1
|
Sudheesh C, Pillai S. A review on research advances in efficient approaches to augment hydrothermal techniques for starch functionalization: Mechanisms, properties and potential food applications. Carbohydr Polym 2025; 357:123441. [PMID: 40158978 DOI: 10.1016/j.carbpol.2025.123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The applications of hydrothermally modified starches in conventional water media, such as distilled water (DW), are limited due to their poor performance. Therefore, researchers are introducing innovative techniques in various environments, including ethanol solutions, salt solutions, acidic or alkaline conditions, plasma-activated water (PAW), and hydrogen-infused water (HW), to enhance the efficiency of annealing (ANN) and heat moisture treatment (HMT). The present review discusses these new approaches aimed at improving the performance of ANN and HMT, their potential mechanisms for starch modification, the resulting changes in the functional properties of starch, and their role in various food applications. Additionally, it systematically elucidates the challenges, opportunities, and future directions in this field. Unlike classical water-based ANN or HMT, innovative and sustainable approaches adopted for hydrothermal methods drastically enhance the structural stability, resistance to digestive enzymes, and low-temperature storage stability of starch. However, these changes depend on controlled parameters, such as the concentration of ethanol or salt, pH of the medium, incubation time, moisture level, treatment temperature, and starch properties (e.g., amylose/amylopectin ratio) during treatment. This consolidated report on cutting-edge techniques designed to enhance the effectiveness of hydrothermal modifications seeks to expand the potential applications of ANN and HMT in food-grade products.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India.
| | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Paternina-Contreras AL, Andrade-Pizarro RD, Figueroa-Flórez JA. Physical Modification of Starch in Plant-Based Flours: Structural, Physicochemical, and Pasting Property Changes and Potential Applications in Baked and Extruded Products. Compr Rev Food Sci Food Saf 2025; 24:e70184. [PMID: 40331739 DOI: 10.1111/1541-4337.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
Unmodified starches and flours have physicochemical and functional limitations that include low solubility, limited swelling power, low water absorption, and a high tendency to retrogradation and syneresis-characteristics that restrict their use in the agri-food industry. To overcome these limitations, several physical modifications have been proposed, such as hydrothermal treatments (heat-moisture treatment, HMT; dry-heat treatment, DHT; and annealing, ANN), as well as extrusion and the use of microwaves. HMT, DHT, and ANN are processes that are performed at low, intermediate, and high-moisture content, respectively. Extrusion employs high temperatures, pressure, and shear forces, whereas microwaves use photon irradiation and dielectric heating. This review focuses on the importance of physical modifications of flours and their effect on the physicochemical, structural, and rheological properties of starch. Flours subjected to these treatments show improvements in their physicochemical characteristics, including a higher content of slow-digestion starch and resistant starch fractions. When applied in the production of baked and extruded products, they enhance texture and extend shelf life, while maintaining acceptable sensory qualities. In addition, these processes increase the versatility of flours from non-conventional sources, such as gluten-free cereals, legumes, roots, and tubers, expanding their possibilities of use in the agri-food industry.
Collapse
|
3
|
Rostamabadi H, Yildirim-Yalcin M, Demirkesen I, Toker OS, Colussi R, do Nascimento LÁ, Şahin S, Falsafi SR. Improving physicochemical and nutritional attributes of rice starch through green modification techniques. Food Chem 2024; 458:140212. [PMID: 38943947 DOI: 10.1016/j.foodchem.2024.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Rice, has long been an inseparable part of the human diet all over the world. As one of the most rapidly growing crops, rice has played a key role in securing the food chain of low-income food-deficit countries. Starch is the main component in rice granules which other than its nutritional essence, plays a key role in defining the physicochemical attributes of rice-based products. However, rice starch suffers from weak techno-functional characteristics (e.g., retrogradability of pastes, opacity of gels, and low shear/temperature resistibility. Green modification techniques (i.e. Non-thermal methods, Novel thermal (e.g., microwave, and ohmic heating) and enzymatic approaches) were shown to be potent tools in modifying rice starch characteristics without the exertion of unfavorable chemical reagents. This study corroborated the potential of green techniques for rice starch modification and provided deep insight for their further application instead of unsafe chemical methods.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meral Yildirim-Yalcin
- Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295, Istanbul, Turkey
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Omer Said Toker
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, Istanbul, Turkey
| | - Rosana Colussi
- Center for Pharmaceutical and Food Chemical Sciences, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Lucas Ávila do Nascimento
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Division of Unit Operations and Thermodynamics, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Seid Reza Falsafi
- Food Science and Technology Division, Agricultural Engineering Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, (AREEO), Dezful, Iran.
