1
|
Zhou L, Lv L, Zhao P, Zhang J, Liu Y, Zhao W, Zhang K, Du S. Theaflavin Reduces Oxidative Stress and Apoptosis in Oxidized Protein-Induced Granulosa Cells and Improves Production Performance in Laying Hens. Animals (Basel) 2025; 15:845. [PMID: 40150374 PMCID: PMC11939771 DOI: 10.3390/ani15060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
This study aims to investigate the effects of theaflavins on production performance and egg quality in laying hens fed oxidized corn gluten meal while evaluating their antioxidant and anti-apoptotic effects on granulosa cells (GCs) from chicken follicles. In total, 600 Lohmann commercial laying hens, aged 64 weeks, were randomly assigned to four treatment groups: a control group, a theaflavin-supplemented group, an oxidized corn gluten meal group, and a combination group. After 8 weeks of feeding, production performance, egg quality, and antioxidant status, along with GC apoptosis and the antioxidant capacity of eggs, were measured. The results demonstrated that oxidized corn gluten meal significantly reduced production performance, antioxidant capacity, and egg quality in laying hens while increasing GC apoptosis. Theaflavin significantly enhanced egg production during weeks 5-8, along with superoxide dismutase activity in the liver, serum, and ovary, alongside egg white reducing power and egg yolk threonine content (p < 0.05). Additionally, theaflavin decreased feed conversion ratios during weeks 5-8 and 1-8, lowered egg white malondialdehyde content (p < 0.05), and inhibited GC apoptosis. In conclusion, oxidized protein reduced production performance, while theaflavin supplementation partially alleviated its adverse effects.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Li Lv
- Institute of Brain Science and Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611134, China;
| | - Pinyao Zhao
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Jinwei Zhang
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Yan Liu
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Wei Zhao
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611134, China;
| | - Shuwen Du
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| |
Collapse
|
2
|
Wang D, Wang J, Lang Y, Huang M, Hu S, Liu H, Sun B, Long Y, Wu J, Dong W. Interactions between food matrices and odorants: A review. Food Chem 2025; 466:142086. [PMID: 39612859 DOI: 10.1016/j.foodchem.2024.142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Currently, although odorants of various foods have been thoroughly studied, the regulation of food aromas is still difficult due to the interaction between odorants and food matrices. These complex matrices in food may interact with odorants to change the volatility of odorants, which in turn affect food aroma. Clarifying the interaction between them are promising for predicting food aroma formation, which will provide valuable support for a high-efficiency food industry. Herein, the research progresses on interactions between food matrices and odorants are reviewed. First, the analysis methods and their advantages and disadvantages are introduced and discussed emphatically, including sensory-analysis methods, characterization methods of the volatility changes of odorants, and the research methods of interaction mechanism. Further, the research advances of interactions among proteins, carbohydrates, lipids, and polyphenols with odorants are summarized briefly. Finally, the existing problems are discussed and the research prospects are proposed.
Collapse
Affiliation(s)
- Danqing Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Juan Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Mingquan Huang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Shenglan Hu
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Hongqin Liu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Yao Long
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Jihong Wu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
3
|
Zou Y, Mei C, Liu F, Xing D, Pang D, Li Q. The lipase inhibitory effect of mulberry leaf phenolic glycosides: The structure-activity relationship and mechanism of action. Food Chem 2024; 458:140228. [PMID: 38964110 DOI: 10.1016/j.foodchem.2024.140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
The present study found for the first time that phenolic glycosides were an important material basis for mulberry leaves to inhibit lipase. The corresponding IC50 for hyperoside, rutin, astragalin and quercetin were 68, 252, 385 and 815 μg/mL respectively. The inhibitory effect was ranked as monoglycosides > phenolic hydroxyl groups > disaccharides on the benzone ring. Hyperoside bound to lipase in competitive inhibition type with one binding site, while the others bound to lipase in a mixed inhibition type by two similar sites. All four compounds altered the microenvironment and secondary conformation of lipase through static quenching. The docking score, stability, and binding energy were consistent with the compound inhibitory activity. The main binding between compounds and lipase amino acid residues were spontaneously though hydrophobic interactions and hydrogen bonding. The strong hydrogen bonds formed with SER-152 inside the lipase pocket, might be important for the strong inhibitory activity of hyperoside.
Collapse
Affiliation(s)
- Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chunying Mei
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Dongxu Xing
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Daorui Pang
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong, Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
4
|
Chen Y, Chen Y, Li T, Wang J, Zhang W. Coconut milk allergenicity: Insight into reducing the affinity of coconut globulin to immunoglobulin E by atmospheric cold plasma. Food Chem X 2024; 23:101732. [PMID: 39239533 PMCID: PMC11375244 DOI: 10.1016/j.fochx.2024.101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
Atmospheric cold plasma (ACP) presents a promising method for the sterilization of coconut milk and exhibits a modifying effect on coconut globulin (CG), the primary allergen in coconut milk. This study investigated the potential role of ACP treatment in mitigating the allergenic properties of coconut milk by examining changes in protein structure. ACP treatment induced structural alterations in CG, disrupting binding sites with immunoglobulin E (IgE). Consequently, this led to a reduction in the affinity between CG and IgE, evidenced by a decrease in Ka from 2.17 × 104/M to 0.64 × 104/M, thereby diminishing IgE-mediated allergic reactions. The findings from allergenic and cellular models further corroborated that ACP treatment decreased the allergenicity of CG by 55.18%, while inhibiting degranulation and the release of allergic mediators. This study presents an innovative methodology for producing hypoallergenic coconut milk, thereby expanding the applicability of ACP technology within the food industry.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yile Chen
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Tian Li
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jiamei Wang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, Hainan, 570228, China
| |
Collapse
|
5
|
Zhu J, Shen H, Li G, Chen L, Kang P, Guo Y, Li Z. Theaflavin pretreatment ameliorates renal ischemia/reperfusion injury by attenuating apoptosis and oxidative stress in vivo and in vitro. Biomed Pharmacother 2024; 171:116114. [PMID: 38171247 DOI: 10.1016/j.biopha.2023.116114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative stress-induced apoptosis is an important pathological process in renal ischemia/reperfusion injury (RIRI). Theaflavin (TF) is the main active pigment and polyphenol in black tea. It has been widely reported because of its biological activity that can reduce oxidative stress and protect against many diseases. Here, we explored the role of theaflavin in the pathological process of RIRI. In the present study, the RIRI model of 45 min ischemia and 24 h reperfusion was established in C57BL/6 J male mice, and theaflavin was used as an intervention. Compared with the RIRI group, the renal filtration function, renal tissue damage and antioxidant capacity of the theaflavin intervention group were significantly improved, while the level of apoptosis was reduced. TCMK-1 cells were incubated under hypoxia for 48 h and then reoxygenated for 6 h to simulate RIRI in vitro. The application of theaflavin significantly promoted the translocation of p53 from cytoplasm to nucleus, upregulated the expression of glutathione peroxidase 1 (GPx-1) in cells, and inhibited oxidative stress damage and apoptosis. Transfection with p53 siRNA can partially inhibit the effect of theaflavin. Thus, theaflavin exerted a protective effect against RIRI by inhibiting apoptosis and oxidative stress via regulating the p53/GPx-1 pathway. We conclude that theaflavin has the potential to become a candidate drug for the prevention and treatment of RIRI.
