Safety College of Human Ecology Chang Gung University of Science and Technology Taoyuan Taiwan
- Department of Traditional Chinese Medicine Keelung Chang Gung Memorial Hospital Keelung Taiwan
| | - Mohsen Gavahian
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology Pingtung Taiwan
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick NJ USA
| | - Yung‐Lin Chu
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology Pingtung Taiwan
| |
Collapse
|
36
|
Tavares RMDO, de Assis CF, Lima PDO, de Lima PDS, Lima RRC, Damasceno KSFDSC. Blanching Effect on the Quality and Shelf-Life Characteristics of Fresh Cowpea Grains [ Vigna unguiculata (L.) Walp.]. Foods 2022; 11:1295. [PMID: 35564021 PMCID: PMC9100185 DOI: 10.3390/foods11091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The high perishability of fresh cowpeas impairs its commercialization. Thus, this study aims to determine the temperature-time binomial for blanching fresh cowpea [Vigna unguiculata (L.) Walp] by evaluating the effects of heat treatment and kinetic behavior on the peroxidase (POD) activity and on the physical characteristics (firmness, color, mass gain). A factorial design (3 × 6) with temperature (70, 80, and 90 °C) and time (1, 2, 4, 6, 8, and 10 min) was implemented. Physicochemical, microbiological, and enzymatic (POD) changes, in addition to photographic monitoring, were evaluated throughout the storage period (4.90 °C). With regard to the effects of the independent variables and the first-order kinetic model, it was determined that 70 °C for 4 min of blanching maintained and/or improved the physical characteristics of the raw material. The pH and the acidity of the blanched fresh cowpea changed little during the storage period; the microbiological load and POD activity reduced with blanching and remained stable until the eighth day of storage, and provided an increase of 5 days in shelf-life under refrigeration when compared to non-blanched. Blanching is shown as an alternative for improving fresh cowpeas, favoring an economic increase in production with guaranteed quality and safety attributes.
Collapse
Affiliation(s)
- Romayana Medeiros de Oliveira Tavares
- Health Sciences Center, Nutrition Postgraduate Program, Department of Nutrition, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Lagoa Nova, Natal 59078-900, Brazil;
| | - Cristiane Fernandes de Assis
- Health Sciences Center, Nutrition Postgraduate Program, Department of Pharmacy, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Lagoa Nova, Natal 59078-900, Brazil;
| | - Patrícia de Oliveira Lima
- Postgraduate Program in Animal Science, Department of Animal Sciences, Federal Rural University of the Semi-Arid. Rua Francisco Mota, 572, Pres. Costa e Silva, Mossoró 59625-900, Brazil;
| | - Paulo Douglas Santos de Lima
- Department of Theoretical and Experimental Physics, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Lagoa Nova, Natal 59078-900, Brazil;
| | - Roberto Rodrigues Cunha Lima
- Federal Institute of Education Science and Technology of Rio Grande do Norte, Rua Brusque, 2926, Potengi, Natal 59112-490, Brazil;
| | | |
Collapse
|
37
|
Reyes Chaparro J, Durán Barón R, Valle Vargas M, Ramiro Arballo J, Campañone LA. Experimental and computational study of fluidized-microwave drying process of shrinking parchment coffee and determination of quality attributes. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work presents the fluidized bed drying process combined with microwaves applied to Parchment coffee. In order to study different parameters that affect the quality of the grains, a mathematical model that describes energy and mass transfer during the drying process is presented and solved using Finite Elements Method (FEM) through COMSOL Multiphysics software. The model also considered the shrinkage of the grains due to water removal. Experiments were carried out in experimental prototype equipment obtaining the drying curves, which were utilized to validate the mathematical model. To study the impact of the operating conditions on the quality of the processed coffee, total polyphenolic content and antioxidant capacity were determined by Folin-Ciocalteau and free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods, respectively. Finally, nutritional parameters were related to operating conditions by the polynomial regression and desirability function methodology. Optimal operating conditions (1.4 m/s and 500 W) were found, which provides a product of excellent final quality.
