1
|
Li X, Sun S, Liu J, Zheng M, Cai D, Liu H, Liu J. Influence of static magnetic field pretreatment on the structure, physicochemical and functional properties of dietary fiber in corn sprouts. Food Chem 2025; 477:143524. [PMID: 40020620 DOI: 10.1016/j.foodchem.2025.143524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Dietary fiber (DF) from corn sprouts, subjected to pretreatment with static magnetic field (SMF), was systematically investigated for its structural and functional characteristics using an enzymatic method. After SMF treatment, the surface of soluble DF showed higher pore density and pore structures, and insoluble DF showed more folds and a concave-convex surface profile. FT-IR and thermogravimetric analyses also showed that SMF pretreatment improved the functional group structure and thermal stability of DFs in corn sprouts. Moreover, SMF pretreatment improved the inhibitory effects on α-amylase and α-glucosidase activities, as well as increased water holding, oil holding, and water swelling capacities. Compared to the untreated corn sprouts, the DF obtained from SMF treatment exhibited stronger antioxidant activity. In summary, these findings suggest that SMF pretreatment enhances the physicochemical and functional properties of DF derived from corn sprouts. It suggests that SMF can serve as a prospective technique for corn sprouts products processing.
Collapse
Affiliation(s)
- Xuenan Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Shijie Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jiawen Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
2
|
Lei H, Zhang Y, Guan T, Liu M, Li Z, Liu J, Zhao J, Liu T. Modification of black soybean (Glycine max(L.)merr.) residue insoluble dietary fiber with ultrasonic, microwave, high temperature and high-pressure, and extrusion. Food Chem 2025; 473:143020. [PMID: 39864176 DOI: 10.1016/j.foodchem.2025.143020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions. Notably, HPIDF treated under high-temperature and high-pressure conditions exhibited the highest adsorption capacities: 9.86 mmol/g for glucose, 8.69 mg/g (pH 2) and 9.69 mg/g (pH 7) for cholesterol, 0.183 g/g (pH 2) and 0.127 g/g (pH 7) for sodium cholate, and 0.699 mg/g (pH 2) and 0.774 mg/g (pH 7) for Cr2+.
Collapse
Affiliation(s)
- Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Tianci Guan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Mengge Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zhiming Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
3
|
Chowdhury MAH, Sarkar F, Reem CSA, Rahman SM, Mahamud AGMSU, Rahman MA, Md Ashrafudoulla. Enzyme applications in baking: From dough development to shelf-life extension. Int J Biol Macromol 2024; 282:137020. [PMID: 39489247 DOI: 10.1016/j.ijbiomac.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Enzymes play a vital role in baking, providing significant benefits from dough development to extending shelf life, which enhances product quality and consistency. Acting as biological catalysts, enzymes such as proteases and amylases break down proteins and starches, modifying dough rheology and improving fermentation. Lipases and oxidases further refine dough texture through emulsification and oxidation, while lipases also produce fatty acid derivatives during fermentation, contributing to the flavor and aroma of baked goods. Xylanases and cellulases optimize dough handling by altering fiber structure, and amylases help maintain moisture and texture, extending the shelf life of baked products. Ensuring regulatory compliance is essential when incorporating enzymes into baking processes, as bakers must address enzyme stability and determine appropriate dosages for reliable outcomes. Ongoing research is exploring innovative enzyme applications, including customized enzyme blends that target specific product qualities, offering new possibilities for product differentiation and innovation. In summary, enzyme-driven advancements present bakers with opportunities to improve product quality, shelf life, and consistency, while meeting industry regulations. This review emphasizes the critical impact enzymes have on dough properties and finished product characteristics, highlighting their role in driving future innovations within the baking industry.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Feroj Sarkar
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Sk Mustafizur Rahman
- Department of Nutrition and Food Engineering, Daffodil International University, Birulia 1216, Bangladesh
| | - A G M Sofi Uddin Mahamud
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | | |
Collapse
|
4
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2024; 64:11722-11756. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
5
|
Li M, Ma S. A review of healthy role of dietary fiber in modulating chronic diseases. Food Res Int 2024; 191:114682. [PMID: 39059940 DOI: 10.1016/j.foodres.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Dietary fiber (DF) is considered an interventional diet beneficial for human health. High DF intake effectively reduces the incidence of three major chronic diseases, type 2 diabetes (T2DM), cardiovascular disease (CVD), and colorectal cancer (CRC). The health benefits of DF are closely related to their physicochemical properties with major positive roles in human digestion and intestinal health. However, mechanisms linking DF with diseases remain unclear. The development of genomics, metabolomics, and immunology, and the powerful combination of animal models and clinical trials, have facilitated a better understanding of the relationships between DF and diseases. Accumulating evidence suggests that the physical existence of DF and DF-microbiota interaction are the key parameters controlling the action mechanisms of DF in chronic diseases. Therefore, this review discusses the potential mechanism of DF modulating T2DM, CVD, and CRC, therefore providing a theoretical basis for more effective use of DF to intervene in chronic diseases.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