Collapse
Affiliation(s)
- Jianning Zhu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hao Shen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Guohao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lin Chen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Peng Kang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yonglian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Zhongyuan Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
6
|
Long P, Li Y, Han Z, Zhu M, Zhai X, Jiang Z, Wen M, Ho CT, Zhang L. Discovery of color compounds: Integrated multispectral omics on exploring critical colorant compounds of black tea infusion. Food Chem 2024; 432:137185. [PMID: 37633133 DOI: 10.1016/j.foodchem.2023.137185] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
The present study provided a highly efficient and systematic workflow for identifying colorants of food and beverage. Generally, the objective colorimeter and subjective human eye had different systems to identify colors, which makes the color description very challenging. Here, the Lab/LCH color system was applied to clearly illustrate color changes. Our workflow was applied to determine and verify the differential colorant substances between two groups of black tea infusions. Regarding color parameters, the infusions of black tea from Camellia sinensis and Camellia assamica differed significantly. The differential substances between black tea infusions were correlated to color parameters by mass spectrometry and nuclear magnetic resonance based multivariate statistical analysis and verified by machine learning tool. Pyroglutamic acid-glucose Amadori product, quercetin-3-O-glucoside, quinic acid and theabrownins were identified as main color contributors to black teas' color difference, which were also verified by addition test with standard black tea infusion.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yaxin Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
7
|
Wang M, Wang S, Cui J, Lian D, Li Y, Du Y, Li L. Interactions studies of CYP2D6 with quercetin and hyperoside by spectral analysis and molecular dynamics simulations. LUMINESCENCE 2024; 39:e4605. [PMID: 37795938 DOI: 10.1002/bio.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Some ingredients from herbal medicine can significantly affect the activity of CYP2D6, thus leading to serious interactions between herbs and drugs. Quercetin and hyperoside are active ingredients widely found in vegetables, fruits, and herbal medicines. Quercetin and hyperoside have many biological activities. In this work, the characteristic bindings of CYP2D6 with quercetin/hyperoside are revealed by multi-spectroscopy analysis, molecular docking, and molecular dynamics simulations. The fluorescence of CYP2D6 is statically quenched by quercetin and hyperoside. The binding constant (Ka ) values of CYP2D6-quercetin/hyperoside range from 104 L mol-1 , which indicates that these two flavonoids bind moderately to CYP2D6. Meanwhile, quercetin has a stronger quenching ability to CYP2D6 than that of hyperoside. The secondary structure of CYP2D6 is obviously changed by binding with quercetin/hyperoside. The docking results reveal that the quercetin/hyperoside enters the active site of CYP2D6 near heme and binds to CYP2D6 by hydrogen bonds and van der Waals forces. The molecular dynamics simulation results indicate that the binding of quercetin/hyperoside can stabilize the two complexes, enhance the flexibility of CYP2D6 backbone atoms, and make a more unfolded and looser structure of CYP2D6.
Collapse
Affiliation(s)
- Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yuan Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yutong Du
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
8
|
Wu Y, Xiang X, Li X, Li X, An F, Geng F, Luo P, Huang Q, Zhou Y. Study on the mechanism of improving the quality of salted egg yolks by ultrasonic synergistic NaCl dry-curing. ULTRASONICS SONOCHEMISTRY 2024; 102:106746. [PMID: 38157804 PMCID: PMC10759176 DOI: 10.1016/j.ultsonch.2023.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/06/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The dry separate curing of duck egg yolks was carried out by ultrasonic synergize NaCl (sodium chloride) and NaCl alone. The mechanism of the amelioration of salted egg yolk quality by ultrasonic synergistic NaCl dry-curing was studied. The quality variations of the salted egg yolks were analyzed for the same curing time and NaCl content achieved by ultrasonic synergistic NaCl curing and NaCl curing alone. The results showed that under the same salting time, the NaCl content, oil exudation and chewiness of U48-SEY (ultrasonic for 48 h-salted egg yolk) were higher than those in SEY (salted egg yolk). At the same NaCl content, the oil exudation and chewiness of U44-SEY (ultrasonic for 44 h-salted egg yolk) were still significantly increased. Compared to SEY, the soluble protein content and H0 of U44-SEY and U48-SEY were augmented. Scanning electron microscopy (SEM) indicated that the polyhedral particles in the salted egg yolks prepared by ultrasonic synergistic NaCl dry-curing were closely aligned and evenly distributed, and the salted egg yolks were sandier. Structural analysis revealed that the secondary and tertiary structures of egg yolk protein were changed although the ultrasonic synergistic NaCl dry-curing did not cause the fragmentation or aggregation of the peptide chain structure. The above results suggested that ultrasonic not only perfected the quality of salted egg yolk by promoting NaCl penetration, but also modified the structures of egg yolk protein by the action of ultrasonic itself, which prominently improved the quality of salted egg yolks.
Collapse
Affiliation(s)
- Yongyan Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China.
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Peng Luo
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yan Zhou
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Li M, Zhou D, Wu D, Hu X, Hu J, Geng F, Cheng L. Comparative analysis of the interaction between alpha-lactalbumin and two edible azo colorants equipped with different sulfonyl group numbers. Food Chem 2023; 416:135826. [PMID: 36893641 DOI: 10.1016/j.foodchem.2023.135826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Alpha-lactalbumin (α-La) is a crucial active component in whey protein. It would be mixed with edible azo pigments during processing. Spectroscopic analyses and computer simulations were used here to characterize the interaction between acid red 27 (C27) /acidic red B (FB) and α-La. Fluorescence, thermodynamics, and energy transfer showed the binding mechanism is a static quenching with a medium affinity. This binding process occurred spontaneously and was mainly driven by hydrophobic forces. Conformation analysis showed FB led to a greater change in the secondary structure of α-La compared with C27. C27 increased and FB decreased the surface hydrophobicity of α-La. The spatial structures of complexes were visualized with computer aid. The azo colorant binds to α-La easily and deeply with a smaller space volume and dipole moment and thereby affecting the α-La conformation and functionality. This study provides a theoretical basis for the application of edible azo pigments.