| |
Collapse
|
4
|
Sudheesh C, Varsha L, Sunooj KV, Pillai S. Influence of crystalline properties on starch functionalization from the perspective of various physical modifications: A review. Int J Biol Macromol 2024; 280:136059. [PMID: 39341324 DOI: 10.1016/j.ijbiomac.2024.136059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The relationship between structural properties and functional characteristics of starch remains a hot subject among researchers. The crystalline property is a substantial characteristic of starch granules, undergoing different changes during modification techniques. These changes are closely related to the functional properties of modified starches. Physical modifications are eco-friendly techniques and are widely adopted for starch modifications. Therefore, understanding the impact of changes in crystalline properties during different physical modifications on starch functionality is the ultimate way to improve their industrial utilization. However, the existing literature still lacks the elucidation of changes in functional properties of starch in accordance with its crystalline properties during different physical treatments. Hence, this review summarizes the effects of the most important and widely used physical modifications on starch crystalline properties, highlighting the alterations in various functional properties such as hydration, pasting, gelatinization, and in vitro digestibility resulting from changes in crystalline characteristics in a single comprehensive discussion. Furthermore, the current review gives direction for envisaging the functionalization of starches based on deviations in the crystalline properties during several physical treatments.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.
| | - Latha Varsha
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Fashi A, Delavar AF, Zamani A, Noshiranzadeh N, Ebadipur H, Ebadipur H, Khanban F. Dielectric barrier discharge plasma pre-treatment to facilitate the acetylation process of corn starch under heating/cooling cycles. Food Chem 2024; 453:139711. [PMID: 38781893 DOI: 10.1016/j.foodchem.2024.139711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The objective of the current work was to evaluate the impacts of dielectric barrier discharge plasma and repeated dry-heat treatments on the acetylation process of corn starch. The combined modification resulted in a higher substitution degree of acetate groups on starch chains compared to the acetylation treatment alone. This outcome was linked to the increase in surface area and structural organization level of granules achieved through the application of plasma and heating/cooling cycles, respectively. The successful esterification of starch structure was verified through FTIR (1710 cm-1) and 1H NMR (2 ppm). With the increase in plasma treatment duration up to 20 min, gelatinization enthalpy increased (10.81 J/g) due to the cross-linking reaction. Starch acetate produced through the combined treatment could find the application in the development of low-calorie food formulations due to its high resistant starch (70.5 g/100 g) and low viscosity (43 mPa s).
Collapse
Affiliation(s)
- Armin Fashi
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code, 45371-38791, Zanjan, Iran; Research and Development Department, Glucosan Company, Alborz, Industrial City, Qazvin, Iran.
| | - Ali Fallah Delavar
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code, 45371-38791, Zanjan, Iran; Research and Development Department, Glucosan Company, Alborz, Industrial City, Qazvin, Iran
| | - Abbasali Zamani
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code, 45371-38791, Zanjan, Iran.