6
|
Han P, Tian X, Wang H, Ju Y, Sheng M, Wang Y, Cheng D. Purslane (Portulacae oleracea L.) polysaccharide relieves cadmium-induced colonic impairments by restricting Cd accumulation and inhibiting inflammatory responses. Int J Biol Macromol 2024; 257:128500. [PMID: 38040149 DOI: 10.1016/j.ijbiomac.2023.128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
This study aimed to assess the protective effects of purslane polysaccharide (PP) on colonic impairments in mice exposed to cadmium (Cd). C57BL/6 mice were administered with PP (200-800 mg/kg/day) by gavage for 4 weeks after treatment with 100 mg·L-1 CdCl2. PP significantly reduced Cd accumulation in the colon tissue and promoted the excretion of Cd in the feces. PP could reduce the expression levels of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6) and inhibit the activation of the TLR4/MyD88/NF-κB signaling pathway. In addition, the results of 16S rRNA analysis revealed that PP significantly increased the abundance of probiotics (Lactobacillus), while decreased the abundance of pathogenic bacteria (Lachnospiraceae_NK4A136_group). Following the augmentation of beneficial intestinal bacteria, the treatment with PP led to an increase in the levels of intestinal microbial metabolites, specifically short-chain fatty acids (SCFAs). The SCFAs are known for their anti-inflammatory properties, immune-regulatory effects, and promotion of intestinal barrier function. Additionally, the results suggested that PP effectively impeded the enterohepatic circulation by inhibiting the FXR-FGF15 axis in the intestines of Cd-exposed mice. In summary, PP mitigated the toxic effects of Cd by limiting its accumulation and suppressing inflammatory responses in colon.
Collapse
Affiliation(s)
- Pengyun Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haozhe Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mian Sheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Chen J, Zhao X, Li S, Chen Z. Ordered structural changes of retrograded instant rice noodles during the long-term storage. Food Res Int 2024; 175:113727. [PMID: 38129042 DOI: 10.1016/j.foodres.2023.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Temperature-induced textural, cooking properties and structural variations of retrograded instant rice noodles (IRN) during the long-term storage were systematically investigated. IRN samples stored at 4 °C exhibited a relative high cooking loss (2.45 %), and their hardness values gradually increased with prolonged storage. Moreover, the higher storage temperature (35 °C) accelerated the deterioration of IRN texture. Fresh IRN displayed a typical B-type XRD pattern with 9.65 % relative crystallinity (RC). During the initial 2 weeks of storage, the formation of a long-range ordered structure led to an increase in RC, which was closely related to the duration and temperature of storage (ranging from 4 °C to 25 °C to 35 °C). Over the 12-week storage period, there was likely a disorganization of the supra-molecular structure, as evidenced by the considerably decreased RC and reduced water mobility. Furthermore, Pearson's correlation analysis highlighted that the tight integration between starch molecules and water molecules endowed IRN samples with enhanced smoothness and tenderness in flavor profiles. Hence, the study is expected to provide a comprehensive understanding of the mechanisms underlying molecular order changes in retrograded starch gel products during the long-term storage.
Collapse
Affiliation(s)
- Jin Chen
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Zhao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shiqi Li
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhigang Chen
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Fernandes A, Mateus N, de Freitas V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023; 12:1052. [PMID: 36900569 PMCID: PMC10000549 DOI: 10.3390/foods12051052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the past few years, numerous studies have investigated the correlation between polyphenol intake and the prevention of several chronic diseases. Research regarding the global biological fate and bioactivity has been directed to extractable polyphenols that can be found in aqueous-organic extracts, obtained from plant-derived foods. Nevertheless, significant amounts of non-extractable polyphenols, closely associated with the plant cell wall matrix (namely with dietary fibers), are also delivered during digestion, although they are ignored in biological, nutritional, and epidemiological studies. These conjugates have gained the spotlight because they may exert their bioactivities for much longer than extractable polyphenols. Additionally, from a technological food perspective, polyphenols combined with dietary fibers have become increasingly interesting as they could be useful for the food industry to enhance technological functionalities. Non-extractable polyphenols include low molecular weight compounds such as phenolic acids and high molecular weight polymeric compounds such as proanthocyanidins and hydrolysable tannins. Studies concerning these conjugates are scarce, and usually refer to the compositional analysis of individual components rather than to the whole fraction. In this context, the knowledge and exploitation of non-extractable polyphenol-dietary fiber conjugates will be the focus of this review, aiming to access their potential nutritional and biological effect, together with their functional properties.