Collapse
Affiliation(s)
- Mohan Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dian Zhou
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Xia Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
10
|
Pan B, Lv M, Du H, Zhao D, Lu K. Spectroscopic studies on noncovalent binding of nicotinamide-modified BRCA1 (856-871) analogs to calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122531. [PMID: 36854231 DOI: 10.1016/j.saa.2023.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Various peptide drugs have entered the market with the development of molecular biology. Peptide drugs are used for treat diseases such as diabetes, breast cancer, and HIV infection. In this study, three nicotinamide-modified peptides were synthesized by modifying the N-terminus of BRCA1 (856-871, Y856R, K862Y, R866W) peptide with three nicotinic acid derivatives using solid-phase peptide synthesis. The results of calf thymus DNA (ctDNA) binding activity indicated that binding constants of BRCA1 (856-871, Y856R, K862Y, R866W) (P0) and three nicotinamide-modified peptides (P1, P2, and P3) to ctDNA were 1.89 × 103, 2.97 × 104, 7.61 × 104, and 8.09 × 104 L·mol-1, respectively. The binding affinity of the modified peptides was superior to that of BRCA1 (856-871, Y856R, K862Y, R866W). ΔHθ < 0 and ΔSθ < 0 indicated that van der Waals force and hydrogen bond contributed most to peptide-ctDNA binding. Results obtained by Circular dichroism (CD) indicated that peptide binding interaction led to conformational changes in ctDNA. Ultraviolet-visible (UV) spectroscopy, ethidium bromide (EB) competition experiments, DNA melting experiments, and viscosity measurements verified that peptides interacted with ctDNA via groove binding. Ionic strength experiments manifested that electrostatic binding was also involved in peptide-ctDNA binding.
Collapse
Affiliation(s)
- Boyuan Pan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, Henan, China
| | - Mingxiu Lv
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Kui Lu
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, Henan, China.
| |
Collapse
|
11
|
Chen JN, Zhao HL, Zhang YY, Zhou DY, Qin L, Huang XH. Comprehensive Multi-Spectroscopy and Molecular Docking Understanding of Interactions between Fermentation-Stinky Compounds and Mandarin Fish Myofibrillar Proteins. Foods 2023; 12:foods12102054. [PMID: 37238872 DOI: 10.3390/foods12102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The release of flavor compounds is a critical factor that influences the quality of fermented foods. A recent study investigated the interactions between four fermentation-stinky compounds (indole, isovaleric acid, dimethyl disulfide, and dibutyl phthalate) and myofibrillar proteins (MPs). The results indicated that all four fermentation-stinky compounds had different degrees of binding to MPs, with dibutyl phthalate and dimethyl disulfide exhibiting stronger interactions. Reduced hydrophobicity enhanced these interactions. Multi-spectroscopy showed that static fluorescence quenching was dominant in the MPs-fermentation-stinky compound complexes. The interaction altered the secondary structure of MPs, predominantly transitioning from β-sheets to α-helix or random coil structures via hydrogen bond interactions. Molecular docking confirmed that these complexes maintained steady states due to stronger hydrogen bonds, van der Waals forces, ionic bonds, conjugate systems, and lower hydrophobicity interactions. Hence, it is a novel sight that the addition of hydrophobic bond-disrupting agents could improve the flavor of fermented foods.
Collapse
Affiliation(s)
- Jia-Nan Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hui-Lin Zhao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Ying Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Da-Yong Zhou
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Chen X, He Z, Wang Z, Li H. Insight into the Interaction of Malondialdehyde with Rabbit Meat Myofibrillar Protein: Fluorescence Quenching and Protein Oxidation. Foods 2023; 12:foods12102044. [PMID: 37238862 DOI: 10.3390/foods12102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
This research explored the effects of oxidative modification caused by different malondialdehyde (MDA) concentrations on rabbit meat myofibrillar protein (MP) structural characteristics and the interactions between MDA and MP. The fluorescence intensity of MDA-MP adducts, and surface hydrophobicity increased, whereas the intrinsic fluorescence intensity and free-amine content of MPs decreased as MDA concentration and incubation time increased. The carbonyl content was 2.06 nmol/mg for native MPs, while the carbonyl contents increased to 5.17, 5.57, 7.01, 11.37, 13.78, and 23.24 nmol/mg for MP treated with 0.25 to 8 mM MDA, respectively. When the MP was treated with 0.25 mM MDA, the sulfhydryl content and the α-helix content decreased to 43.78 nmol/mg and 38.46%, while when MDA concentration increased to 8 mM, the contents for sulfhydryl and α-helix decreased to 25.70 nmol/mg and 15.32%. Furthermore, the denaturation temperature and ΔH decreased with the increase in MDA concentration, and the peaks disappeared when the MDA concentration reached 8 mM. Those results indicate MDA modification resulted in structural destruction, thermal stability reduction, and protein aggregation. Besides, the first-order kinetics and Stern-Volmer equation fitting results imply that the quenching mechanism of MP by MDA may be mainly driven by dynamic quenching.
Collapse
Affiliation(s)
- Xiaosi Chen
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
13
|
Gao Z, Ji Z, Wang L, Deng Q, Quek SY, Liu L, Dong X. Improvement of Oxidative Stability of Fish Oil-in-Water Emulsions through Partitioning of Sesamol at the Interface. Foods 2023; 12:foods12061287. [PMID: 36981213 PMCID: PMC10048168 DOI: 10.3390/foods12061287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The susceptibility of polyunsaturated fatty acids to oxidation severely limits their application in functional emulsified foods. In this study, the effect of sesamol concentration on the physicochemical properties of WPI-stabilized fish oil emulsions was investigated, focusing on the relationship between sesamol-WPI interactions and interfacial behavior. The results relating to particle size, zeta-potential, microstructure, and appearance showed that 0.09% (w/v) sesamol promoted the formation of small oil droplets and inhibited oil droplet aggregation. Furthermore, the addition of sesamol significantly reduced the formation of hydrogen peroxide, generation of secondary reaction products during storage, and degree of protein oxidation in the emulsions. Molecular docking and isothermal titration calorimetry showed that the interaction between sesamol and β-LG was mainly mediated by hydrogen bonds and hydrophobic interactions. Our results show that sesamol binds to interfacial proteins mainly through hydrogen bonding, and increasing the interfacial sesamol content reduces the interfacial tension and improves the physical and oxidative stability of the emulsion.
Collapse
Affiliation(s)
- Zhihui Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhongyan Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Leixi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Riddet Institute, Palmerston North 4474, New Zealand
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Zeng Z, Wu D, Tang L, Hu X, Zhang J, Geng F. Exploring the binding effects and inhibiting mechanism of hyperoside to lipase using multi-spectroscopic approaches, isothermal titration calorimetry, inhibition kinetics and molecular dynamics. RSC Adv 2023; 13:6507-6517. [PMID: 36845588 PMCID: PMC9950857 DOI: 10.1039/d2ra06715c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/12/2023] [Indexed: 02/28/2023] Open
Abstract
Hyperoside (HYP) is a flavonoid with various physiological activities. The present study examined the interaction mechanism between HYP and lipase using multi-spectrum and computer-aided techniques. Results demonstrated that the force type of HYP on lipase was mainly hydrogen bond, hydrophobic interaction force, and van der Waals force, and HYP had an excellent binding affinity with lipase at 1.576 × 105 M-1. HYP dose-dependently inhibited lipase in the inhibition experiment, and its IC50 value was 1.92 × 10-3 M. Moreover, the results suggested that HYP could inhibit the activity by binding to essential groups. Conformational studies indicated that the conformation and microenvironment of lipase were slightly changed after the addition of HYP. Computational simulations further confirmed the structural relationships of HYP to lipase. The interaction between HYP and lipase can provide ideas for the development of functional foods related to weight loss. The results of this study help comprehend the pathological significance of HYP in biological systems, as well as its mechanism.