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Hossein Ebadipur
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code, 45371-38791, Zanjan, Iran
| | - Hasan Ebadipur
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code, 45371-38791, Zanjan, Iran
| | - Fatemeh Khanban
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code, 45371-38791, Zanjan, Iran
| |
Collapse
|
6
|
Li S, Zhang L, Sheng Q, Li P, Zhao W, Zhang A, Liu J. The effect of heat moisture treatment times on physicochemical and digestibility properties of adzuki bean, pea, and white kidney bean flours and starches. Food Chem 2024; 440:138228. [PMID: 38150901 DOI: 10.1016/j.foodchem.2023.138228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
The effects of heat moisture treatment (HMT) times on the physicochemical properties of three bean flours and their starch were analyzed. The colors of L*, b* and ΔE values increased significantly with time. The adzuki bean and pea flours showed better WAI and SP, and better gelation of starch at 2 h. The rheological properties of mixed HMT dough (3:7) exhibited the typical solid-like weak gel behavior. HMT had a significantly decreased on the pasting viscosity of bean flour starch with treated time. HMT caused the starch granules damage, but did not radically change the crystal type. FTIR results showed more proteins attached to the surface of starch granules, and the short-range molecular order decreased the DO at 2 h. In vitro digestibility inferred that RDS converted into SDS and RS. These results indicated that HMT significantly affected the digestibility and physicochemical properties of bean flours.
Collapse
Affiliation(s)
- Shaohui Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Liu Zhang
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei 050061, People's Republic of China
| | - Qinghai Sheng
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei 050061, People's Republic of China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China.
| |
Collapse
|
7
|
Huang B, Zhao G, Zou X, Cheng X, Li S, Yang L. Feasibility of replacing waxy rice with waxy or sweet-waxy corn viewed from the structure and physicochemical properties of starches. Food Res Int 2024; 182:114178. [PMID: 38519192 DOI: 10.1016/j.foodres.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
To explore the feasibility of substituting waxy rice with waxy or sweet-waxy corn, eight varieties of waxy and sweet-waxy corns were selected, including three self-cultivated varieties (Feng nuo 168, Feng nuo 211, and Feng nuo 10). Their starches were isolated and used as research objects, and commercially available waxy rice starch (CAWR) and waxy corn starch (CAWC) were used as controls. X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, rapid viscosity analyzer, and rotational rheometer were used to analyze their physicochemical and structural characteristics. The morphologies of all corn starch granules were generally oval or round, with significant differences in particle size distributions. All ten starches exhibited a typical A-type crystal structure; however, their relative crystallinity varied from 20.08% to 31.43%. Chain length distribution analysis showed that the A/B ratio of Jing cai tian nuo 18 and Feng nuo 168 was similar to that of CAWR. Peak viscosities of corn starches were higher than that of CAWR, except for Feng nuo 10, while their setback values were lower than that of CAWR. Except for Feng nuo 10, the paste transparency of corn starches was higher than that of CAWR (10.77%), especially for Jing cai tian nuo 18 (up to 24%). In summary, Jing cai tian nuo 18 and Feng nuo 168 are promising candidates to replace CAWR in developing various rice-based products.
Collapse
Affiliation(s)
- Biao Huang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Gongqi Zhao
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Xiaochen Zou
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Xinxin Cheng
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China.
| |
Collapse
|
8
|
Kunyanee K, Van Ngo T, Kusumawardani S, Luangsakul N. Enhancing Banana Flour Quality through Physical Modifications and Its Application in Gluten-Free Chips Product. Foods 2024; 13:593. [PMID: 38397570 PMCID: PMC10887583 DOI: 10.3390/foods13040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to analyze the effects of different single or dual physical treatments, including pre-gelatinization (PBF), annealing (ANN), PBF+ANN, and ANN+PBF, on banana flour's characteristics and its application in gluten-free chip production. The study involved determining the color, swelling capacity, solubility, oil absorption index, and pasting properties of both the native and modified banana flour samples. The results showed a significant change in color, particularly in the pre-gelatinized samples. There was a noticeable decrease in the values of the pasting parameters in the modified samples. PBF samples exhibited a remarkable reduction in the breakdown value compared to the native and ANN treated samples. Furthermore, PBF-treated banana flour displayed higher oil absorption and swelling power than the other samples, along with lower solubility in the PBF-treated sample. These characteristics appear to be responsible for enabling the pre-gelatinized sample to form the dough required for producing banana chips, resulting in distinct texture profiles. Finally, our research emphasizes the useful application of modified banana flour in the food industry and emphasizes how crucial it is to choose the right modification method to achieve the desired effects on the product.
