1
|
Wang B, Jia Y, Li Y, Jiao X, He Y, Wen L, Wang Z. Comprehensive impact of pre-treatment methods on white radish quality, water migration, and microstructure. Food Chem X 2024; 24:101991. [PMID: 39634521 PMCID: PMC11615932 DOI: 10.1016/j.fochx.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
The preprocessing stage is crucial in vegetable processing, significantly influencing the final product's quality. This study investigates the effects of various pre-pre-treatment methods, including cutting, blanching, osmotic, and ultrasound-assisted osmotic treatment, on the quality characteristics, water migration, and microstructure of white radish. The results showed that osmosis and ultrasound-assisted osmosis has the least effect on the total color difference (ΔE) and the greatest water loss (WL) (p < 0.05); blanching has the least effect on the hardness and eutectic points (p < 0.05); and the blanching-ultrasound-assisted osmosis has the greatest solid gain (p < 0.05). The increase of WL led to a decrease in hardness (-0.82). By analyzing the quality characteristics of different pre-treatment methods, contributing to the development of suitable pre-treatment methods for different products and optimization pre-treatments according to requirements. The mechanism of quality characteristics of pre-treatments on products is the future research direction.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuanlong Jia
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuan Jiao
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Jakubczyk E, Rybak K, Witrowa-Rajchert D, Wiktor A, Rąbkowski R, Nowacka M. Convective Drying with the Application of Ultrasonic Pre-Treatment: The Effect of Applied Conditions on the Selected Properties of Dried Apples. Foods 2024; 13:3893. [PMID: 39682965 DOI: 10.3390/foods13233893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to evaluate the effect of ultrasound used as a preliminary treatment and drying temperature on the properties of dried apples (var. Golden Delicious). The aim of the work was also to optimise the process in terms of reducing the drying time and obtaining a product with specific properties. The apple tissue was sonicated for various times from 30 to 60 min. Then, the tissue was air-dried with a constant air flow of 55 to 85 °C. The work determined the dry substance content, water activity, colour parameters, content, antioxidant activity, and hygroscopicity of the dried material. The drying kinetics were also analysed. The results showed that the decrease in sonification time increased the dry matter content and reduced water activity. Also, the decrease in drying temperature caused a smaller intake of water and led to a lower hygroscopicity of dried apples. The selected parameters of the process had a positive effect on the preservation of bioactive compounds and led to an increase in antioxidant activity. Experimental results were adapted by a second-order polynomial model, where analysis of variance was utilized to define optimal drying conditions. Therefore, considering the shortest drying time, the lowest colour difference, ΔE, and the highest antioxidant activity, the best condition for the drying of apple tissue can be obtained with the application of 30 min of samples sonication and drying of apples at a temperature of 80.9 °C.
Collapse
Affiliation(s)
- Ewa Jakubczyk
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Rafał Rąbkowski
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Nian X, Wang J, Wang M, Wang Y, Liu S, Cao Y. Influence of ultrasonic pretreatment on the quality attributes and pectin structure of chili peppers (Capsicum spp.). ULTRASONICS SONOCHEMISTRY 2024; 110:107041. [PMID: 39208593 PMCID: PMC11399734 DOI: 10.1016/j.ultsonch.2024.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chili peppers (Capsicum spp.) exhibit a diverse range of quality characteristics and pectin structures, which are influenced by various factors. This study aimed to investigate the effects of ultrasound (US), ultrasonic combined hot blanching (US-BL), and ultrasonic combined freezing and thawing (US-FT) on the quality characteristics and pectin structure of vacuum pulsation-dried (VP) chili peppers. The results indicated that US-BL samples exhibited the highest L* and a* values, retained maximum capsorubin, and showed an increase in vitamin C, total phenols, and rehydration by 14.28 %, 40.87 %, and 8.66 %, respectively. In contrast, the US-FT samples exhibited the highest capsaicin and dihydrocapsaicin content, which increased by 54.97 % and 64.04 %, respectively. Pretreatment resulted in higher pectin linearity, a lower degree of branching, and a reduced molecular weight in the US-BL sample. Atomic force microscopy confirmed the degrading effect of pretreatment on the pectin structure. Pearson's correlation analysis revealed that capsorubin, capsaicin analogs, vitamin C, and total phenols were highly correlated with pectin linearity and molecular weight. This study found that US-BL was the most effective pretreatment method for improving the quality of pulsatile chili peppers and provides theoretical support for the application of VP chili peppers.
Collapse
Affiliation(s)
- Xin Nian
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| | - Jitao Wang
- School of Civil and Hydrulic Engineering, Ningxia University, Yinchuan, Ningxia 750000, China; Horticulture Technology Extension Center of Ningxia, Ningxia 750000, China
| | - Mengze Wang
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China.
| | - Yaqi Wang
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| | - Shiwei Liu
- Horticulture Technology Extension Center of Ningxia, Ningxia 750000, China
| | - Yudan Cao
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| |
Collapse
|
4
|
Jadhav A, Vadiveloo M, Laforge RG, Melanson KJ. Dietary contributors to fermentable carbohydrate intake in healthy American college students. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024; 72:2577-2587. [PMID: 36170454 DOI: 10.1080/07448481.2022.2119403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The study explored food items that contribute most toward increased fermentable carbohydrate (FC) intake and its association with diet quality in college students. METHOD This cross-sectional study included 571 consented college students (≥18 years) with reported energy intakes (500-3500 kcal/day for women; 800-4000 kcal/day for men). FC intake and healthy eating index-2015 (HEI-2015) scores were assessed by diet history questionnaire-II. Data were analyzed by unadjusted bivariate linear regression and Pearson correlation tests. RESULTS The mean intakes of total FC (β = 1.24; 95% Confidence Interval: 1.02, 1.47) significantly predicted HEI-2015 scores. Positive correlations were found between FC intake and red and orange vegetables (r = 0.62), whole fruits (r = 0.63), and dark green vegetables (r = 0.58). Conclusions: Higher FC intake was associated with higher diet quality; vegetables and fruits are primary contributors to FC content. Efforts are required to promote these food items to improve diet quality and FC intake to shape eating choices in college students.