Collapse
Affiliation(s)
- Jose Reyes Chaparro
- CIDCA (CONICET-CCT La Plata y Universidad Nacional de La Plata) , Calle 47 y 116 , La Plata (1900) , Argentina
| | - Ricardo Durán Barón
- Universidad Popular del Cesar, Grupo Optimización Agroindustrial, sede Sabanas , Valledupar , Colombia
| | - Marcelo Valle Vargas
- Universidad Popular del Cesar, Grupo Optimización Agroindustrial, sede Sabanas , Valledupar , Colombia
| | - Javier Ramiro Arballo
- CIDCA (CONICET-CCT La Plata y Universidad Nacional de La Plata) , Calle 47 y 116 , La Plata (1900) , Argentina
- Departamento de Ingeniería Química , Facultad de Ingeniería (UNLP) , Calle 1 y 47 , La Plata (1900) , Argentina
| | - Laura Analia Campañone
- CIDCA (CONICET-CCT La Plata y Universidad Nacional de La Plata) , Calle 47 y 116 , La Plata (1900) , Argentina
- Departamento de Ingeniería Química , Facultad de Ingeniería (UNLP) , Calle 1 y 47 , La Plata (1900) , Argentina
| |
Collapse
|
38
|
Han AM, Xu X, Yang N, Jin Y, Jin Z, Xie Z. Application of induced voltage in cloudy apple juice: enzymatic browning and bioactive and flavouring compounds. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aye Myo Han
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Na Yang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology, Shandong Academy of Sciences 3501 Daxue Road Jinan 250353 China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Zhengjun Xie
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| |
Collapse
|
39
|
Chao E, Li J, Fan L. Enhancing drying efficiency and quality of seed-used pumpkin using ultrasound, freeze-thawing and blanching pretreatments. Food Chem 2022; 384:132496. [PMID: 35245751 DOI: 10.1016/j.foodchem.2022.132496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Effects of blanching (BL), ultrasound (US) and freeze-thawing (FT) pretreatments prior to far-infrared drying (FIRD) on drying characteristics, water distribution, and quality parameters of seed-used pumpkin (SUP) slices were investigated in this study. US, BL and FT pretreatments significantly accelerated drying rate due to the destruction of cell structure. Modified Page model was the fittest model for predicting the FIRD process. Low field nuclear magnetic resonance (LF-NMR) results revealed that T2 distribution curves of all pretreated samples moved rapidly to the positive x-axis direction, indicating an increase in the rate of water migration. The color of US-FIRD was closer to fresh SUP. BL-FIRD exhibited the highest free polyphenols content (241.28 ± 1.11 mg GAE/100 g DW) and total carotenoids content (129.69 ± 2.49 μg/ g DW), increasing by 45% and 34% respectively compared to the untreated sample.