Collapse
Affiliation(s)
- Ana Fernandes
- Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
9
|
Soy-based yogurt-alternatives enriched with brewers’ spent grain flour and protein hydrolysates: Microstructural evaluation and physico-chemical properties during the storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
10
|
Aghajanzadeh S, Fayaz G, Soleimanian Y, Ziaiifar AM, Turgeon SL, Khalloufi S. Hornification: Lessons learned from the wood industry for attenuating this phenomenon in plant-based dietary fibers from food wastes. Compr Rev Food Sci Food Saf 2023; 22:4-45. [PMID: 36199175 DOI: 10.1111/1541-4337.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
A significant amount of waste is annually generated worldwide by the supply chain of the food industry. Considering the population growth, the environmental concerns, and the economic opportunities, waste recovery is a promising solution to produce valuable and innovative ingredients for food and nonfood industries. Indeed, plant-based wastes are rich in dietary fibers (DF), which have relevant technical functionalities such as water/oil holding capacity, swelling capacity, viscosity, texture, and physiological properties such as antioxidant activity, cholesterol, and glucose adsorption capacities. Different drying technologies could be applied to extend the shelf life of fresh DF. However, inappropriate drying technologies or process conditions could adversely affect the functionalities of DF via the hornification phenomenon. Hornification is related to the formation of irreversible hydrogen bindings, van der Waals interactions, and covalent lactone bridges between cellulose fibrils during drying. This review aims to capitalize on the knowledge developed in the wood industry to tackle the hornification phenomenon occurring in the food industry. The mechanisms and the parameters affecting hornification as well as the mitigation strategies used in the wood industry that could be successfully applied to foods are summarized. The application of conventional drying technologies such as air or spray-drying increased the occurrence of hornification. In contrast, solvent exchange, supercritical drying, freeze-drying, and spray-freeze-drying approaches were considered effective strategies to limit the consequences of this phenomenon. In addition, incorporating capping agents before drying attenuated the hornification. The knowledge summarized in this review can be used as a basis for process design in the valorization of plant-based wastes and the production of functional DF that present relevant features for the food and packaging industries.
Collapse
Affiliation(s)
- Sara Aghajanzadeh
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Goly Fayaz
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Yasamin Soleimanian
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| | - Aman Mohammad Ziaiifar
- Food Process Engineering Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sylvie L Turgeon
- Institute of Nutrition and functional foods, Laval University, Québec, Canada.,Food Science Department, Laval University, Québec, Canada
| | - Seddik Khalloufi
- Soils Science and Agri-Food Engineering Department, Laval University, Québec, Canada.,Institute of Nutrition and functional foods, Laval University, Québec, Canada
| |
Collapse
|
11
|
Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010179. [PMID: 36615374 PMCID: PMC9822054 DOI: 10.3390/molecules28010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
This work explores the potential of Rocha do Oeste pear pomace to be used as a sustainable and healthy food ingredient. Moreover, the enrichment with yeast protein extract (YPE) may be useful to design innovative food products. The main goals of this study were to assess pear pomace concerning: (i) chemical composition and antioxidant capacity; (ii) rheology, texture, and microstructure characterization (alone or enriched with YPE), before and after heating. The results showed that pear pomace was a rich source of dietary fibers (74.5% DW), with phenolic compounds (3.9 mg chlorogenic acid equivalents/g dry weight), also presenting antiradical activity (3.90 μmol Trolox equivalents/g DW). Pear pomace showed a shear thinning behavior and a typical soft-gel behavior, which was not affected by YPE enrichment, thus suggesting that YPE did not affect pear pomace technological properties. Thermal treatment also did not alter pear pomace rheological properties. YPE addition induced a decrease in the apparent viscosity and a destabilizing effect, compared to the samples that were subjected to thermal processing. These results highlight the importance of pear pomace and the use of YPE for protein enrichment, opening new opportunities for their exploitation.