Collapse
Affiliation(s)
- Ajita Jadhav
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert G Laforge
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
5
|
Tang Y, Huang Y, Li M, Zhu W, Zhang W, Luo S, Zhang Y, Ma J, Jiang Y. Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns. Food Res Int 2024; 195:114984. [PMID: 39277245 DOI: 10.1016/j.foodres.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the impact of processing temperatures (190 °C, 210 °C, and 230 °C) and durations (7 min, 10 min, and 14 min) on the formation of Maillard reaction products (MRPs) and antioxidant activities in pan baked buns. Key Maillard reaction indicators, including glyoxal (GO), methylglyoxal (MGO), 5-hydroxymethylfurfural (5-HMF), melanoidins, and fluorescent advanced glycation end products (AGEs) were quantified. The results demonstrated significant increases in GO, MGO, 5-HMF contents (p < 0.05), and antioxidant activities (p < 0.05) when the buns were baked at 210 °C for 14 min, 230 °C for 10 min and 14 min. However, the interior MRPs of baked buns were minimally affected by the baking temperature and duration. Prolonged heating temperatures and durations exacerbated MRPs production (43.8 %-1038 %) in the bottom crust. Nonetheless, this process promoted the release of bound phenolic compounds and enhanced the antioxidant activity. Heating induces the thermal degradation of macromolecules in food, such as proteins and polysaccharides, which releases bound phenolic compounds by disrupting their chemical bonds within the food matrix. Appropriate selections of baking parameters can effectively reduce the formation of MRPs while simultaneously improve sensory quality and health benefit of the pan baked buns. Considering the balance between higher antioxidant properties and lower MRPs, the optimal thermal parameters for pan baked buns were 210 °C for 10 min. Furthermore, a normalized analysis revealed a consistent trend for GO, MGO, 5-HMF, fluorescent AGEs, and melanoidins. Moreover, MRPs were positively correlated with total contents of phenolic compounds, ferric-reducing antioxidant power (FRAP), and color, but negatively correlated with moisture contents and reducing sugars. Additionally, the interaction between baking conditions and Maillard reactions probably contributed to enhanced primary flavors in the final product. This study highlights the importance of optimizing baking parameters to achieve desirable MRPs levels, higher antioxidant activity, and optimal sensory attributes in baked buns.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sha Luo
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
| | - Jie Ma
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Wei Q, Cui J, Zhang W, Jiang L, Li T. Mechanisms of Degradation of Insoluble Dietary Fiber from Coconut Chips by Ultra-High Pressure. Foods 2024; 13:3174. [PMID: 39410209 PMCID: PMC11475923 DOI: 10.3390/foods13193174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Coconut chips are a popular leisure food, but the residual crumbly feeling after chewing affects the eating experience. To address this problem, we investigated the mechanism of degradation of insoluble dietary fiber (IDF) from coconut chips by ultra-high pressure (UHP). The optimal conditions for UHP treatment were 100 MPa and 40 min. After UHP treatment, the hardness decreased by 60%, and the content of soluble dietary fiber (SDF) increased by 55%. So far, the meaning of SDF has not been defined. The microstructure of IDF was damaged and the surface was rough. There was no obvious change in the chemical structure. The position of the characteristic diffraction peaks was basically unchanged, but the crystallinity dropped by almost three times. The thermal stability decreased, and the composition of the monosaccharides changed. Together, UHP treatment can improve the problem of the residual crumbly feeling after chewing coconut chips and improve the quality of the product.
Collapse
Affiliation(s)
- Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| | - Jingtao Cui
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Tian Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Q.W.); (J.C.); (W.Z.)
| |
Collapse
|
7
|
Su C, Kang J, Zhang L, Liu S, Li C. Insight into the changes in active metabolite profiles of noni (Morinda citrifolia L.) fruit subjected to different drying treatments. Food Res Int 2024; 193:114858. [PMID: 39160054 DOI: 10.1016/j.foodres.2024.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Noni fruit is renowned for its abundance of bioactive compounds. Drying is an important method for processing functional products derived from noni. However, limited information exists on how drying methods affect the active metabolite profiles of noni fruit. This study investigated the impact of four common drying methods, including hot-air drying (HAD), vacuum freeze drying (VFD), microwave drying (MWD), and far infrared drying (FID), on the physicochemical indexes, bioactive components, and functional properties of dried noni fruit slices using targeted and untargeted metabonomics analysis. The results showed significant variations in appearance, water migration, and microstructure of dried noni fruit slices subjected to the four drying methods. VFD treatment yielded better dried noni fruit products when compared to other drying methods. The superiority of VFD treatment was due to its uniform stratification, reduced collapse, better retention of bioactive components and antioxidants, and higher enzyme inhibitory rates. These findings suggest that VFD method is ideal for obtaining premium bioactive profiles and maintaining the biological activity of noni fruit.
Collapse
Affiliation(s)
- Congyan Su
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China.
| |
Collapse
|
8
|
Zhang X, Wang Y, Nian R, Li Q, Zhu D, Cao X. Effects of ultrasonic pretreatment on drying characteristics and water migration characteristics of freeze-dried strawberry. Food Chem 2024; 450:139287. [PMID: 38640541 DOI: 10.1016/j.foodchem.2024.139287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
The effects of ultrasonic pretreatment on the drying characteristics and microstructure of strawberry slices were investigated. The rehydration characteristics of freeze-dried products, which were pre-frozen at -20 °C and - 80 °C were explored, with a focus on water mobility and distribution. The ultrasonic pretreatment significantly increased the water mobility of the strawberry slices, resulting in a reduction in their water content. However, the application of ultrasound significantly decreased the rehydration speed, indicating a lower moisture absorption capacity in the pretreated sample. The micrographs revealed that the structure of the tissue was more uniform after ultrasonic treatment, and water loss was accelerated. In addition, the contact angle measurements showed that the samples were more hydrophobic after ultrasonic treatment, and the eutectic temperature and fold point of the samples increased. Therefore, this study found that ultrasonic-assisted freeze vacuum drying technology effectively reduces hygroscopicity, improves product storage, and represents a potential method for dried production.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ya Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Rui Nian
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Qianyu Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
9
|
Li X, Zhou Y, Dong H, Sun T, Liu Y, Cheng S, Chen G. Effects of ultrasonication and freeze-thaw pretreatments on the vacuum freeze-drying process and quality characteristics of apricot ( Prunus armeniaca L. cv. Diaoganxing). Food Chem X 2024; 22:101357. [PMID: 38623517 PMCID: PMC11016973 DOI: 10.1016/j.fochx.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
The combination of pretreatment and vacuum freeze-drying (VFD) technology is an effective technique for extending the shelf life of apricots, reducing costs and energy consumption. However, the impact of pretreatment on the freeze-drying and quality characteristics of apricots is still unclear. The effects of ultrasound (US), freeze-thaw (FT), and their combination (FT-US) on water migration and quality characteristics of apricot slices on VFD were studied. LR-NMR and SEM showed that pretreatment significantly reduced the time (19.05%-33.33%) and energy consumption (17.67%-35.66%) of the VFD process. Compared with the control group, the US, FT, and FT-US improved the color, texture, rehydration ability, and flavor of apricot slices. Among them, FT-US retained the most biologically active substances and antioxidant capacity, with the highest sensory score. Overall, FT-US pretreatment induced changes in the microstructure and chemistry of apricots, which contributed to the production of high-quality VFD apricot slices.
Collapse
Affiliation(s)
- Xin Li
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Yan Zhou
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Hao Dong
- Shihezi Testing Institute of Quality and Metrology, Shihezi 832000, PR China
| | - Tongrui Sun
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Yuxing Liu
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Shaobo Cheng
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Guogang Chen
- College of Food, Shihezi University, Shihezi 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| |
Collapse
|
10
|
Gu D, Li X, Dong M, Ji W, Yan Z, Zhao T, Zhang M, Liu P, Yue P, Mao G, Yang L. Effects of Freeze-Thaw Pretreatment Combined with Hot Air on Snake Gourd ( Trichosanthes anguina L.). Foods 2024; 13:1961. [PMID: 38998467 PMCID: PMC11241399 DOI: 10.3390/foods13131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Snake gourd is a seasonal vegetable with a high water content and medicinal value, but the short harvest period limits the large-scale application of snake gourd. Therefore, the effects of freeze-thaw pretreatment (FT) combined with hot air (HD) on the drying characteristics, active ingredients and bioactivities of snake gourd were investigated. The results showed that FT pretreatment reduced browning and shortened the drying time by 44%; the Page model was the best fit for describing the drying process. The polysaccharide contents (21.70% in alcoholic extract (TG1) and 44.34% in water extract (TG2)) and total phenol contents (1.81% in TG1 and 0.88% in TG2) of snake gourd pretreated by FT-HD were higher than those of snake gourd pretreated by the corresponding HD treatment. The FT pretreatment decreased the molecular weight of snake gourd polysaccharides and increased the molar ratio of glucose. The extracts pretreated by FT-HD showed greater chemical, cellular antioxidant capacity and α-amylase and α-glucosidase inhibition than those pretreated by HD. FT-HD can be recommended for achieving a short drying time and high quality of snake gourd and can be used for the drying of other fruits and vegetables.