Collapse
Affiliation(s)
- Zhen Zeng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Lan Tang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Xia Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Jing Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| |
Collapse
|
15
|
Interaction, bioaccessibility and stability of bovine serum albumin-gamma-oryzanol complex: Spectroscopic and computational approaches. Food Chem 2023; 402:134493. [DOI: 10.1016/j.foodchem.2022.134493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 01/30/2023]
|
16
|
Hu X, Zeng Z, Zhang J, Wu D, Li H, Geng F. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem 2022; 405:134824. [DOI: 10.1016/j.foodchem.2022.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
17
|
Epigallocatechin-3-gallate mediated self-assemble behavior and gelling properties of the ovalbumin with heating treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Wu D, Tang L, Zeng Z, Zhang J, Hu X, Pan Q, Geng F, Li H. Delivery of hyperoside by using a soybean protein isolated-soy soluble polysaccharide nanocomplex: Fabrication, characterization, and in vitro release properties. Food Chem 2022; 386:132837. [PMID: 35367793 DOI: 10.1016/j.foodchem.2022.132837] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022]
Abstract
Nanoparticles made from natural proteins and polysaccharides are green, biodegradable, and sustainable. In this study, soybean protein isolate (SPI) and soybean soluble polysaccharide (SSPS) were employed as delivery vehicles for hyperoside (HYP) to explore the mechanism of the formation of complexes and evaluate the performance of this mechanism at different pH values. The structures of SPI-SSPS-HYP complexes were studied by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the stability was evaluated based on free radical scavenging ability, loading rate, and simulated release. The results showed that nanoparticles were subjected to non-covalent electrostatic complexation, which was affected mainly by electrostatic, hydrogen bond, and hydrophobic interactions, and the optimal encapsulation efficiency was 85.56% at pH 3.5. Encapsulated HYP retained its high antioxidant capacity. This study provides a new strategy for developing a biodegradable nanocarrier with superior encapsulation properties, enhancing the application range of HYP.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| | - Lan Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Zhen Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Jing Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Xia Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Jiang W, He S, Su D, Ye M, Zeng Q, Yuan Y. Synthesis, characterization of tuna polypeptide selenium nanoparticle, and its immunomodulatory and antioxidant effects in vivo. Food Chem 2022; 383:132405. [DOI: 10.1016/j.foodchem.2022.132405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
|
20
|
Głowacki MJ, Ficek M, Sawczak M, Wcisło A, Bogdanowicz R. Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids. Food Chem 2022; 381:132206. [PMID: 35114620 DOI: 10.1016/j.foodchem.2022.132206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Fluorescent nanodiamonds with nitrogen-vacancy centers have become important nanoscale probes for sensing and imaging. The surface chemistry of the nanodiamonds influences their emission, interactions, and quantum properties. In this work, we propose to utilize fluorescent nanodiamonds as photostable markers for investigation of comestible liquids. We prepared nanodiamond/comestibles suspensions/cocktails with a wide range of pH levels and studied the samples via fluorescence, wettability, and zeta potential. The composition of the created cocktails revealed a strong impact on the properties of the nanodiamond and its surface chemistry, mainly induced by pH but also tuned by specific quenching compounds. Moreover, the stability of the nanodiamonds in the cocktail media was studied, along with various nature-originated compounds influencing their surface termination, polarity, and charge states. Thanks to the stability and biocompatibility of the nanodiamond, it can be applied in monitoring the condition of foodstuffs, and in the detection of toxins and pathogens in them.
Collapse
Affiliation(s)
- Maciej J Głowacki
- Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland
| | - Mateusz Ficek
- Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland
| | - Mirosław Sawczak
- Polish Academy of Sciences, Szewalski Institute of Fluid-Flow Machinery, 14 Fiszera St., 80-231 Gdansk, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-952 Gdansk, Poland
| | - Robert Bogdanowicz
- Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
21
|
Impact of theaflavin soaking pretreatment on oxidative stabilities and physicochemical properties of semi-dried large yellow croaker (Pseudosciaena crocea) fillets during storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Zeng Q, Dang R, Jin Y. Improved Marinating Efficiency and Quality of Marinated Eggs by Pulsating Pressure Technology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qi Zeng
- College of Food Science and Technology Huazhong Agricultural University, National Research and Development Centre for Egg Processing Wuhan Hubei PR China
| | - Runqing Dang
- College of Food Science and Technology Huazhong Agricultural University, National Research and Development Centre for Egg Processing Wuhan Hubei PR China
| | - Yongguo Jin
- College of Food Science and Technology Huazhong Agricultural University, National Research and Development Centre for Egg Processing Wuhan Hubei PR China
| |
Collapse
|
23
|
Asena Özbek M, Çimen D, Bereli N, Denizli A. Metal-chelated polyamide hollow fiber membranes for ovalbumin purification from egg white. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123293. [DOI: 10.1016/j.jchromb.2022.123293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 12/17/2022]
|
24
|
Identification, characterization and binding sites prediction of calcium transporter-embryo egg-derived egg white peptides. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01398-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr 2022; 63:7238-7268. [PMID: 35238254 DOI: 10.1080/10408398.2022.2045471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enriched products with bioactive compounds (BCs) show the capacity to produce a wide range of possible health effects. Most BCs are essentially hydrophobic and sensitive to environmental factors; so, encapsulation becomes a strategy to solve these problems. Many globular proteins have the intrinsic ability to bind, protect, encapsulate, and introduce BCs into nutraceutical or pharmaceutical matrices. Among them, albumins as human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin (OVA) and α-lactalbumin (ALA) are widely abundant, available, and applied in many industrial sectors, becoming promissory materials to encapsulate BCs. Therefore, this review focuses on researches about the main groups of natural origin BCs (namely phenolic compounds, lipids, vitamins, and carotenoids), the different types of nanostructures based on albumins to encapsulate them and the main fields of application for BCs-loaded albumin systems. In this context, phenolic compounds (catechins, quercetin, and chrysin) are the most extensively BCs studied and encapsulated in albumin-based nanocarriers. Other extensively studied subgroups are stilbenes and curcuminoids. Regarding lipids and vitamins; terpenes, carotenoids (β-carotene), and xanthophylls (astaxanthin) are the most considered. The main application areas of BCs are related to their antitumor, anti-inflammatory, and antioxidant properties. Finally, BSA is the most used albumin to produced BCs-loaded nanocarriers.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
26
|
Tang L, Hu J, Mei S, Wu D, Zhang J, Wu W, Li H, Li H. Comparative analysis of the interaction between azobenzene di-maleimide and human serum albumin/lysozyme. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
|
28
|
Ye H, Wang J, Wang N, Wu D, Li H, Geng F. Ultrasound-assisted pH-shifting remodels egg-yolk low-density lipoprotein to enable construction of a stable aqueous solution of vitamin D3. Curr Res Food Sci 2022; 5:964-972. [PMID: 35721392 PMCID: PMC9198362 DOI: 10.1016/j.crfs.2022.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Egg-yolk low-density lipoprotein (LDL) has a natural liposome structure. Using ultrasound-assisted pH-shifting (pH 12), a naturally safe and stable aqueous solution of vitamin D3 (VD3) was constructed employing LDL as the carrier. Images from electron microscopy showed that pH-shifting remodeled LDL molecules, resulting in a dramatic reduction in particle size (∼50%) and an increase in specific surface area, which reduced the turbidity (27.7%) and provided new interfaces for VD3 loading. Fluorescence analyses showed that the binding of VD3 to LDL under pH-shifting was strong, involved quenching, and the binding constant was 6.19 × 104 M−1. Thermogravimetric analysis and Fourier transform-infrared spectroscopy showed that pH-shifting hydrolyzed the esters in LDL to fatty acid salts, and the maximum weight loss of LDL occurred from 381.9 °C to 457.0 °C. Ultrasonic treatment enhanced the binding of LDL and VD3 (binding constant increased to 2.56 × 107 M−1), reduced the particle size, and increased the ζ-potential of the complex between LDL and VD3, thereby resulting in the improvement of solution stability and storage stability of VD3. Ultrasound-assisted pH-shifting could remodel LDL to construct a stable aqueous solution of VD3, which showed the potential of LDL as a carrier for lipid-soluble components. pH-shifting remodels LDL and results in a reduction in particle size. Under pH-shifting, VD3 was bound stably to LDL with strong affinity. pH-shifting remodeled LDL can be used to encapsulate active ingredients. The binding of VD3 to LDL was enhanced by ultrasonic treatment.