Collapse
|
12
|
Dapčević-Hadnađev T, Tomić J, Škrobot D, Šarić B, Hadnađev M. Processing strategies to improve the breadmaking potential of whole-grain wheat and non-wheat flours. DISCOVER FOOD 2022. [PMCID: PMC8890466 DOI: 10.1007/s44187-022-00012-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strategies to increase the bio-functionality of staple food, such as bread, by incorporating whole-grain wheat flour or flour from other, non-wheat grains instead of refined wheat flour are often constrained with the lack of their techno-functionality, despite the associated beneficial effect on consumers' health and well-being. Most of the available studies investigating the possibilities to improve technological and sensory quality of bread prepared using whole-grain wheat and non-wheat flours still rely on formulation approaches in which different additives and novel ingredients are used as structuring agents. Less attention has been given to technological approaches which could be applied to induce structural changes on biopolymer level and thus increase the breadmaking potential of whole grains such as: modification of grain and biopolymers structure by germination, flour particle size reduction, dry-heat or hydrothermal treatment, atmospheric cold plasma, high-pressure processing or ultrasound treatment. Strategies to modify processing variables during breadmaking like dough kneading and hydration modification, sourdough fermentation or non-conventional baking techniques application are also poorly exploited for bread preparation from non-wheat grains. In this paper, the challenges and opportunities of abovementioned processing strategies for the development of bread with whole-wheat flours and non-wheat flours from underutilised gluten-containing or gluten-free cereals and pseudocereals will be reviewed throughout the whole breadmaking chain: from grain to bread and from milling to baking. Feasibility of different strategies to increase the technological performance and sensory quality of bread based on whole-grain wheat flours or flours from other, non-wheat grains will be addressed considering both the environmental, safety and nutritive advantages.
Collapse
Affiliation(s)
- Tamara Dapčević-Hadnađev
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Tomić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Dubravka Škrobot
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Bojana Šarić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Miroslav Hadnađev
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
13
|
Wieczorek M, Kowalczewski P, Drabińska N, Różańska M, Jeleń H. Effect of Cricket Powder Incorporation on the Profile of Volatile Organic Compounds, Free Amino Acids and Sensory Properties of Gluten-Free Bread. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/156404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Graça C, Raymundo A, Sousa I. Yogurt and curd cheese as alternative ingredients to improve the gluten-free breadmaking. Front Nutr 2022; 9:934602. [PMID: 36407545 PMCID: PMC9672681 DOI: 10.3389/fnut.2022.934602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/16/2022] [Indexed: 08/13/2023] Open
Abstract
Gluten-free products are on today's agenda since they represent the most hastily growing segments in the market, representing an opportunity for food companies. Nevertheless, it is well-known that gluten is a crucial network structure in the wheat dough systems, which accounts for the overall desired technological features of the final bakery goods. Therefore, the absence of gluten negatively affects the characteristics of gluten-free bread, triggering a technological challenge in the manufacturing of products with resembled characteristics of wheat-derived counterparts. The search for new protein sources has been studied as an approach to circumvent the technological drawbacks of gluten removal. Dairy proteins are functional molecules that can likely be capable of building up a protein-network structure so that it would improve the technological properties of gluten-free products. In the present work, different levels of dairy product addition (10 and 20%, w/w) were used to supplement the gluten-free bread formulas, and the impact on dough rheology properties was well correlated to the bread technological quality parameters obtained. Linear correlations (R 2 > 0.904) between steady shear (viscosity) and oscillatory (elastic and viscous moduli) values of the dough rheology with bread quality parameters (volume and firmness) were obtained, suggesting that the bread quality improvements are proportional to the levels of dairies added. Likewise, strong linear correlations (R 2 > -0.910) between pasting properties parameters and bread staling rate supported the hypothesis that the dairies tested have a high potential to generate bread with a low staling rate, which is an advantage to extending the shelf-life. In short, results confirmed that the addition of both dairy products, as bakery ingredients, can constitute a technological advantage to improve the overall gluten-free bread quality.