Collapse
Affiliation(s)
- Erpeng Chao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
40
|
Yuan J, Wang H, Li Y, Chen L, Zheng Y, Jiang Y, Tang Y, Li X, Li J, Wang L. UV‐C irradiation delays browning of fresh‐cut “Fuji” apples. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Junwei Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Haifen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Yusheng Li
- Changli Rearch Institute of Pomology Hebei Academy of Agriculture and Forestry Sciences Changli China
| | - Lan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
- Tianjin Gasin‐DH Preservation Technologies Co., Ltd. Tianjin China
| | - Yanli Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Jixin Li
- Xinjiang academy of agricultural and reclamation science Shihezi China
| | - Luyin Wang
- Xinjiang Hongqipo Agricultural Development Group Co., Ltd. Akesu China
| |
Collapse
|
41
|
Zhang J, Li J, Murtaza A, Iqbal A, Zhu L, Ali SW, Usman M, Yameen R, Pan S, Hu W. Synergistic effect of high‐intensity ultrasound and β‐cyclodextrin treatments on browning control in apple juice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiao Zhang
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Junjie Li
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Ayesha Murtaza
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Department of Food Science and Technology, Faculty of Life Sciences University of Central Punjab Lahore 54000 Pakistan
| | - Aamir Iqbal
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Lijuan Zhu
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences University of the Punjab Quaid‐i‐Azam Campus Lahore 54590 Pakistan
| | - Muhammad Usman
- Institute of Agricultural Sciences University of the Punjab Quaid‐i‐Azam Campus Lahore 54590 Pakistan
| | - Roshan Yameen
- Institute of Agricultural Sciences University of the Punjab Quaid‐i‐Azam Campus Lahore 54590 Pakistan
| | - Siyi Pan
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Wanfeng Hu
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| |
Collapse
|
42
|
Zhu X, Healy LE, Sevindik O, Sun DW, Selli S, Kelebek H, Tiwari BK. Impacts of novel blanching treatments combined with commercial drying methods on the physicochemical properties of Irish brown seaweed Alaria esculenta. Food Chem 2022; 369:130949. [PMID: 34488133 DOI: 10.1016/j.foodchem.2021.130949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/15/2023]
Abstract
Alaria esculenta is one of the most abundant edible brown seaweeds in Irelandandisconsidered an excellent source of nutrients, sought after by the food, nutraceutical and pharmaceutical industries. Seaweed is typically blanched and dried prior to consumption to enhance the end-product quality attributes and shelf life. Three blanching techniques were examined in this work; conventional hot water blanching, novel ultrasound blanching and microwave blanching. The L* and b*colour metrics were affected significantly (P < 0.01) by the processing methods. There were 76 volatile compounds detected in blanched and dehydrated Alaria esculenta. Freeze-dried samples after treatment with microwave alone (at 1000 W) and microwave (800 W) combined with ultrasound (at 50% amplitude) had the highest retention rate of volatile compounds (up to 98.61%). Regarding mineral content, drying methods significantly affected (P < 0.05) the content of Ca, Co, Cu and Fe, while blanching treatments significantly affected (P < 0.05) the content of Na, Cu, Fe and Mn.
Collapse
Affiliation(s)
- Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Laura E Healy
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Onur Sevindik
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey; Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, 01330 Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
| | | |
Collapse
|
43
|
Franco RR, Ojeda GA, Rompato KM, Sgroppo SC. Effects of short-wave ultraviolet light, ultrasonic and microwave treatments on banana puree during refrigerated storage. FOOD SCI TECHNOL INT 2021; 29:50-61. [PMID: 34779305 DOI: 10.1177/10820132211058444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymatic browning is a major problem in minimally processed banana puree; it reduces consumeŕs acceptability and affects nutritional quality. The objective of this work was to evaluate the effects ultrasound (40 kHz/10 min), microwave (800 W/ 25 s) and UV-C radiation (1.97 kJ/m2) applied to banana puree. Colour parameters (L*, a*, b*, chroma and hue), browning index (BI), polyphenol oxidase (PPO) and peroxidase (POD) activities, total phenolic compounds (TPC), antioxidant capacity (AOC) and microbiological counts were monitored throughout storage at 4°C. Ultrasound (US) and microwave (MW) treatments achieved a significant (p < 0.05) reduction in PPO activity and BI; moreover, ultrasound effectively retained phenolic compounds content (75% of initial value). The AOC was in coincidence with TPC values. POD activity was partially inhibited by UV-C while MW and US increase its activity. Although UV-C treatment was not effective to control browning development, it was effective to maintain microbiological stability after 20 days of storage (1.48 ± 0.01 log CFU/g). The evaluated treatments have the advantage of being less aggressive than conventional thermal treatments while maintaining fresh characteristics of the product.