Collapse
|
29
|
Mechanism of effect of heating temperature on functional characteristics of thick egg white. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Li Y, Zhang S, Bao Z, Sun N, Lin S. Explore the activation mechanism of alcalase activity with pulsed electric field treatment: Effects on enzyme activity, spatial conformation, molecular dynamics simulation and molecular docking parameters. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Wang H, Xia X, Yin X, Liu H, Chen Q, Kong B. Investigation of molecular mechanisms of interaction between myofibrillar proteins and 1-heptanol by multiple spectroscopy and molecular docking methods. Int J Biol Macromol 2021; 193:672-680. [PMID: 34710478 DOI: 10.1016/j.ijbiomac.2021.10.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
In this study, we investigated the interaction between myofibrillar proteins (MPs) and selected alcohols (1-pentanol, 1-hexanol, and 1-heptanol). Only 1-heptanol exhibited the binding ability to MPs, and the binding ability significantly increased with increasing protein concentration (p < 0.05). In addition, both static and dynamic quenching occurred during the interaction, with a red shift of the maximum absorption peak in the synchronous fluorescence spectra indicating a change in the microenvironment of the MPs. The results of circular dichroism measurements suggested that the interaction between MPs and 1-heptanol altered the secondary structure of the MPs. Furthermore, thermodynamic analysis showed that hydrogen bonding and van der Waals forces dominated the interaction between MPs and 1-heptanol, which was confirmed by the results of molecular docking/dynamics simulations. This study provides an in-depth understanding of the interaction between MPs and alcohols, which can help to improve the flavor control in meat.
Collapse
Affiliation(s)
- Haitang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyu Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
32
|
Insights into the binding interaction mechanism of 12,12-dihydrochromeno[2,3-c]isoquinolin-5-amine in bovine serum albumin and prostaglandin H2 synthase-1: A biophysical approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Wang L, Yu X, Geng F, Cheng C, Yang J, Deng Q. Effects of tocopherols on the stability of flaxseed oil-in-water emulsions stabilized by different emulsifiers: Interfacial partitioning and interaction. Food Chem 2021; 374:131691. [PMID: 34883433 DOI: 10.1016/j.foodchem.2021.131691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
The potential effects of tocopherols (100 μM in emulsions) on the physicochemical stability of whey protein isolate (WPI), soy lecithin (SL), or Tween 20 (TW) stabilized flaxseed oil (FO)-in-water emulsions were investigated. During the storage (18 days at 55 ℃), the particle size, microstructure, and multiple light scattering results showed WPI-stabilized emulsions exhibited better physical stability when tocopherols were added hydroperoxides and TBARS concentration in TW-stabilized emulsions were higher than those of SL or WPI, which were suppressed differently by tocopherols. Among homologues, δ-tocopherol was more effective in inhibiting lipid oxidation than α-tocopherol, which was related to the higher interface partitioning. Moreover, the increased interfacial tension indicated tocopherols, especially δ-tocopherol, were adsorbed on the interface and interacted with WPI or SL via hydrophobic or electrostatic interactions determined by isothermal titration calorimetry. Our results suggest tocopherols are more applicable in WPI emulsion systems to achieve steady-state delivery of ALA.
Collapse
Affiliation(s)
- Lei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China
| | - Xiao Yu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chen Cheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China
| | - Jing Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China.
| |
Collapse
|
34
|
Xing X, Chun C, Xiong F, Rui-Hai L. Influence of Sargassum pallidum and the synergistic interaction mechanism of 6-gingerol and poricoic acid A on inhibiting ovalbumin glycation. Food Funct 2021; 12:9315-9326. [PMID: 34606550 DOI: 10.1039/d1fo01886h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed to investigate the antiglycation capacity of Sargassum pallidum extract on ovalbumin (OVA) glycation, and the interaction mechanism of its active compounds, including 6-gingerol (6G) and poricoic acid A (PA). The results showed that Sargassum pallidum extract, PA and 6G had excellent suppression on the formation of fructosamine, 5-hydroxymethylfurfural (5-HMF), acrylamide and advanced glycation end products (AGEs), which was higher than aminoguanidine (AG). The combination of PA and 6G showed good synergistic effect on inhibiting the formation of AGEs. PA exhibited the strongest inhibition activity for protein glycation products, and the content of 5-HMF and acrylamide decreased from 277.44 and 10.60 μg mL-1 to 208.37 and 5.46 μg mL-1, respectively, at 30.08 × 10-5 M compared with the control group. 6G and PA quenched the fluorescence of OVA with a static mechanism, and enhanced the hydrophilic microenvironment of the tyrosine (Tyr) and tryptophan (Trp) residues. The binding of 6G and PA with OVA was spontaneous and driven by hydrogen bonds and van der Waals interactions. Molecular docking indicated that 6G and PA entered the hydrophobic cavity of OVA, and formed hydrogen bonds with Ser103, Leu101 and Thr 91. These findings suggested that Sargassum pallidum extract, PA and 6G have great potential as antiglycation inhibitors to treat diabetes complications in healthy food.
Collapse
Affiliation(s)
- Xie Xing
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Liu Rui-Hai
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
35
|
Huang Y, Xiang X, Luo X, Li X, Yu X, Li S. Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 78:105717. [PMID: 34509956 PMCID: PMC8441206 DOI: 10.1016/j.ultsonch.2021.105717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 05/07/2023]
Abstract
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaole Xiang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Xiaoying Luo
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China.