Collapse
Affiliation(s)
| | | | | | - Naphatrapi Luangsakul
- Department of Food Science, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.K.)
| |
Collapse
|
9
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
10
|
Chung JC, Lai LS. Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch. Foods 2023; 12:3551. [PMID: 37835205 PMCID: PMC10572123 DOI: 10.3390/foods12193551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The effects of treatment time of continuous annealing (ANN) and cycle numbers of cycled ANN on the structural, physicochemical, and digestive properties of water caltrop starch were studied under 70% moisture at 65 °C. It was found that continuous and cycled ANN have no significant effects on the morphology of starch granules. However, the relative crystallinity and content of resistant starch increased pronouncedly, possibly due to crystalline perfection, which also led to the rise in gelatinization temperature and the narrowed gelatinization temperature range of starch. The treatment time in continuous ANN generally showed a pronounced effect on the rheological properties of water caltrop starch. During pasting, the breakdown viscosity and setback viscosity of all treatment decreased, implying that ANN modified starch was less susceptible to the condition in heating and continuous shearing, and less likely to cause short-term retrogradation. In contrast, peak viscosity decreased with increasing treatment time of continuous ANN, indicating crystalline perfection restricted the swelling of starch granules and viscosity development during pasting process, which was consistent with the results of steady and dynamic rheological evaluation. All ANN-modified samples showed pseudoplastic behavior with weak gel viscoelastic characteristic. Under a total annealing time of 96 h, the pasting and rheological properties of water caltrop starch were essentially less affected by annealing cycle numbers. However, multistage ANN showed stronger resistance to enzyme hydrolysis.
Collapse
Affiliation(s)
| | - Lih-Shiuh Lai
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan;
| |
Collapse
|
11
|
Jorge FF, Edith CC, Eduardo RS, Jairo SM, Héctor CV. Hydrothermal processes and simultaneous enzymatic hydrolysis in the production of modified cassava starches with porous-surfaces. Heliyon 2023; 9:e17742. [PMID: 37539223 PMCID: PMC10395141 DOI: 10.1016/j.heliyon.2023.e17742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
The amylolytic action of α-amylase and amyloglucosidase has been directly implemented in native cassava starches for the formation of cassava microporous granules with unsatisfactory results, however, its incidence in hydrothermally treated granules has never been evaluated. The effect of hydrothermal processes and simultaneous enzymatic hydrolysis on the physicochemical, morphological and structural properties of native cassava starch was evaluated. Native cassava starch presented a rigid, smooth surface, and was exempt from porosities, whereas hydrothermal processes altered the semicrystalline order and increasing the size and number of pores and increasing the size (4.11 ± 0.09 nm) and volume of pores (0.82 ± 0.00 cm3/g × 10-3). The hydrothermal action followed by enzymatic processes with α-amylase and amyloglucosidase, augmented the processes of internal degradation (endo-erosion) and pore widening (exo-erosion), improving the hydrophilic properties compared to the hydrothermal treatment. Likewise, the hydrothermally process followed by enzymatic hydrolysis for 24 h (HPS + EMS-24) increased the degradation of the amorphous lamellae, consistent with a significant decrease in amylose content. This same dual treatment increased the pore size at 17.68 ± 0.13 nm relative to the native counterpart; therefore, they are considered an effective method in the development of modified cassava starches with porous surfaces.
Collapse
|
12
|
Ye SJ, Baik MY. Characteristics of physically modified starches. Food Sci Biotechnol 2023; 32:875-883. [PMID: 37123068 PMCID: PMC10130308 DOI: 10.1007/s10068-023-01284-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Starch is an abundant natural, non-toxic, biodegradable polymer. Due to its low price, it is used for various purposes in various fields such as the cosmetic, paper, and construction industries as well as the food industry. Due to recent consumer interest in clean label materials, physically modified starch is attracting attention. Manufacturing methods of physically modified starch include pregelatinization, hydrothermal treatment such as heat moisture treatment and annealing, hydrostatic pressure treatment, ultrasonic treatment, milling, and freezing. In this study, toward development of clean label materials, manufacturing methods and characteristics of physically modified starches were discussed.