Collapse
Affiliation(s)
- Dandan Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Xiao Li
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Mingyue Dong
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Wenxuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Zihao Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Panpan Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| |
Collapse
|
11
|
Wang K, He P, Wang Q, Yang Z, Xing Y, Ren W, Wang J, Xu H. Ultrasound pretreatment enhances moisture migration and drying quality of mulberry via microstructure and cell-wall polysaccharides nanostructure modification. Food Res Int 2024; 184:114245. [PMID: 38609224 DOI: 10.1016/j.foodres.2024.114245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
The effects of ultrasound pretreatment (20 kHz, 30 W/L) on mulberries' texture, microstructure, characteristics of cell-wall polysaccharides, moisture migration, and drying quality were investigated over exposure times ranging from 15 to 45 min. Ultrasound induced softening of mulberry tissue, accompanied by an increase in water-soluble pectin and a decrease in chelate-soluble pectin and Na2CO3-soluble pectin concentrations. Noticeable depolymerization of the pectin nanostructure was observed in the pretreated mulberries, along with a decrease in molecular weight, attributed to side-chain structure cleavage. Ultrasound loosened the cell wall structure, increased free water content and freedom, thereby reducing water diffusion resistance. Ultrasound pretreatment reduced drying time by 11.2 % to 23.3 % at various processing times compared to controls. Due to significantly enhanced drying efficiency, the optimal pretreatment time (30 min) yielded dried mulberries with higher levels of total phenolics and total anthocyanins, along with an increased antioxidant capacity. The results of this study provide insights into the mechanisms by which ultrasound pretreatment can effectively enhance the mulberry drying process.
Collapse
Affiliation(s)
- Kunhua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Peiyun He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qinghui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Ürümqi 830091, China
| | - Zhongqiang Yang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Ürümqi 830091, China
| | - Ying Xing
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenxin Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Yan S, Dong R, Yang J, Wang G. Objective Quantification Technique and Widely Targeted Metabolomics-Based Analysis of the Effects of Different Saccharidation Processes on Preserved French Plums. Molecules 2024; 29:2011. [PMID: 38731502 PMCID: PMC11085051 DOI: 10.3390/molecules29092011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive metabolites in samples from various stages of the processing of preserved French plums. The PCF4 exhibited the highest appearance, overall taste, and chroma. Furthermore, utilizing UPLC and ESI-Q TRAP-MS/MS, a comprehensive examination of the metabolome in the processing of preserved French plums was conducted. A total of 1776 metabolites were analyzed. Using WGCNA, we explored metabolites associated with sensory features through 10 modules. Based on this, building the correlation of modules and objective quantification metrics yielded three key modules. After screening for 151 differentiated metabolites, amino acids, and their derivatives, phenolic acids, flavonoids, organic acids, and other groups were identified as key differentiators. The response of differential metabolites to stress influenced the taste and color properties of preserved prunes. Based on these analyses, six important metabolic pathways were identified. This study identified changes in the sensory properties of sugar-stained preserved prunes and their association with metabolite composition, providing a scientific basis for future work to improve the quality of prune processing.
Collapse
Affiliation(s)
- Shengkun Yan
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Rong Dong
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jiapeng Yang
- School of Control Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Guoqiang Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
13
|
Shen L, Qiu W, Du L, Zhou M, Qiao Y, Wang C, Wang L. Effects of high hydrostatic pressure on peelability and quality of crayfish(Procambarus clarkii). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:611-619. [PMID: 37437092 DOI: 10.1002/jsfa.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Peeling of crayfish is a very important process in production. Crayfish peeling by machine can increase production efficiency and enhance safety in the production process. The tight muscle-shell attachment causes difficulty in peeling freshly caught crayfish. However, few studies have explored the changes in crayfish quality under favorable shell-loosening treatments. RESULTS In this study, the shell-loosening properties of crayfish and changes in crayfish quality, microstructure and protein fluorescent features were investigated after high hydrostatic pressure (HHP) treatment. New methods were established to measure the peeling performance of crayfish, which are peelability and meat yield rate (MYR). The normalization of peelability and MYR were verified by different weights of crayfish tails and different treatments. The peeling effect of HHP-treated crayfish was evaluated by a new quantitative measurement method, and MYR was calculated. The results showed that all the HHP treatments reduced crayfish peeling work and increased MYR. The HHP treatment provided better crayfish quality in terms of texture and color and enlarged the shell-loosening gap. Among all HHP treatments, 200 MPa treatment exhibited lower peeling work, higher MYR and an expansion of the shell-loosening gap, reaching up to 573.8 μm. At the same time, 200 MPa treatment could maintain crayfish quality. CONCLUSION The findings outlined above suggest that high pressure is a promising method for loosening crayfish shells. 200 MPa is an optimal HHP treatment condition for crayfish peeling, exhibiting a promising application in industrial processing. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- LingWei Shen
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - WenXing Qiu
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liu Du
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mingzhu Zhou
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chao Wang
- School of Biological and Food, Hubei University of Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
14
|
Yao J, Chen W, Fan K. Novel Efficient Physical Technologies for Enhancing Freeze Drying of Fruits and Vegetables: A Review. Foods 2023; 12:4321. [PMID: 38231776 DOI: 10.3390/foods12234321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Drying is the main technical means of fruit and vegetable processing and storage; freeze drying is one of the best dehydration processes for fruit and vegetables, and the quality of the final product obtained is the highest. The process is carried out under vacuum and at low temperatures, which inhibits enzymatic activity and the growth and multiplication of micro-organisms, and better preserves the nutrient content and flavor of the product. Despite its many advantages, freeze drying consumes approximately four to ten times more energy than hot-air drying, and is more costly, so freeze drying can be assisted by means of highly efficient physical fields. This paper reviews the definition, principles and steps of freeze drying, and introduces the application mechanisms of several efficient physical fields such as ultrasonic, microwave, infrared radiation and pulsed electric fields, as well as the application of efficient physical fields in the freeze drying of fruits and vegetables. The application of high efficiency physical fields with freeze drying can improve drying kinetics, increase drying rates and maintain maximum product quality, providing benefits in terms of energy, time and cost. Efficient physical field and freeze drying technologies can be well linked to sustainable deep processing of fruit and vegetables and have a wide range of development prospects.