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
36
|
Wang J, Liu X, Li S, Ye H, Luo W, Huang Q, Geng F. Ovomucin may be the key protein involved in the early formation of egg-white thermal gel. Food Chem 2021; 366:130596. [PMID: 34293545 DOI: 10.1016/j.foodchem.2021.130596] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Clarification of the mechanism of heat-induced gel formation by proteins under natural food systems could provide important references for the regulation of food texture. In the present study, the proteins involved in the early stage (heating at 72 °C for 8 min) of egg-white thermal gel (EWG) formation were studied quantitatively through comparative proteomic analysis. We discovered that the abundance of ovalbumin and ovomucoid increased significantly (p < 0.01), whereas that of ovotransferrin, lysozyme, ovomucin (mucin 5B and mucin 6) decreased significantly (p < 0.01), in the supernatant of EWG. If the initial interaction of egg white proteins was altered by ultrasonic pretreatment, the abundance of ovomucin and lysozyme in the supernatant of EWG increased, and was accompanied by the change from a solid gel to a fluid gel. Based on these results, we hypothesize that ovomucin has a key role in the formation and regulation of EWG properties.
Collapse
Affiliation(s)
- Jinqiu Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Liu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shugang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongliang Ye
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Luo
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qun Huang
- College of Food Science, Guizhou Medical University, Guiyang 550025, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
37
|
Fu L, Liu G, Zhao D, Yuan L, Lu K. Interaction of two peptide drugs with biomacromolecules analyzed by molecular docking and multi-spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119673. [PMID: 33751958 DOI: 10.1016/j.saa.2021.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Peptide drugs, which are mainly used for the treatment of AIDS, myeloma, and breast cancer, have evolved rapidly owing to their high efficacy and low side effects. The interaction mechanisms of two peptide drugs with two biological macromolecules (protein and DNA), which are of great significance in disease prevention and drug design, were investigated using molecular docking, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, UV-visible spectroscopy and viscosity measurements. The interaction between a series of common drugs and ovalbumin (OVA) was simulated by molecular docking, and two peptide drugs with the highest energy values, namely atazanavir and carfilzomib, were selected; the binding energy values of these drugs with OVA were -59.20 and -55.93 kcal/mol, respectively. The Kb values of the interaction of the two drugs with OVA/DNA were in the range of 104-107 M-1, and the binding affinity of the drugs was stronger with OVA than with DNA. Hydrogen bonds and van der Waals forces were very important for the binding between drugs and OVA through molecular docking studies, and it was consistent with experimental results (ΔH < 0, ΔH < 0). The synchronous fluorescence spectrum showed that the interaction caused a change to the original structure of OVA, and atazanavir had a greater effect on OVA than carfilzomib. CD spectrum analysis also demonstrated that the conformation of OVA changed slightly. The interaction between atazanavir and DNA was mainly driven by hydrophobic forces (ΔH > 0 and ΔH > 0), whereas the major interaction forces involved in the binding of carfilzomib with DNA were hydrogen bonds and van der Waals forces. DNA melting studies, UV-visible spectroscopy, CD spectroscopy and viscosity measurements established that the interaction between the drugs and DNA was groove binding.
Collapse
Affiliation(s)
- Linna Fu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Guangbin Liu
- Chemical College, Zhengzhou University, Zhengzhou 450001, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China.
| |
Collapse
|
38
|
Ligand binding constants for human serum albumin evaluated by ratiometric analysis of DSC thermograms. Anal Biochem 2021; 628:114293. [PMID: 34181905 DOI: 10.1016/j.ab.2021.114293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
This paper describes an expanded application of our recently reported method (Eskew et al., Analytical Biochemistry 621,1 2021) utilizing thermogram signals for thermal denaturation measured by differential scanning calorimetry. Characteristic signals were used to quantitatively evaluate ligand binding constants for human serum albumin. In our approach the ensemble of temperature dependent calorimetric responses for various protein-ligand mixtures and native HSA were compared, in a ratiometric manner, to extract binding constants and stoichiometries. Protein/ligand mixtures were prepared at various ligand concentrations and subjected to thermal denaturation analysis by calorimetry. Measurements provided the melting temperature, Tm, and free-energy ΔGcal(37°C) for melting ligand-bound Albumin as a function of ligand concentration. Concentration dependent behaviors of these parameters derived from protein/ligand mixtures were used to construct dose-response curves. Fitting of dose-response curves yielded quantitative evaluation of the ligand binding constant and semi-quantitative estimates of the binding stoichiometry. Many of the ligands had known binding affinity for Albumin with binding constants reported in the literature. Evaluated binding parameters for the ligands impressively agreed with reported literature values determined using other standard experimental methods. Results are reported for 29 drug ligands binding to Albumin. These validate our calorimetry-based process for applications in pre-clinical drug screening.
Collapse
|
39
|
Wu D, Tang L, Duan R, Hu X, Geng F, Zhang Y, Peng L, Li H. Interaction mechanisms and structure-affinity relationships between hyperoside and soybean β-conglycinin and glycinin. Food Chem 2021; 347:129052. [PMID: 33482484 DOI: 10.1016/j.foodchem.2021.129052] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022]
Abstract
Hyperoside (HYP) is an important natural product that is widely distributed in fruits and whole grasses of various plants. It is also used by consumers as a healthy ingredient. This work explored the interaction mechanisms between HYP and two main soy proteins, namely, β-conglycinin (7S) and glycinin (11S), using computational simulation and multi-spectroscopic technology. In this study, the docking and dynamic simulation showed that HYP was stable in the hydrophobic pockets of the proteins. The conformation and microenvironment of 7S/11S also changed after binding to HYP. The binding of HYP to 7S/11S was a state quenching with a good affinity at 4 °C. This result was determined from the binding constant values of (1.995 ± 0.170) × 107 M-1 and (2.951 ± 0.109) × 107 M-1, respectively. The 7S/11S-HYP complex delineated here will provide a novel idea to construct an embedding and delivery system in improving the benefits of HYP for the development of high value-added food products.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| | - Lan Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Ran Duan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Xia Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Kumar RR, Bhargava DV, Pandit K, Goswami S, Mukesh Shankar S, Singh SP, Rai GK, Tara Satyavathi C, Praveen S. Lipase - The fascinating dynamics of enzyme in seed storage and germination - A real challenge to pearl millet. Food Chem 2021; 361:130031. [PMID: 34058661 DOI: 10.1016/j.foodchem.2021.130031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022]
Abstract
Pearl millet is considered as 'nutri-cereal' because of high nutrient density of the seeds. The grain has limited use because of low keeping quality of the flour due to the activities of rancidity causing enzymes like lipase, lox, pox and PPO. Among all the enzymes, lipase is most notorious because of its robust nature and high activity under different conditions. we have identified 2180 putative transcripts showing homology with different variants of lipase precursor through transcriptome data mining (NCBI BioProject acc. no. PRJNA625418). Lipase plays dual role of facilitating the germination of seeds and deteriorating the quality of the pearl millet flour through hydrolytic rancidity. Different physiochemical methods like heat treatment, micro oven, hydrothermal, etc. have been developed to inhibit lipase activity in pearl millet flour. There is further need to develop improved processing technologies to inhibit the hydrolytic and oxidative rancidity in the floor with enhanced shelf-life.