Collapse
Affiliation(s)
- Sang-Jin Ye
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 South Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
13
|
Yao T, Sui Z, Janaswamy S. Complexing curcumin and resveratrol in the starch crystalline network alters in vitro starch digestion: Towards developing healthy food materials. Food Chem 2023; 425:136471. [PMID: 37269637 DOI: 10.1016/j.foodchem.2023.136471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Starch is an abundant and common food ingredient capable of complexing with various bioactive compounds (BCs), including polyphenols. However, little information is available about using native starch network arrangement for the starch-BCs inclusion. Herein, two BCs, curcumin, and resveratrol, were undertaken to delineate the role of different starch crystalline types on their encapsulation efficiency. Four starches with different crystalline types, botanical sources, and amylose content were examined. The results suggest that B-type hexagonal packing is necessary to encapsulate curcumin and resveratrol successfully. The increase in XRD crystallinity while maintaining the FTIR band at 1048/1016 cm-1 suggests that BCs are likely entrapped inside the starch granule than attaching to the granule surface. A significant change in starch digestion is seen only for the B-starch complexes. Embedding BCs in the starch network and controlling starch digestion could be a cost-effective and valuable approach to designing and developing novel starch-based functional food ingredients.
Collapse
Affiliation(s)
- Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Srinivas Janaswamy
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
14
|
Zhang Y, Junejo SA, Zhang B, Fu X, Huang Q. Multi-scale structures and physicochemical properties of waxy starches from different botanical origins. Int J Biol Macromol 2022; 220:692-702. [PMID: 35998850 DOI: 10.1016/j.ijbiomac.2022.08.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
The multi-scale structures and physicochemical relationships of three different types of waxy starches (maize, tapioca, and potato) were investigated. The maize and tapioca starches exhibited A-type crystalline polymorph compared to potato starch (B-type). The WMS showed higher amorphous content (5.56 %) than other waxy starches. The WTS exhibited a low tendency of retrogradation with its high fa (DP 6-12) and low fb3 (DP ≥ 37) proportion of chains. Double helix content of WPS was observed highest with a high pasting viscosity (952.3 BU). Low fa (DP 6-12) and high fb3 (DP ≥ 37) chain proportions of the WPS retrograded easily. The compactness of the semi-crystalline aggregation structure influenced the retrogradation properties of waxy starches with a positive correlation. Furthermore, the peak viscosity of pastes was correlated with the proportion of fb3 (DP ≥ 37) chains, mass fractal dimension, and double helix content. The results provide guidance to design the application of waxy starches in the production of clean-labels.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
15
|
Effects of heat-moisture treatment and hydroxypropylation on the physical, physicochemical, thermal, and functional properties of anchote (Coccinia abyssinica) starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Kunyanee K, Van Ngo T, Kusumawardani S, Lungsakul N. Ultrasound-chilling assisted annealing treatment to produce a lower glycemic index of white rice grains with different amylose content. ULTRASONICS SONOCHEMISTRY 2022; 87:106055. [PMID: 35667221 PMCID: PMC9168174 DOI: 10.1016/j.ultsonch.2022.106055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
White rice samples, Chai-Nat1 (CN1) and Jasmin rice (KDML105), were treated with the ultrasound-chilling (UC) and combined with annealing treatments (UC + ANN 45, UC + ANN50, and UC + ANN55). Their physicochemical properties and in vitro glycemic index of rice samples were analyzed. UC + ANN treatments presented pasting temperature, gelatinization temperature and crystallinity increased whereas the glycemic index of both rice samples was decreased as compared to its native. Especially, UC + ANN55 treated rice produced the lowest glycemic index and starch hydrolysis. Moreover, UC + ANN treated CN1 rice exhibited delayed gelatinization temperature, increased gelatinization enthalpy, and decreased glycemic index than KDML105 rice. In addition, Pearson's correlation presented that UC + ANN and amylose content had a highly negative correlation with the glycemic index at p < 0.0.1. The result exhibited that UC followed by ANN show an effective way to modify starch granules with delayed starch hydrolysis reduced glycemic index and properties depending on annealing temperature and rice cultivar.