Collapse
Affiliation(s)
- Jianhua Yao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Wenjuan Chen
- National Polymer Materials Industry Innovation Center Co., Ltd., Guangzhou 510530, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
15
|
Wu J, Pan N, Chen X, Shan D, Shi H, Qiu Y, Liu Z, Su Y, Weng J. Comparative evaluation of physical characteristics and volatile flavor components of Bangia fusco-purpurea subjected to hot air drying and vacuum freeze-drying. Curr Res Food Sci 2023; 7:100624. [PMID: 37954914 PMCID: PMC10637889 DOI: 10.1016/j.crfs.2023.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Bangia fusco-purpurea is an economically important seaweed with Fujian characteristics. Given that its harvest is seasonal, drying is often used to remove moisture, extend storage time, and facilitate further processing. Hence, the current study sought to explore the impact of different drying processes on the quality and volatile fingerprints of Bangia fusco-purpurea. To this end, the effects of hot air drying (HAD) and vacuum freeze drying (VFD) on the drying characteristics, microstructure, rehydration, and volatile components of dried B. fusco-purpurea were investigated. The results showed that the water removal efficiency of HAD was significantly higher than that of VFD. However, VFD better preserved the skeletal structure of B. fusco-purpurea than HAD, with a faster rehydration rate and a more uniform cell structure after rehydration. Using electronic nose and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS), significant differences in the volatile profiles of fresh, HAD, and VFD B. fusco-purpurea were assessed. E-nose analysis revealed that both HAD and VFD treatments significantly reduced sulfides, aromatic compounds, and nitrogen oxides in fresh B. fusco-purpurea. However, the alcohol, aldehyde, and ketone contents were lower in the VFD samples compared with HAD and fresh samples, whereas the content of methyl flavor substances was significantly higher. GC × GC-TOF MS analysis revealed that the most abundant volatile categories in HAD and VFD were hydrocarbons, alcohols, and esters. The number of volatile components in the HAD samples was significantly lower than in the VFD and fresh samples. As drying progressed, hydrocarbons and alcohols were formed in dried B. fusco-purpurea due to the thermal degradation of carbohydrates, lipids, amino acids, and the Maillard reaction. There were also significant flavor differences between HAD and VFD B. fusco-purpurea. Thus, although HAD exhibits better drying efficiency, VFD has more significant advantages in terms of product quality.
Collapse
Affiliation(s)
- Jingna Wu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 361023, Xiamen, PR China
| | - Nan Pan
- Fisheries Research Institute of Fujian, 361013, Xiamen, PR China
| | - Xiaoting Chen
- Fisheries Research Institute of Fujian, 361013, Xiamen, PR China
| | - Debiao Shan
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 361023, Xiamen, PR China
| | - Huifang Shi
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 361023, Xiamen, PR China
| | - Yingshan Qiu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 361023, Xiamen, PR China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, 361013, Xiamen, PR China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, 361013, Xiamen, PR China
| | - Junfa Weng
- Aquatic Science Research Institute of Putian, 351100, Putian, PR China
| |
Collapse
|
16
|
Li M, Zhou C, Wang B, Zeng S, Mu R, Li G, Li B, Lv W. Research progress and application of ultrasonic- and microwave-assisted food processing technology. Compr Rev Food Sci Food Saf 2023; 22:3707-3731. [PMID: 37350041 DOI: 10.1111/1541-4337.13198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Microwaves are electromagnetic waves of specific frequencies (300 MHz-3000 GHz), whereas ultrasonic is mechanical waves of specific frequencies. Microwave and ultrasonic technology as a new processing method has been widely used in food processing fields. Combined ultrasonic and microwave technology is exploited by researchers as an improvement technique and has been successfully applied in food processing such as thawing, drying, frying, extraction, and sterilization. This paper overviews the principle and characteristics of ultrasonic- and microwave-assisted food processing techniques, particularly their combinations, design of equipment, and their applications in the processing of agricultural products such as thawing, drying, frying, extraction, and sterilization. The combination of ultrasonic and microwave is applied in food processing, where microwave enhances the heating rate, and ultrasonic improves the efficiency of heat and mass transfer. The synergy of the heating effect of microwave and the cavitation effect of ultrasonic improves processing efficiency and damages the cell structure of the material. The degradation of nutrient composition and energy consumption due to the short processing time of combined ultrasonic and microwave technology is decreased. Ultrasonic technology, as an auxiliary means of efficient microwave heating, is pollution-free, highly efficient, and has a wide range of applications in food processing.
Collapse
Affiliation(s)
- Mengge Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, New South Wales, Australia
| | - Shiyu Zeng
- College of Engineering, China Agricultural University, Beijing, China
| | - Rongyi Mu
- College of Engineering, China Agricultural University, Beijing, China
| | - Guohua Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Bingzheng Li
- Guangxi Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Wang T, Ying X, Zhang Q, Xu Y, Jiang C, Shang J, Zang Z, Wan F, Huang X. Evaluation of the Effect of Ultrasonic Pretreatment on the Drying Kinetics and Quality Characteristics of Codonopsis pilosula Slices Based on the Grey Correlation Method. Molecules 2023; 28:5596. [PMID: 37513468 PMCID: PMC10385178 DOI: 10.3390/molecules28145596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ultrasonic (US) maltreatment was performed before the vacuum far-infrared drying (VFID) of Codonopsis pilosula (CP) slices to investigate the effects of different US parameters on the drying characteristics and nutrients of CP slices. The grey correlation method with relative correlation degree (ri) as the evaluation measure was used to construct a model for the evaluation of the pretreatment quality of CP and to determine the optimal pretreatment conditions. The results showed that with the increase in US frequency and power, the drying rate increased. Under the conditions of US power of 180 W, frequency of 60 kHz and a pre-treatment time of 30 min, the drying time reduced by 28.6%. The contents of polysaccharide and syringin in dried CP slices pretreated by US increased by 14.7% and 62.0%, respectively, compared to the non-pre-treated samples, while the total flavonoid content decreased by 10.0%. In terms of colour, pretreatment had a certain protective effect on the red colour of dried products. The highest relative correlation (0.574) and the best overall quality of performance were observed at 180 W, 60 kHz and 30 min. Overall, US technology is suitable for the pretreatment processing of CP, which is of great significance to the drying of CP.
Collapse
Affiliation(s)
- Tongxun Wang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinyu Ying
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanrui Xu
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunhui Jiang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianwei Shang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zepeng Zang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangxin Wan
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaopeng Huang
- College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
18
|
Wang X, Zhang L, Chen L, Wang Y, Okonkwo CE, Yagoub AEGA, Wahia H, Zhou C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr Rev Food Sci Food Saf 2023; 22:2747-2772. [PMID: 37161497 DOI: 10.1111/1541-4337.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.
Collapse
Affiliation(s)
- Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Yang F, Sun X, Hu J, Cai H, Xiao H, Wu X, Liu C, Wang H. Edible gum addition improves the quality of freeze-dried restructured strawberry blocks. Food Chem X 2023; 18:100702. [PMID: 37206321 PMCID: PMC10189369 DOI: 10.1016/j.fochx.2023.100702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Freeze-dried restructured strawberry blocks (FRSB) have become an increasingly popular product. In this study, the effects of six edible gums (guar gum, gelatin, xanthan gum, pectin, konjac gum, and carrageenan) on the FRSB quality were investigated. For FRSBs, compared with those in untreated samples, the 0.6 % guar gum addition increased texture profile analysis (TPA) hardness, chewiness, and puncture hardness by 29.59%, 174.86%, and 25.34%, respectively; after the 0.6% gelatin addition, the sensory evaluation sourness was reduced by 8.58%, whereas yield, TPA chewiness, and puncture hardness were increased by 3.40%, 28.62%, and 92.12%, respectively; with the 0.9% gelatin addition, the sensory evaluation sourness was reduced by 8.58%; with the 0.9% pectin addition, the yield, TPA hardness, chewiness, and puncture hardness were increased by 4.55%, 5.94%, 77.49%, and 103.62%, respectively. In summary, 0.6-0.9% pectin, gelatin, and guar gum addition are recommended to improve the main qualities of FRSBs.