Collapse
Affiliation(s)
- Rodrigo Rubén Franco
- Laboratorio de Investigación en Microbiología y Alimentos, Facultad de Ciencias de la Salud, 28220Universidad Nacional de Formosa, Formosa, Argentina
| | - Gonzalo Adrián Ojeda
- Laboratorio de Tecnología Química (IQUIBA - CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, 28248Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Karina Mariela Rompato
- Laboratorio de Investigación en Microbiología y Alimentos, Facultad de Ciencias de la Salud, 28220Universidad Nacional de Formosa, Formosa, Argentina
| | - Sonia Cecilia Sgroppo
- Laboratorio de Tecnología Química (IQUIBA - CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, 28248Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
44
|
Cássia Tomasi J, Goetten de Lima G, Mendes Duarte M, Catie Bueno de Godoy R, Wendling I, Vieira Helm C, Augusto Hansel F, Lúcia Grunennvaldt R, Maciel Tomazzoli M, Deschamps C. Toasted yerba mate: Impact of drying methods on bioactive compounds, antioxidant capacity, and mate tea consumer acceptance. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Gabriel Goetten de Lima
- Post Graduate Program in Engineering and Materials Science ‐ PIPEFederal University of Paraná Curitiba Paraná Brazil
- Materials Research Institute Athlone Institute of Technology Athlone Ireland
| | | | | | | | | | | | - Renata Lúcia Grunennvaldt
- Gene Cology Research Center School of Science and Engineering University of the Sunshine Coast Maroochydore Australia
| | | | - Cícero Deschamps
- Agronomy Department Federal University of Parana Curitiba Brazil
| |
Collapse
|
45
|
Zhang J, Yagoub AEA, Sun Y, S Mujumdar A, Ma H, Wahia H, Zhou C. Intensive pulsed light pretreatment combined with controlled temperature and humidity for convection drying to reduce browning and improve quality of dried shiitake mushrooms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5608-5617. [PMID: 33709503 DOI: 10.1002/jsfa.11212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/04/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The change of surface color caused by browning during the drying process of shiitake mushrooms seriously affects its market circulation. Intensive pulsed light (IPL) as a non-heat-treatment method can reduce enzyme activity by changing the enzyme structure. Therefore, in this study, the use of IPL pretreatment before drying was aimed to reduce the adverse reactions caused by the browning reaction during the drying processing of shiitake mushrooms. RESULTS Shiitake mushrooms pretreated with 25 pulses of IPL energy of 400 J reduced the initial polyphenol oxidase enzyme activity, the browning index, and browning degree values by 42.83%, 43.02%, and 47.54% respectively. The IPL pretreatment enhanced the polysaccharides and reducing sugars contents and it reduced 5-hydroxymethylfurfural generation in the dried shiitake mushrooms. The pretreatment also improved the surface color, the antioxidant activity, and retained the umami taste characteristics in the dried shiitake mushroom. CONCLUSION The IPL pretreatment combined with controlled temperature and humidity for convection drying could be a suitable method to improve the quality of dried shiitake mushrooms. Therefore, this study provides a new pretreatment method for materials that are prone to browning during drying. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Yanhui Sun
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, China
| | - Arun S Mujumdar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Canada
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, China
| |
Collapse
|
46
|
Hu Q, He Y, Wang F, Wu J, Ci Z, Chen L, Xu R, Yang M, Lin J, Han L, Zhang D. Microwave technology: a novel approach to the transformation of natural metabolites. Chin Med 2021; 16:87. [PMID: 34530887 PMCID: PMC8444431 DOI: 10.1186/s13020-021-00500-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022] Open
Abstract
Microwave technology is used throughout the world to generate heat using energy from the microwave range of the electromagnetic spectrum. It is characterized by uniform energy transfer, low energy consumption, and rapid heating which preserves much of the nutritional value in food products. Microwave technology is widely used to process food such as drying, because food and medicinal plants are the same organisms. Microwave technology is also used to process and extract parts of plants for medicinal purposes; however, the special principle of microwave radiation provide energy to reaction for transforming chemical components, creating a variety of compounds through oxidation, hydrolysis, rearrangement, esterification, condensation and other reactions that transform original components into new ones. In this paper, the principles, influencing factors of microwave technology, and the transformation of natural metabolites using microwave technology are reviewed, with an aim to provide a theoretical basis for the further study of microwave technology in the processing of medicinal materials.