Collapse
Affiliation(s)
- Kannika Kunyanee
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tai Van Ngo
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sandra Kusumawardani
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naphatrapi Lungsakul
- Department of Food Science, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
17
|
Faridah DN, Anugerah MP, Hunaefi D, Afandi FA, Jayanegara A. The effect of annealing on resistant starch content of different crop types: a systematic review and meta‐analysis study. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Didah Nur Faridah
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
- Department of Food Technology Faculty of Agricultural Technology SEAFAST Center IPB IPB University Bogor 16880 Indonesia
| | - Maria Putri Anugerah
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
| | - Dase Hunaefi
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
| | - Frendy Ahmad Afandi
- Deputy Ministry for Food and Agribusiness Coordinating Ministry for Economic Affairs Republic of Indonesia Jakarta 10710 Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology Faculty of Animal Science IPB University Bogor 16680 Indonesia
| |
Collapse
|
18
|
Parra DO, Daza Ramírez LD, Sandoval‐Aldana A, Eim VS, Váquiro HA. Annealing treatment of ulluco starch: Effect of moisture content and time on the physicochemical properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela O. Parra
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
| | - Luis Daniel Daza Ramírez
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
- Departamento de Química Universidad de las Islas Baleares Palma de Mallorca Spain
| | - Angélica Sandoval‐Aldana
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
| | - Valeria S. Eim
- Departamento de Química Universidad de las Islas Baleares Palma de Mallorca Spain
| | - Henry A. Váquiro
- Departamento de Producción y Sanidad Vegetal Facultad Ingeniería Agronómica Universidad del Tolima Ibagué Colombia
| |
Collapse
|
19
|
Shen H, Xu M, Su C, Zhang B, Ge X, Zhang G, Li W. Insights into the relations between the molecular structures and physicochemical properties of normal and waxy wheat B‐starch after repeated and continuous annealing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huishan Shen
- College of Food Science and Engineering Northwest A&F University 712100 Yangling China
| | - Meijuan Xu
- College of Food Science and Engineering Northwest A&F University 712100 Yangling China
| | - Chunyan Su
- College of Food Science and Engineering Northwest A&F University 712100 Yangling China
| | - Bo Zhang
- College of Food Science and Engineering Northwest A&F University 712100 Yangling China
| | - Xiangzhen Ge
- College of Food Science and Engineering Northwest A&F University 712100 Yangling China
| | - Guoquan Zhang
- College of Food Science and Engineering Northwest A&F University 712100 Yangling China
| | - Wenhao Li
- College of Food Science and Engineering Northwest A&F University 712100 Yangling China
| |
Collapse
|
20
|
Fonseca LM, Halal SLME, Dias ARG, Zavareze EDR. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr Polym 2021; 274:118665. [PMID: 34702484 DOI: 10.1016/j.carbpol.2021.118665] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Heat-moisture treatment (HMT) and annealing are hydrothermal starch modifications. HMT is performed using high temperature and low moisture content range, whereas annealing uses excess of water, a long period of time, and temperature above the glass transition and below the gelatinization temperature. This review focuses on: research advances; the effect of HMT and annealing on starch structure and most important properties; combined modifications; and HMT-starch and annealed-starch applications. Annealing and HMT can be performed together or combined with other modifications. These combinations contribute to new applications in different areas. The annealed and HMT-starches can be used for pasta, candy, bakery products, films, nanocrystals, and nanoparticles. HMT has been studied on starch digestibility and promising data have been reported, due to increased content of slowly digestible and resistant starches. The starch industry is in constant expansion, and modification processes increase its versatility, adapting it for different purposes in food industries.