Collapse
Affiliation(s)
- Feifei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
| | - Jiaqi Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Honghong Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xianghua Wu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Chunju Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haiou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Corresponding author.
| |
Collapse
|
20
|
Tang J, Zhu X, Jambrak AR, Sun DW, Tiwari BK. Mechanistic and synergistic aspects of ultrasonics and hydrodynamic cavitation for food processing. Crit Rev Food Sci Nutr 2023; 64:8587-8608. [PMID: 37194650 DOI: 10.1080/10408398.2023.2201834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Compared with traditional methods, cavitation-based processing technology has received extensive attention for its low energy consumption and high processing efficiency. The cavitation phenomenon releases high energy due to the generation and collapse of bubbles, which improves the efficiency of various food processing. This review details the cavitation mechanism of ultrasonic cavitation (UC) and hydrodynamic cavitation (HC), factors affecting cavitation, the application of cavitation technology in food processing, and the application of cavitation technology in the extraction of various natural ingredients. The safety and nutrition of food processed by cavitation technology and future research directions are also discussed. The mechanism of UC refers to longitudinal displacement of the particles of the medium induced by ultrasonic waves causing a series of alternating compression and rarefaction of particles, whereas HC occurs when liquid enters a narrow section and undergoes large pressure differentials, both of which can trigger the generation, growth, and collapse of microbubbles. Cavitation could be applied in microbial inactivation, and drying and freezing processing. In addition, cavitation bubbles can have mechanical and thermal effects on plant cells. In general, cavitation technology is a new sustainable, green, and innovative technology with broad application prospects and capabilities.
Collapse
Affiliation(s)
- Jiafei Tang
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Anet Rezek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | | |
Collapse
|
21
|
Fernandes FAN, Rodrigues S. Ultrasound applications in drying of fruits from a sustainable development goals perspective. ULTRASONICS SONOCHEMISTRY 2023; 96:106430. [PMID: 37167783 DOI: 10.1016/j.ultsonch.2023.106430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
This review focuses on the many contributions of ultrasound technologies for fruit drying toward the United Nations Sustainable Development Goals (SDG). Along this review, several aspects attained from the application of ultrasound technologies are correlated with the SDGs. The main ultrasonic technologies applied for fruit drying, such as ultrasonic bath, probe ultrasound, air-borne ultrasound air-drying, and ultrasound-assisted contact air-drying, are presented. An in-depth discussion on ultrasound contributions, its advantages, disadvantages, and limitations are made. The effects of ultrasound on water diffusivity in several fruits are presented by correlating this effect with drying time and cost of energy. Ultrasound-assisted fruit drying, like other food processing technologies, directly impacts Zero Hunger, but ultrasound technologies contribute to much more than delivering long shelf-life food. This technology can be used to produce healthy foods and provide well-being, which will be discussed by correlating the effects of ultrasound-assisted air-drying with the concentration of nutritional compounds. Ultrasound-assisted fruit drying reduces wastewater toxicity and energy consumption and improves productivity, potentially improving workplaces and salaries. A walk through the technology is presented from Zero Hunger to No Poverty.
Collapse
Affiliation(s)
- Fabiano A N Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60440-900 Fortaleza, CE, Brazil.
| | - Sueli Rodrigues
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
22
|
Nawawi NIM, Ijod G, Senevirathna SSJ, Aadil RM, Yusof NL, Yusoff MM, Adzahan NM, Azman EM. Comparison of high pressure and thermal pasteurization on the quality parameters of strawberry products: a review. Food Sci Biotechnol 2023; 32:729-747. [PMID: 37041805 PMCID: PMC10082863 DOI: 10.1007/s10068-023-01276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Strawberry (Fragaria ananassa) is rich in bioactive compounds with high antioxidant activity. High pressure processing (HPP) is an efficient alternative to preserve these bioactive compounds in terms of microbial inactivation and shelf-life stability. This review compares the effects of pasteurization methods using high pressure or thermal pasteurization (TP) on the quality parameters of various strawberry-based products. To summarize, most of the high pressure-treated products are microbiologically stable and showed minimum degradation of thermolabile compounds than TP-treated ones. However, some studies reported that high pressure did not have an advantage over TP especially in the preservation of phenolic phytochemicals during storage. The insufficient enzyme inactivation and high residual activity of enzymes after high pressure treatment could cause anthocyanins degradation thus affecting the product quality. Overall, this review could be valuable to potential processors in evaluating the effective commercialization of high pressure-treated strawberry products.
Collapse
Affiliation(s)
- Nur Izzati Mohamed Nawawi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Giroon Ijod
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Sri Sampath Janaka Senevirathna
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Department of Agriculture, P.O. Box. 01, Peradeniya, 20400 Sri Lanka
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Noor Liyana Yusof
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Masni Mat Yusoff
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
23
|
Zang Z, Zhang Q, Huang X, Jiang C, He C, Wan F. Effect of Ultrasonic Combined with Vacuum Far-infrared on the Drying Characteristics and Physicochemical Quality of Angelica sinensis. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Application of ultrasonication as pre-treatment for freeze drying: An innovative approach for the retention of nutraceutical quality in foods. Food Chem 2023; 404:134571. [DOI: 10.1016/j.foodchem.2022.134571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
25
|
Zhang L, Zhang M, Adhikari B, Zhang L. Salt reducing and saltiness perception enhancing strategy for shiitake (Lentinus edodes) bud using novel combined treatment of yeast extract and radio frequency. Food Chem 2023; 402:134149. [DOI: 10.1016/j.foodchem.2022.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/16/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
|
26
|
Pandiselvam R, Aydar AY, Kutlu N, Aslam R, Sahni P, Mitharwal S, Gavahian M, Kumar M, Raposo A, Yoo S, Han H, Kothakota A. Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. ULTRASONICS SONOCHEMISTRY 2023; 92:106261. [PMID: 36516722 PMCID: PMC9755246 DOI: 10.1016/j.ultsonch.2022.106261] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
One of the earliest and most prevalent processing methods to increase the shelf-life of foods is drying. In recent years, there has been an increased demand to improve product quality while lowering processing times, expenses, and energy usage in the drying process. Pre-treatments are therefore effectively used before drying to enhance heat and mass transfer, increase drying efficiency, and lessen degradation of final product quality. When food is dried, changes are expected in its taste, color, texture, and physical, chemical, and microbial properties. This has led to the need for research and development into the creation of new and effective pre-treatment technologies including high-pressure processing, pulsed electric field, ultraviolet irradiation, and ultrasound. Sound waves that have a frequency >20 kHz, which is above the upper limit of the audible frequency range, are referred to as "ultrasound". Ultrasonication (US) is a non-thermal technology, that has mechanical, cavitational, and sponge effects on food materials. Ultrasound pre-treatment enhances the drying characteristics by producing microchannels in the food tissue, facilitating internal moisture diffusion in the finished product, and lowering the barrier to water migration. The goal of ultrasound pre-treatment is to save processing time, conserve energy, and enhance the quality, safety, and shelf-life of food products. This study presents a comprehensive overview of the fundamentals of ultrasound, its mechanism, and how the individual effects of ultrasonic pre-treatment and the interactive effects of ultrasound-assisted technologies affect the drying kinetics, bioactive components, color, textural, and sensory qualities of food. The difficulties that can arise when using ultrasound technology as a drying pretreatment approach, such as inadequate management of heat, the employment of ultrasound at a limited frequency, and the generation of free radicals, have also been explained.