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India.
| | - D V Bhargava
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Kangkan Pandit
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - S Mukesh Shankar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Sumer P Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Gyanendra K Rai
- Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, Pin 180009, India
| | - C Tara Satyavathi
- All India Coordinated Research Project on Pearl Millet, Jodhpur, Rajasthan Pin 342304, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India.
| |
Collapse
|
41
|
Wu D, Duan R, Tang L, Hu X, Geng F, Sun Q, Zhang Y, Li H. Binding mechanism and functional evaluation of quercetin 3-rhamnoside on lipase. Food Chem 2021; 359:129960. [PMID: 33945987 DOI: 10.1016/j.foodchem.2021.129960] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
The interaction between lipase and quercetin 3-rhamnoside was studied by fluorescence spectroscopy, enzyme kinetics, and molecular dynamics simulation. The results showed that quercetin 3-rhamnoside had a strong quenching effect on the intrinsic fluorescence of lipase. The binding constant decreased with increasing temperature, and the number of binding sites approached 1. Thermodynamic parameters indicated that hydrogen bonding and van der Waals forces are the dominant forces when the interaction occurs. Circular dichroism spectroscopy and infrared spectroscopy proved that the ligand perturbed the structure of lipase. Enzyme kinetics results showed that quercetin 3-rhamnoside inhibited lipase, and the inhibitory effect was dose-dependent. Molecular dynamics simulation further explained the interaction mechanism and inhibitory effect. This study confirmed the inhibitory effect of quercetin 3-rhamnoside on lipase explained their binding mechanism, which will contribute to guiding the development of fat-reducing functional foods.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| | - Ran Duan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Lan Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Xia Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Qiaomei Sun
- College of Chemical Engineering, Sichuan University, Chengdu 610010, China
| | - Yin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu 610010, China
| |
Collapse
|
42
|
Microwave pretreatment enhanced the properties of ovalbumin-inulin-oil emulsion gels and improved the storage stability of pomegranate seed oil. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106548] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Geng F, Xie Y, Wang Y, Wang J. Depolymerization of chicken egg yolk granules induced by high-intensity ultrasound. Food Chem 2021; 354:129580. [PMID: 33756312 DOI: 10.1016/j.foodchem.2021.129580] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
The effects of high-intensity ultrasound (HIU) treatment-induced depolymerization of chicken egg yolk granules were investigated. The results showed that the yolk granules were depolymerized after HIU treatment, and the average particle size was significantly reduced from 289.4 nm (untreated) to 181.4 nm (270-W HIU treatment). All contents of dry matter, protein, calcium and phosphorus in the supernatant of the HIU-treated yolk granule solution increased, which suggests that HIU treatment increases the dissolution of yolk granule components. Spectroscopic analysis showed that HIU treatment increased the polarity of the microenvironment and enhanced the hydrogen bond force of yolk granules. These changes induced by HIU treatment collectively enhanced the zeta potential, decreased the free sulfhydryl group content, and slightly improved the emulsifying activity index of yolk granules. The present study reveals the depolymerization effect of HIU treatment on egg yolk granules and can inspire new potential applications of egg yolk granules.
Collapse
Affiliation(s)
- Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yunxiao Xie
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
44
|
Pseudosterase activity-based specific detection of human serum albumin on gel. Talanta 2021; 224:121906. [PMID: 33379110 DOI: 10.1016/j.talanta.2020.121906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Human serum albumin (HSA) has pseudoesterase activity. So far on gel specific detection of such property of HSA is never reported. Moreover, protein binding dyes are non-specific for albumin. However, many of such dyes are used for HSA detection. So, dye-based albumin detection on the gel is expected to generate false-positive results for HSA. In this context, we have discovered that Fast Blue BB (FBBB, 0.12%) stains specifically HSA pseudoesterase activity with 2 Naphthyl acetate (2NA) as an ester substrate. Further, neostigmine has not inhibited the pseudoesterase activity associated with HSA. Neostigmine is a known inhibitor of many true esterases like acetylcholinesterase. So, neostigmine addition offers specificity to the method developed for staining of HSA. Additionally, 2NA stains HSA better than bovine serum albumin (BSA). Exploring all these novel findings, we have devised a simple method of HSA detection on the gel, accurately where other esterases are not detected. To the best of our knowledge, our method is the first to detect HSA pseudoesterase activity specifically on gel without getting interfered by any other esterase activity. The method detects HSA better than BSA. We feel that this method will go a long way for the specific detection of HSA on the gel. It is also relevant for understanding the purity of donor human milk matrix and pharmaceutical preparation of HSA. Our method can detect 7 μM of added HSA in human urine. Therefore, our method can be proceeded further for microalbuminuria detection in days to come.
Collapse
|
45
|
Zhao M, Bai J, Bu X, Yin Y, Wang L, Yang Y, Xu Y. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr Polym 2021; 259:117729. [PMID: 33673993 DOI: 10.1016/j.carbpol.2021.117729] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 01/22/2023]
Abstract
The polysaccharide from Ribes nigrum L. (RCP) was modified by nitric acid-sodium selenite method. After purification by Sepharose-6B, high purity native (PRCP) and three selenized polysaccharides (PRSPs) with different selenium contents were obtained. Compared with PRCP, PRSPs possessed the lower molecular weight, better water-solubility, physical stability and rheological properties. FT-IR and NMR spectra confirmed PRSPs had the characteristic absorption peaks of polysaccharides and the glycosidic bond types were not changed after selenylation modification, whereas the selenyl groups existing in PRSPs were mainly introduced at the C-6 position of sugar residue →4)-β-d-Manp-(1→. Moreover, PRSPs displayed obviously smoother and smaller flaky structure than PRCP, and their inhibitory effects on α-amylase and α-glucosidase also were greater than PRCP. PRSPs exhibited a reversible inhibition on two enzymes in competitive manner and quenched their fluorescence through the static quenching mechanism. The polysaccharide-enzyme complex was spontaneously formed mainly driven by the hydrophobic interaction and hydrogen bonding.
Collapse
Affiliation(s)
- Meimei Zhao
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xueying Bu
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuting Yin
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Libo Wang
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Yaqin Xu
- College of Art and Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
46
|
Moccia F, Martín MÁ, Ramos S, Goya L, Marzorati S, DellaGreca M, Panzella L, Napolitano A. A new cyanine from oxidative coupling of chlorogenic acid with tryptophan: Assessment of the potential as red dye for food coloring. Food Chem 2021; 348:129152. [PMID: 33515953 DOI: 10.1016/j.foodchem.2021.129152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
A red pigment was prepared by reaction of chlorogenic acid (CGA) with tryptophan (TRP) in air at pH 9 (37% w/w yield) and evaluated as food dye. The main component of pigment was formulated as an unusual benzochromeno[2,3-b]indole linked to a TRP unit, featuring a cyanine type chromophore (λmax 542, 546 nm, 1% extinction coefficient of the sodium salt = 244 ± 2). The chromophore showed a minimal pH dependence and proved stable for at least 3 h at 90 °C, both at pH 3.6 or 7.0, whereas red wine anthocyanins showed a substantial (30%) and betanin a complete abatement after 1 h at the acidic pHs. An intense coloring of different food matrices was obtained with the pigment at 0.01 % w/w. No toxicity was observed up to 0.2 mg/mL on hepatic and colonic cell lines. These data make this dye a promising alternative for red coloring of food.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Sonia Ramos
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Luis Goya
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Stefania Marzorati
- Department of Environmental Science and Policy, via Celoria 2, University of Milan, 20133 Milano, Italy.