Collapse
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Shanise Lisie Mello El Halal
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
21
|
Pinto VZ, Moomand K, Deon VG, Biduski B, Zavareze EDR, Lenhani GC, Fidelis dos Santos GH, Lim L, Dias ARG. Effect of Physical Pretreatments on the Hydrolysis Kinetic, Structural, and Thermal Properties of Pinhão Starch Nanocrystals. STARCH-STARKE 2021. [DOI: 10.1002/star.202000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vânia Zanella Pinto
- Food Engineering Graduate Program in Food Science and Technology, Universidade Federal da Fronteira Sul Campus, Laranjeiras do Sul Laranjeiras do Sul PR 85301‐970 Brazil
| | - Khalid Moomand
- Department of Food Science University of Guelph Guelph ON N1G 2W1 Canada
| | | | - Barbara Biduski
- Graduate Program in Food Science and Technology Universidade de Passo Fundo BR 285, CEP 99052‐900 Passo Fundo RS Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology Universidade Federal de Pelotas Pelotas RS 96010‐900 Brazil
| | - Gabriela Caroline Lenhani
- Food Engineering Graduate Program in Food Science and Technology, Universidade Federal da Fronteira Sul Campus, Laranjeiras do Sul Laranjeiras do Sul PR 85301‐970 Brazil
| | - Gustavo Henrique Fidelis dos Santos
- Food Engineering Graduate Program in Food Science and Technology, Universidade Federal da Fronteira Sul Campus, Laranjeiras do Sul Laranjeiras do Sul PR 85301‐970 Brazil
| | - Loong‐Tak Lim
- Department of Food Science University of Guelph Guelph ON N1G 2W1 Canada
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology Universidade Federal de Pelotas Pelotas RS 96010‐900 Brazil
| |
Collapse
|
22
|
Sun L, Xu Z, Song L, Ma M, Zhang C, Chen X, Xu X, Sui Z, Corke H. Removal of starch granule associated proteins alters the physicochemical properties of annealed rice starches. Int J Biol Macromol 2021; 185:412-418. [PMID: 34144068 DOI: 10.1016/j.ijbiomac.2021.06.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The effect of removal of starch granule associated proteins (SGAPs), annealing and dual-treatment on physicochemical properties of three rice starches with different amylose content (AC) was investigated. SGAPs removal reduced stability of starch granules, thus increasing amylose leaching, swelling power, solubility, and pseudoplasticity of Qiuguang (15.6% AC) and Luhui (22.1% AC) rice starches, decreasing pseudoplasticity of Yangfunuo (1.56% AC) starch, and decreasing To, Tp, and Tc, pasting viscosity and storage modulus of all three rice starches. Annealing decreased amylose leaching of the three starches, and pasting properties, pseudoplastic and storage modulus of Yangfunuo starch, but increased swelling power of the three starches, ΔH and To of Qiuguang starch, and pasting properties and pseudoplasticity of Qiuguang and Luhui starches. The effect of dual-treatment was generally the sum of effect of SGAPs removal and annealing treatment. But an interaction effect of the dual-treatment was observed for some parameters. The effect of annealing was closely related to the variety and composition of the starch.
Collapse
Affiliation(s)
- Letong Sun
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong 250000, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lulu Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojing Chen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai 200080, China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
23
|
Liu C, Li K, Li X, Zhang M, Li J. Formation and structural evolution of starch nanocrystals from waxy maize starch and waxy potato starch. Int J Biol Macromol 2021; 180:625-632. [PMID: 33766589 DOI: 10.1016/j.ijbiomac.2021.03.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
The formation and structural evolution of starch nanocrystals from waxy maize starch (WMS) and waxy potato starch (WPS) by acid hydrolysis were studied. The relative crystallinity, the short-range molecular order, and the double-helix content of WMS and WPS increased significantly during the initial stage of acid hydrolysis, indicating that acid preferentially eroded the amorphous regions of starch granules. With time, there was increased destruction of lamellar structures, causing the granules to completely disintegrate to form nanocrystals. WMS and WPS displayed different hydrolysis mechanisms. WPS was more susceptible to acid hydrolysis than WMS, and WMS exhibited an endo-corrosion pattern and WPS showed an exo-corrosion pattern. WMS nanocrystals had a parallelepiped shape, and WPS nanocrystals were round. This difference in shape is likely due to the different packing configuration of double helices in native starches.