Collapse
Affiliation(s)
- R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India.
| | - Alev Yüksel Aydar
- Department of Food Engineering, Manisa Celal Bayar University, 45140, Yunusemre, Manisa, Turkiye.
| | - Naciye Kutlu
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, 69500 Aydıntepe, Bayburt, Turkiye
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prashant Sahni
- College of Dairy and Food Technology, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Sunghoon Yoo
- Audit Team, Hanmoo Convention (Oakwood Premier), 49, Teheran-ro 87-gil, Gangnam-gu, Seoul 06164, South Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, South Korea.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| |
Collapse
|
27
|
Zia S, Khan MR, Aadil RM. Kinetic modeling of different drying techniques and their influence on color, bioactive compounds, antioxidant indices and phenolic profile of watermelon rind. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Santos NC, Almeida RLJ, da Silva GM, Feitoza JVF, Silva VMDA, Saraiva MMT, Silva APDF, André AMMCN, Mota MMDA, Carvalho AJDBA. Impact of high hydrostatic pressure (HHP) pre-treatment drying cashew (Anacardium occidentale L.): drying behavior and kinetic of ultrasound-assisted extraction of total phenolics compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Yuan L, Lao F, Shi X, Zhang D, Wu J. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. ULTRASONICS SONOCHEMISTRY 2022; 90:106219. [PMID: 36371874 PMCID: PMC9664403 DOI: 10.1016/j.ultsonch.2022.106219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd., Xinzheng 451100, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
30
|
Pateiro M, Vargas-Ramella M, Franco D, Gomes da Cruz A, Zengin G, Kumar M, Dhama K, Lorenzo JM. The role of emerging technologies in the dehydration of berries: Quality, bioactive compounds, and shelf life. Food Chem X 2022; 16:100465. [PMID: 36225212 PMCID: PMC9550524 DOI: 10.1016/j.fochx.2022.100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Berries comprise essential nutrients necessary for healthy living. Convective, vacuum, microwave, and freeze-drying are the most common methods. Pre-treatments improve permeability, accelerate drying, and inactivate oxidation. Combined methods are recommended to assure high quality of dehydrated berries.
Berries are among the fruits with the highest nutritional and commercial value. This paper reviews the conventional and emerging dehydration methods most commonly used as postharvest treatment and discusses their efficacy in maintaining and/or improving the nutritional and functional qualities of dried berries. The characteristics of the conventional methods (e.g., convective drying, freeze-drying, spray-drying, osmotic dehydration), their pre-treatments, their combination, and intermittent drying, as well as their potential disadvantages are discussed. The use of emerging dehydration techniques (e.g., electromagnetic radiation drying, explosion puffing drying, heat pump drying, low-pressure superheated steam drying, microwave drying) allows to improve the quality of the dried berries compared to conventional techniques, in addition to reducing drying times, increasing drying speed and energy efficiency. Finally, the use of pre-treatments and the combination of technologies can enhance the quality of the final product as a result of the improvement in the effectiveness of the dehydration process.
Collapse
|
31
|
Santos NC, Almeida RLJ, da Silva GM, Monteiro SS, de Alcântara Ribeiro VH, de França Silva AP, de Alcântara Silva VM, de Sousa Rodrigues LM, André AMMCN, de Almeida Mota MM. Influence of high hydrostatic pressure (
HHP
) pretreatment on plum (
Prunus salicina
) drying: drying approach, physical and morpho‐structural properties of the powder and total phenolic compounds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Newton Carlos Santos
- Chemical Engineering Department Federal University of Rio Grande do Norte Natal RN Brazil
| | | | | | - Shênia Santos Monteiro
- Engineering and Management of Natural Resources Department Federal University of Campina Grande Campina Grande PB Brazil
| | | | | | | | | | - Anastácia Maria M. C. N. André
- Engineering and Management of Natural Resources Department Federal University of Campina Grande Campina Grande PB Brazil
| | | |
Collapse
|
32
|
Lyu Y, Bi J, Chen Q, Wu X, Li X, Qiao Y. Quality improvement of freeze‐dried carrots as affected by sugar‐osmotic and hot‐air pre‐treatments. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Lyu
- Department of Food Science Shenyang Agricultural University Shenyang China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Jinfeng Bi
- Department of Food Science Shenyang Agricultural University Shenyang China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Yening Qiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
33
|
ACAR B, DAĞDEVİREN A, YILDIZ BM, ÖZKAYMAK PDM. Determination Freeze Drying Characteristics of Ottoman Strawberries. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1036394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study was performed to define the kinetic drying model and to define the effective diffusivity coefficient of the fruit, which is called ottoman strawberries in the literature. In the study, strawberries by the weight of 100 g and with a thickness of 5 mm were placed in the drying device, and the data were processed by observing the weight loss every two hours after being subjected to the drying process for 14 hours. 8 different kinetic drying models were applied to the acquired data using the MATLAB program. As a result of the application, the estimated standard errors (RMSE), chi-square (X2), regression coefficients (R2) were calculated, error analysis was performed, R2, X2, and RMSE values were found, as 9,998×10-1, 6,993×10-5 and 0.7242×10-2. According to these results, it was determined that the most suitable model is the Page model. Also, the effective diffusivity coefficients for ottoman strawberries were calculated as 2.73286 × 10-10 m2/s. It was confirmed that the calculated effective diffusivity value was within the reference range mentioned in the literature (10-12 m2/s – 10-8 m2/s) for food products.
Collapse
|
34
|
Zhang S, Zhao Y, Yao X, Zheng Z, Zheng C, Jiang Z. Effect of high hydrostatic pressure pretreatment on flavour and physicochemical properties of freeze‐dried carambola slices. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sinan Zhang
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Yadonga Zhao
- College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Xueshuang Yao
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Zhenhong Zheng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Chuyao Zheng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Zhuo Jiang
- College of Food Science South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
35
|
Tayyab Rashid M, Liu K, Ahmed Jatoi M, Safdar B, Lv D, Wei D. Developing ultrasound-assisted hot-air and infrared drying technology for sweet potatoes. ULTRASONICS SONOCHEMISTRY 2022; 86:106047. [PMID: 35617885 PMCID: PMC9136187 DOI: 10.1016/j.ultsonch.2022.106047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
The influence of ultrasound (US) pretreatments combined with infrared (IRD) and hot-air (HAD) drying on drying kinetics, mathematical modeling, bioactive compounds (antioxidant activities, Vitamin C, phenolics, and flavonoid contents), qualitative properties (β-carotene, total carotenoids, color indexes, textural profile), enzyme inactivation, and exergetic analysis of sweet potatoes. The US pretreatment at 40 kHz combined with IRD and HAD (70 °C) significantly lessened the drying time and water contents. Besides, it did not affect the sweet potato's bioactive components and other quality-related attributes. The samples' activation energy (Ea) ranged from 17.60 to 29.86 kJ/mol for both dryers, with R2 (0.999-0.9809). Control samples had the highest specific energy consumption (SEC) due to the extended drying period, whereas ultrasound (40 kHz) treated samples had the lowest SEC during HAD and IRD at 80 °C. The thermodynamic parameters indicated that increasing the drying temperature lowers the enthalpy and Gibbs free energy, while entropy resulted in negative values. HAD had better textural qualities (hardness and resilience). The US pretreatments followed by HAD or IRD may lead to an energy-efficient method with acceptable quality maintenance.