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
47
|
Li Z, Zhu J, Wan Z, Li G, Chen L, Guo Y. Theaflavin ameliorates renal ischemia/reperfusion injury by activating the Nrf2 signalling pathway in vivo and in vitro. Biomed Pharmacother 2020; 134:111097. [PMID: 33341051 DOI: 10.1016/j.biopha.2020.111097] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 01/14/2023] Open
Abstract
Studies have demonstrated that oxidaive stress-induced apoptosis may be the main pathogenic mechanism of renal ischemia/reperfusion (I/R) injury. Theaflavin, a polyphenolic compound extracted from black tea, has been proven to exert strong antioxidant biological function. The objective of the present study was to investigate the potential role of theaflavin on renal I/R injury and its potential molecular mechanism both in vitro and in vivo. C57/BL6 J mice were used to create a model of I/R injury wherein mice were ligated with bilateral renal pedicles for 45 min, and then reperfused for 24 h. A hypoxia/reoxygenation (H/R) model of TCMK-1 cells was used to simulate I/R in vitro. Theaflavin were administered to the treatment group first and then established the model. Kidney Injury Molecule-1 (KIM-1), serum creatinine, urea nitrogen, and 24-h urinary protein levels were evaluated and changes in mitochondrial membrane potential and the ultrastructure of mitochondria were observed. Cell viability, oxidative stress damage, and apoptosis were assessed. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes HO-1 and NQO1 were evaluated. Our results revealed that pretreatment with theaflavin significantly inhibited I/R- and H/R-induced renal injury and cell apoptosis. Theaflavin improved mitochondrial dysfunction by attenuating mitochondrial damage and promoting mitochondrial membrane potential. Theaflavin pretreatment significantly reduced malondialdehyde content, while enhancing superoxide dismutase activity in vivo and in vitro. It also reduced oxidative stress and apoptosis mainly by upregulating Nrf2 and its downstream targets in TCMK-1 cells. Thus, theaflavin exerted a protective effect against renal I/R injury by inhibiting oxidative stress and apoptosis via activation of the Nrf2-NQO1/HO-1 pathway as well as correcting mitochondrial dysfunction, thereby presenting its potential as a clinical therapeutic in cases of acute kidney injury.
Collapse
Affiliation(s)
- Zhongyuan Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianning Zhu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhihua Wan
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guohao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Chen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yonglian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Xiao J, Wang J, Cheng L, Gao S, Li S, Qiu N, Li H, Peng L, Geng F. A puzzle piece of protein N-glycosylation in chicken egg: N-glycoproteome of chicken egg vitelline membrane. Int J Biol Macromol 2020; 164:3125-3132. [PMID: 32860793 PMCID: PMC7448747 DOI: 10.1016/j.ijbiomac.2020.08.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
The chicken egg vitelline membrane (CEVM) is an important structure for the transmembrane transport of egg yolk components, protection of the blastodisc, and separation of egg white and egg yolk. In this study, the N-glycoproteome of the CEVM was mapped and analyzed in depth. Total protein of the CEVM was digested, and the glycopeptides were enriched by a hydrophilic interaction liquid chromatography microcolumn and identified by nano liquid chromatography/tandem mass spectrometry. A total of 435 N-glycosylation sites on 208 N-glycoproteins were identified in CEVM. Gene Ontology enrichment analysis showed that CEVM N-glycoproteins are mainly involved in the regulation of proteinases/inhibitors and transmembrane transport of lipids. Mucin-5B is the primary N-glycoprotein in the CEVM. Comparison of the main N-glycoproteins between the CEVM and other egg parts revealed the tissue specificity of N-glycosylation of egg proteins. The results provide insights into protein N-glycosylation in the chicken egg, CEVM functions and underlying mechanisms.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
49
|
Quantitative N-glycoproteomic analyses provide insights into the effects of thermal processes on egg white functional properties. Food Chem 2020; 342:128252. [PMID: 33067044 DOI: 10.1016/j.foodchem.2020.128252] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/22/2022]
Abstract
This study tries to elucidate the different mechanisms of functional properties among pasteurized egg white (P-EW), spray-dried egg white (SD-EW) and fresh egg white (F-EW) via quantitative N-glycoproteomic analyses. The results showed that spray-drying increased the surface hydrophobicity (181.4%) and zeta potential (25.6%) of egg white, which contributed to the enhancement of emulsifying activity index (20.1%) and foaming capacity (35.2%). Pasteurization caused the disintegration of natural protein aggregates in F-EW and resulted in a "block-like" P-EW gel and higher water holding capacity (6.2%). Spray-drying caused formation of thermal aggregates and led to a "mesh-like" SD-EW gel and better cohesiveness (3.6%). Quantitative N-glycoproteomic analysis showed that the abundance of 32 N-glycosites from 18 N-glycoproteins (such as Mucin 5B) of SD-EW was significantly reduced comparing to F-EW, indicated that the N-glycans of egg white protein are likely to be covalently cross-linked during spray-drying and are involved in thermal aggregation.
Collapse
|
50
|
Qu Z, Liu C, Li P, Xiong W, Zeng Z, Liu A, Xiao W, Huang J, Liu Z, Zhang S. Theaflavin Promotes Myogenic Differentiation by Regulating the Cell Cycle and Surface Mechanical Properties of C2C12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9978-9992. [PMID: 32830510 DOI: 10.1021/acs.jafc.0c03744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aging and muscle diseases often lead to a decline in the differentiation capacity of myoblasts, which in turn results in the deterioration of skeletal muscle (SkM) function and impairment of regeneration ability after injury. Theaflavins, the "gold molecules" found in black tea, have been reported to possess various biological activities and have a positive effect on maintaining human health. In this study, we found that among the four theaflavins (theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3) monomers), TF1 (20 μM) significantly promoted the fusion index of myoblasts, number of mature myotubes, and degree of myotube development. By combining transcriptomics, bioinformatics, and molecular biology experiments, we showed that TF1 may promote myoblast differentiation by (1) regulating the withdrawal of myoblasts from the cell cycle, inducing the release of myogenic factors (MyoD, MyoG, and MyHC) and accelerating myogenic differentiation and (2) regulating the adhesion force of myoblasts and mechanical properties of mature myotubes and promoting the migration, fusion, and development of myoblasts. In conclusion, our study outcomes show that TF1 can promote myoblast differentiation and regulate myotube mechanical properties. It is a potential dietary supplement for the elderly. Our findings provide a new scientific basis for the relationship between tea drinking and aging.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Penghui Li
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|