Collapse
Affiliation(s)
- Cancan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China.
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingjun Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China.
| |
Collapse
|
24
|
Chen L, McClements DJ, Yang T, Ma Y, Ren F, Tian Y, Jin Z. Effect of annealing and heat-moisture pretreatments on the oil absorption of normal maize starch during frying. Food Chem 2021; 353:129468. [PMID: 33730664 DOI: 10.1016/j.foodchem.2021.129468] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/21/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
The impacts of two hydrothermal pretreatments, annealing (ANN) and heat moisture treatment (HMT), on oil-absorption by normal maize starch (NMS) during frying were investigated using low-field nuclear magnetic resonance (LF-NMR). The structural organizations of the fried samples were also evaluated using SEM, XRD, ATR-FTIR, and DSC, respectively. Both hydrothermal pretreatments significantly reduced the total oil content in the starch after frying, with the magnitude of the effect depending on the treatment conditions used. SEM showed that the pretreated fried starch granules preserved more of their original morphology. XRD, FTIR, and DSC showed that both pretreatments preserved more of the short-range double helices and long-range organizations within the orthorhombic crystalline structure for NMS during frying. The promoting effect of ANN/HMT on the interactions of starch molecules and the rearrangement of double helices were hypothesized to be responsible for the increased thermal stability of starch granules in the present work. As a result, fried starch pretreated by ANN/HMT were more organized and more compact than fried NMS, thus inhibiting oil absorption during frying.
Collapse
Affiliation(s)
- Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | - Tianyi Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yun Ma
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Fei Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
25
|
Werlang S, Bonfante C, Oro T, Biduski B, Bertolin TE, Gutkoski LC. Native and annealed oat starches as a fat replacer in mayonnaise. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Stéfani Werlang
- Graduate Program in Food Science and Technology University of Passo Fundo Passo Fundo Brazil
- Food Engineering University of Passo Fundo Passo Fundo Brazil
| | | | - Tatiana Oro
- Graduate Program in Food Science and Technology University of Passo Fundo Passo Fundo Brazil
| | - Bárbara Biduski
- Graduate Program in Food Science and Technology University of Passo Fundo Passo Fundo Brazil
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology University of Passo Fundo Passo Fundo Brazil
| | - Luiz Carlos Gutkoski
- Food and Nutrition Graduate Program (PPGAN) Federal University of the State of Rio de Janeiro (UNIRIO) Rio de Janeiro Brazil
| |
Collapse
|
26
|
Liu C, Jiang Y, Liu J, Li K, Li J. Insights into the multiscale structure and pasting properties of ball-milled waxy maize and waxy rice starches. Int J Biol Macromol 2020; 168:205-214. [PMID: 33309666 DOI: 10.1016/j.ijbiomac.2020.12.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 12/06/2020] [Indexed: 11/30/2022]
Abstract
The effects of ball-milling on the pasting properties of waxy maize starch (WMS) and waxy rice starch (WRS) were investigated from a multiscale structural view. The results confirmed that ball-milling significantly destroyed the structures of the two waxy starches (especially WMS). Specifically, ball-milling led to obvious grooves on the surface of starch granules, a decrease in crystallinity and the degree of short-range order, and a reduction in double-helix components. Meanwhile, small-angle X-ray scattering results indicated that the semicrystalline lamellae of starch were disrupted after ball-milling. Ball-milling decreased the pasting temperatures. Furthermore, ball-milled starches exhibited lower peak and breakdown viscosity and weakened tendency to retrogradation. These results implied that ball-milling induced structural changes in starch that significantly affected its pasting properties. Hence, ball-milled starch may serve as food ingredients with low pasting temperature and paste viscosity as well as high paste stability under heating/cooling and shearing.
Collapse
Affiliation(s)
- Cancan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yi Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Scientific and Technological Innovation Major Base of Guangxi, Nanning 530226, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Scientific and Technological Innovation Major Base of Guangxi, Nanning 530226, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China.
| |
Collapse
|