Collapse
Affiliation(s)
- Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | | | - Bushra Safdar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Dingyang Lv
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dengzhong Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
36
|
Liu L, Wang H, Lin L, Gao Y, Niu X. Mulberrin inhibits Botrytis cinerea for strawberry storage by interfering with the bioactivity of 14α-demethylase (CYP51). Food Funct 2022; 13:4032-4046. [PMID: 35315482 DOI: 10.1039/d2fo00295g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Currently, chemical agents hold great promise in preventing and combating Botrytis cinerea. However, the antifungal mechanism of some agents for B. cinerea remains rather vague, imposing restrictions on the research and development of novel antifungal inhibitors. In this work, we discovered that mulberrin (MBN), a natural compound from the root bark of Ramulus Mori, with an IC50 of 1.38 μM together, demonstrated marked anti-14α-demethylase (CYP51) activity through high throughput virtual screening and in vitro bioactivity assay. The computational biology results demonstrated that MBN and its derivatives were bound to the catalytic activity region of CYP51, but only MBN could form a strong π-cation interaction with the Fe ion of heme in CYP51 via the 2-methylpent-2-ene moiety at atom C9. MBN had a stronger binding free energy than the other three compounds with CYP51, implying that the 2-methylpent-2-ene moiety at atom C9 is a critical pharmacophore for CYP51 inhibitors. Subsequently, through an antifungal test, MBN demonstrated excellent anti-B. cinerea activity by inhibiting CYP51 activity. The EC50 values of MBN toward hyphal growth and spore germination in B. cinerea were 17.27 and 9.56 μg mL-1, respectively. The bioactivity loss of CYP51 by direct interaction with MBN induced the increase of cell membrane permeability, membrane destruction, and cell death. Meanwhile, in the B. cinerea infection model, MBN significantly prolonged the preservation of strawberries by preventing B. cinerea from infecting strawberries and could be used as a potential natural preserving agent for storing fruits.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
37
|
Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Effect of an Ultrasound Pre-Treatment on the Characteristics and Quality of Far-Infrared Vacuum Drying with Cistanche Slices. Foods 2022; 11:foods11060866. [PMID: 35327287 PMCID: PMC8950557 DOI: 10.3390/foods11060866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the effect of an ultrasound (US) pre-treatment on the process of drying Cistanche slices through far-infrared vacuum drying was investigated with various experimental factors, including the US treatment time (25, 35, 45 min), frequency (20, 40, 60 kHz) and power (150, 180, 210 W). The results showed that compared with the samples without US, the material drying time after the US treatment was reduced by 16–36.8%. The effective moisture diffusion coefficients of Cistanche slices under different US conditions ranged from 1.61122 × 10−8 to 2.39274 × 10−8 m2/s, which agreed with food processing ranges. In addition, the phenylethanoid glycoside, iridoid, polysaccharide, total phenol and total flavonoid contents in Cistanche were significantly increased after US pre-treatment. However, the dried products obtained with the 45 min US treatment had greatly damaged internal structures, collapsed and seriously deformed surfaces, and low contents of active ingredients. Overall, the US pre-treatment could significantly improve the drying quality of Cistanche slices.
Collapse
|
39
|
Zambon A, Zulli R, Boldrin F, Spilimbergo S. Microbial inactivation and drying of strawberry slices by supercritical CO2. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Fathi F, N Ebrahimi S, Matos LC, P P Oliveira MB, Alves RC. Emerging drying techniques for food safety and quality: A review. Compr Rev Food Sci Food Saf 2022; 21:1125-1160. [PMID: 35080792 DOI: 10.1111/1541-4337.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
The new trends in drying technology seek a promising alternative to synthetic preservatives to improve the shelf-life and storage stability of food products. On the other hand, the drying process can result in deformation and degradation of phytoconstituents due to their thermal sensitivity. The main purpose of this review is to give a general overview of common drying techniques with special attention to food industrial applications, focusing on recent advances to maintain the features of the active phytoconstituents and nutrients, and improve their release and storage stability. Furthermore, a drying technique that extends the shelf-life of food products by reducing trapped water, will negatively affect the spoilage of microorganisms and enzymes that are responsible for undesired chemical composition changes, but can protect beneficial microorganisms like probiotics. This paper also explores recent efficient improvements in drying technologies that produce high-quality and low-cost final products compared to conventional methods. However, despite the recent advances in drying technologies, hybrid drying (a combination of different drying techniques) and spray drying (drying with the help of encapsulation methods) are still promising techniques in food industries. In conclusion, spray drying encapsulation can improve the morphology and texture of dry materials, preserve natural components for a long time, and increase storage times (shelf-life). Optimizing a drying technique and using a suitable drying agent should also be a promising solution to preserve probiotic bacteria and antimicrobial compounds.
Collapse
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.,REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | | | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Ma Y, Yi J, Bi J, Wu X, Li X, Li J, Zhao Y. Understanding of osmotic dehydration on mass transfer and physical properties of freeze‐dried apple slices: A comparative study of five saccharides osmotic agents. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Youchuan Ma
- Laboratory of Agro‐ Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing People’s Republic of China
| | - Jianyong Yi
- Laboratory of Agro‐ Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing People’s Republic of China
| | - Jinfeng Bi
- Laboratory of Agro‐ Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing People’s Republic of China
| | - Xinye Wu
- Laboratory of Agro‐ Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing People’s Republic of China
| | - Xuan Li
- Laboratory of Agro‐ Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing People’s Republic of China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Technology Tianjin Academy of Agricultural Sciences Tianjin People’s Republic of China
| | - Yuanyuan Zhao
- Laboratory of Agro‐ Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing People’s Republic of China
| |
Collapse
|
42
|
ERGÜN AHSENR. The Effects of Electric Field and Ultrasound Pretreatments on the Drying Time and Physicochemical Characteristics of the Zucchini Chips. AN ACAD BRAS CIENC 2022; 94:e20210349. [DOI: 10.1590/0001-3765202220210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
|
43
|
XU J, JI H, DONG H, DUAN S, CHEN H, ZHANG D, LIU S, MAO W. A promising natural purple batter system with antioxidant activity for vacuum fried breaded shrimp. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.35220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jiayin XU
- Guangdong Ocean University, P.R. China
| | - Hongwu JI
- Guangdong Ocean University, P.R. China; uangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, P.R. China; Guangdong Province Engineering Laboratory for Marine Biological Products, P.R. China; Guangdong Provincial Engineering Technology Research Center of Marine Food, P.R. China
| | - Hang DONG
- Guangdong Ocean University, P.R. China
| | | | - Hao CHEN
- Guangdong Ocean University, P.R. China
| | - Di ZHANG
- Guangdong Ocean University, P.R. China
| | - Shucheng LIU
- Guangdong Ocean University, P.R. China; uangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, P.R. China; Guangdong Province Engineering Laboratory for Marine Biological Products, P.R. China; Guangdong Provincial Engineering Technology Research Center of Marine Food, P.R. China; Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, P.R. China
| | - Weijie MAO
- Guangdong Ocean University, P.R. China; uangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, P.R. China; Guangdong Province Engineering Laboratory for Marine Biological Products, P.R. China; Guangdong Provincial Engineering Technology Research Center of Marine Food, P.R. China; Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, P.R. China
| |
Collapse
|
44
|
Nie Y, Chen J, Xu J, Zhang Y, Yang M, Yang L, Wang X, Zhong J. Vacuum freeze-drying of tilapia skin affects the properties of skin and extracted gelatins. Food Chem 2021; 374:131784. [PMID: 34915380 DOI: 10.1016/j.foodchem.2021.131784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Herein, the effects of vacuum freeze-drying treatment of tilapia skin on the properties of skin, the molecular properties of extracted gelatins, and the emulsion stabilization properties of extracted gelatins were studied. The results suggested that all the bound, entrapped, and free water molecules were simultaneously sublimated (quickly at the first 30 min and then slowly) by sublimation in the vacuum freeze-drying process. Long vacuum freeze-drying times (60 and 150 min) decreased the amount of the four bands in SDS-PAGE pattern, increased β-sheet and random coil percentages, and decreased other three secondary structure percentages of extracted gelatins. Finally, vacuum freeze-drying of tilapia skin increased the emulsion stability of fish oil-loaded oil-in-water emulsions. This work provided basic knowledges to illustrate the effect of vacuum freeze-drying of protein-enriched tissues on the molecular and functional properties of extracted proteins. It also provided a potential route to increase the emulsion stabilization ability of proteins.