Collapse
Affiliation(s)
- Qi Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fang Wang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jing Wu
- Xinqi Microwave Co., Ltd., Guiyang, 550000, China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lumeng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
47
|
Fombang EN, Nobossé P, Mbofung CMF, Singh D. Impact of post harvest treatment on antioxidant activity and phenolic profile of Moringa oleifera lam leaves. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Moringa oleifera leaves are an important source of dietary phytochemicals, such as flavonoids with high antioxidant activity (AOA). These components are however influenced by the post-harvest treatments applied as well as the processing conditions. Hence, it is crucial to determine the most appropriate post-harvest treatment that preserves or enhances AOA. To this effect the influence of steam blanching, fermentation / oxidation, oven drying and roasting of fresh Moringa leaves on their AOA was investigated. Processing conditions of time and temperature for each treatment were optimised using response surface methodology. The effect of the different treatments at optimal conditions on phenolic profile and AOA were compared. Roasting achieved the most significant (p < 0.05) improvement in phenolics (43%) and AOA (22–31%), which was accompanied by the formation of 2 new compounds, quercetin-3-O-acetylglucoside and Quercetine-3-O-rhamnoside. Steam blanching had the most deleterious effect on phenolics (− 31%) and AOA. Post-harvest treatments qualitatively and quantitatively affect phytochemical profile of Moringa leaves.
Graphical abstract
Collapse
|
48
|
Marçal S, Pintado M. Mango peels as food ingredient / additive: nutritional value, processing, safety and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Zhang Y, Sun BH, Pei YP, Vidyarthi SK, Zhang WP, Zhang WK, Ju HY, Gao ZJ, Xiao HW. Vacuum-steam pulsed blanching (VSPB): An emerging blanching technology for beetroot. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Total Polyphenol and Flavonoid Content and Antioxidant Capacity of Some Varieties of Persea americana Peels Consumed in Cameroon. ScientificWorldJournal 2021; 2021:8882594. [PMID: 33976588 PMCID: PMC8084670 DOI: 10.1155/2021/8882594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/16/2021] [Accepted: 04/11/2021] [Indexed: 12/01/2022] Open
Abstract
Fruit peels are increasingly being used as functional foods nowadays. Peelings of twelve varieties of Persea americana fruits consumed in Cameroon were investigated for their phenolic compounds (polyphenols and flavonoids) using three solvents systems, water, ethanol: water (50 : 50 v/v), and ethanol, and antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FRAP), and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging methods. Total polyphenol, flavonoids, and antioxidant potential of the peels significantly varied with P. americana variety and also with the extraction solvents in the order ethanol > ethanol: water > water. Total phenolic content varied from 2407 (Fuerte florid) to 673 (Semil) mg GAE/g DM, respectively, while flavonoids varied from 986 to 119 mg QE/g DM for Fuerte florid and Hickson varieties, respectively. TAC, respectively, varied between 132.87 and 126.85 mg AAE/g DM with Hass and Semil varieties, respectively. The highest DPPH scavenging capacity was recorded for the ethanolic extract with Lula (86.33%) and the least for the aqueous extract with the Semil (30.11%) variety. With FRAP, the highest capacity was obtained with hydroethanolic extract of Fuerte florid (0.43 mg AAE/g DM) and the least for aqueous extract with the Semil (0.269 mg AAE/g DM) variety. In conclusion, varieties of avocado peels are a good source of antioxidants. Solvent extraction significantly affected the concentration of bioactive compounds but not the potency of the antioxidants. A weakly positive correlation but not significant between the quantity of polyphenol, flavonoid, and antioxidant capacity of avocado peelings was obtained in this study.
Collapse
|