Collapse
Affiliation(s)
- Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiahui Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyi Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengyang Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
45
|
Kowalska H, Marzec A, Domian E, Kowalska J, Ciurzyńska A, Galus S. Edible coatings as osmotic dehydration pretreatment in nutrient-enhanced fruit or vegetable snacks development: A review. Compr Rev Food Sci Food Saf 2021; 20:5641-5674. [PMID: 34698434 DOI: 10.1111/1541-4337.12837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
Edible coatings (ECs) are thin layers applied on food to protect it and improve quality. They are made from bio-based materials such as polysaccharides, proteins, lipids, or their composites. The incorporation of functional agents, such as bioactive compounds, vitamins, or antimicrobials into the EC, has been investigated to control the shelf life of many food products from horticulture ones to processed food. Osmotic dehydration (OD) as a mild technology may also positively impact the availability of innovative fruit snacks and consequently influence consumer health. Combination of the EC with the OD aims to remove water through the semipermeable membrane while limiting the transfer of solutes from the dehydrated tissue and in the opposite direction from the osmotic solution to the food. The development trend of the snack market is expanding, especially with health-promoting properties. Consumers pay increasing attention to quality of food and its beneficial effects on health. This review attempts to provide the advancement of recent studies on the application of the EC before the OD of different fresh or fresh-cut fruit and vegetables. A fundamental theory related to the methodology of creating the EC, their composition, and the influence on the physicochemical properties of products that are osmo-dehydrated to a medium water content or additionally dried to a low water content have been described. Efforts have been exerted to introduce hydrocolloids used in the production of the EC, including new sources of biopolymers such as agricultural waste and by-products. The perspectives of using ECs in the technology of producing pro-healthy snacks are emphasized.
Collapse
Affiliation(s)
- Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
46
|
Chen F, Zhang M, Devahastin S, Yu D. Comparative Evaluation of the Properties of Deep-Frozen Blueberries Dried by Vacuum Infrared Freeze Drying with the Use of CO2 Laser Perforation, Ultrasound, and Freezing–Thawing as Pretreatments. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02677-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Xu B, Chen J, Sylvain Tiliwa E, Yan W, Roknul Azam SM, Yuan J, Wei B, Zhou C, Ma H. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. ULTRASONICS SONOCHEMISTRY 2021; 78:105714. [PMID: 34411845 PMCID: PMC8379497 DOI: 10.1016/j.ultsonch.2021.105714] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 05/09/2023]
Abstract
The effects of osmotic pretreatment assisted by ultrasound in different frequency modes before vacuum freeze-drying (VFD) on moisture migration and quality characteristics of strawberry slices were investigated. The frequency modes are single-frequency modes under 20, 40 kHz (SM-20, SM-40), and dual-frequency under 20/40 kHz including sequential mode (SeDM) and simultaneous mode (SiDM). The quality characteristics of dried strawberry products including rehydration, hardness, color, flavor, total anthocyanins, total phenols, vitamin C content, and active antioxidant components (DPPH and -OH) were determined. Results showed that drying time of the strawberry slices irradiated by ultrasound was reduced by 15.25%-50.00%, compared to the control samples. Besides, dual-frequency ultrasound shortened the drying time more than single-frequency ultrasound. The drying time of SeDM was the shortest. In addition to vitamin C content, the quality characteristics including rehydration, hardness, color, flavor, total anthocyanins, total phenols, and antioxidant activity of dried strawberry products pretreated by SeDM were significantly (p < 0.05) better than those of control and other pretreated samples. It can be concluded that the SeDM was an effective pretreatment method to produce high-quality vacuum freeze-dried strawberry products.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| | - Jianan Chen
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | | | - Weiqiang Yan
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - S M Roknul Azam
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China
| | - Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| |
Collapse
|
48
|
Kang SW, Hwang JH, Chung KH, Park SH. Evaluation of infrared assisted freeze drying for strawberry snacks: drying kinetics, energy efficiency and quality attributes. Food Sci Biotechnol 2021; 30:1087-1096. [PMID: 34471562 DOI: 10.1007/s10068-021-00949-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
Feasibility of infrared assisted freeze drying (IRAFD) was evaluated for production of the strawberry snacks. Infrared (IR) radiation provided the driving force of ice sublimation during freeze drying (FD). Different IRAFD conditions were tested, including the continuous IRAFD-1.6 kW/m2 and IRAFD-1.6 kW/m2 at different weight reductions (20%, 40%, and 60%). Conventional FD had a total drying time of 691 ± 19 min, whereas continuous IRAFD significantly reduced the drying time to 309 ± 32 min. Continuous IRAFD also reduced the amount of consumed electrical energy by 42% compared to that of FD. A long duration of IR radiation produced a soft texture in the snacks. Drying kinetics were analyzed using various models, including the Page model, exponential model, and Henderson and Pabis model. The Page model provided the best fit to the experimental drying curve. This study showed the potential of IRAFD in producing value-added fruit snacks with good textural quality and efficient use of energy.
Collapse
Affiliation(s)
- Su Wang Kang
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Kang Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sung Hee Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| |
Collapse
|
49
|
Yue T, Xing Y, Xu Q, Yang S, Xu L, Wang X, Yang P. Physical and chemical properties of purple cabbage as affected by drying conditions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tianyi Yue
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Yage Xing
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Qinglian Xu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Shuang Yang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Lin Xu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaomin Wang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Ping Yang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
50
|
Zhang S, Zheng C, Zeng Y, Zheng Z, Yao X, Zhao Y, Jiang Z. Mechanism of colour change of carambola puree by high pressure processing and its effect on flavour and physicochemical properties. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sinan Zhang
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Chuyao Zheng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Yanxia Zeng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Zhenhong Zheng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xueshuang Yao
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Yadong Zhao
- College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Zhuo Jiang
- College of Food Science South China Agricultural University Guangzhou 510642 China
| |
Collapse
|