Collapse
Affiliation(s)
- Carla Graça
- LEAF – Linking Landscape, Environment, Agriculture and Food Research Center of Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anabela Raymundo
- LEAF – Linking Landscape, Environment, Agriculture and Food Research Center of Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sousa
- LEAF – Linking Landscape, Environment, Agriculture and Food Research Center of Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Martins RB, Gouvinhas I, Nunes MC, Ferreira LM, Peres JA, Raymundo A, Barros AI. Acorn flour from holm oak (Quercus rotundifolia): Assessment of nutritional, phenolic, and technological profile. Curr Res Food Sci 2022; 5:2211-2218. [PMID: 36419742 PMCID: PMC9676148 DOI: 10.1016/j.crfs.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Acorn is the fruit of holm oak (Quercus rotundifolia), being mainly used nowadays to feed animals, however a substantial part remains in the fields without any valorization. Underexploited crops are gaining new interest, driven by food security concerns and health benefits potential as well. In the present work, it was studied the physicochemical characteristics and functional perspective of acorn flour, as an ingredient for human diet. The study included nutritional composition analysis, phenolic compounds profile through HPLC, starch content and its microstructure, fibre, and pasting properties assessment. Acorn flour presented a high content in fat, particularly monounsaturated and polyunsaturated (oleic and linoleic acids), and high minerals content in particular K. Concerning phenolic profile, rutin, catechin, ellagic acid, gallic acid, and syringic acid were identified. In regards to technological profile, fibre was mainly insoluble, with around 11%, and starch content was 50%. Its pasting behaviour revealed a high gelatinization temperature (85 °C), with low breakdown, and higher retrogradation consistency. These results show acorn flour potential as a valuable and sustainable multipurpose food ingredient. Acorn flour (Quercus rotundifolia) was chemical and technologically assessed. Acorn flour revealed high content in unsaturated fatty acids (oleic and linoleic). Minerals were analysed for the first time, revealing high values in particular potassium. Phenolic acids and flavonoids were identified in particular rutin and syringic acid. Pasting behaviour has shown high gelatinization temperature and shear stress resistance.
Collapse
|
16
|
Beltrão Martins R, Nunes MC, Gouvinhas I, Ferreira LMM, Peres JA, Barros AIRNA, Raymundo A. Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile. Foods 2022; 11:3172. [PMID: 37430921 PMCID: PMC9601641 DOI: 10.3390/foods11203172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 09/07/2024] Open
Abstract
Baking bread without gluten presents many challenges generally related with poor sensorial and nutritional characteristics, and strategies to overcome this issue are needed. Despite many gluten-free (GF) bread studies, to the best of our knowledge, few are dedicated to sweet GF bread. Sweet breads have traditionally been an important type of food and are still frequently consumed worldwide. Apple flour is naturally GF, and is obtained from apples which do not accomplish market quality requirements and are being wasted. Apple flour was, therefore, characterized in terms of nutritional profile, bioactive compounds, and antioxidant capacity. The aim of this work was to develop a GF bread with incorporation of apple flour, in order to study its effect on nutritional, technological, and sensory characteristics of sweet GF bread. Additionally, in vitro starch hydrolysis and glycemic index (GI) were also analyzed. Results demonstrated the influence of apple flour in dough's viscoelastic behavior, increasing G' and G''. Regarding bread characteristics, apple flour led to better acceptance by the consumer, with firmness increasing (21.01; 26.34; 23.88 N), and consequently specific volume decreasing (1.38; 1.18; 1.13 cm3/g). In addition, an increase of bioactive compounds content and antioxidant capacity of the breads were revealed. As expected, the starch hydrolysis index increased, as well as GI. Nevertheless the values were really close to low eGI (56), which is a relevant result for a sweet bread. Apple flour showed good technological and sensory properties as a sustainable and healthy food ingredient for GF bread.
Collapse
Affiliation(s)
- Rita Beltrão Martins
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CQVR—Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Irene Gouvinhas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Luís Miguel Mendes Ferreira
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - José Alcides Peres
- CQVR—Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Isabel Ramos Novo Amorim Barros
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
17
|
Yazar G, Demirkesen I. Linear and Non-Linear Rheological Properties of Gluten-Free Dough Systems Probed by Fundamental Methods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Performance of Apple Pomace for Gluten-Free Bread Manufacture: Effect on Physicochemical Characteristics and Nutritional Value. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apple pomace has been proposed as a quality enhancer for gluten-free bread, but its composition and physicochemical features differ significantly depending on the apple cultivar. The objective of this article was to characterize apple pomace powder (APP) from certain varieties from the Basque Country and to study the feasibility of adding it to gluten-free bread, focusing on physicochemical and nutritional aspects. APP was obtained by washing, drying and grinding, and it was added at 0, 5, 6 and 8%, together with other ingredients, such as gluten-free flours, corn starch and whey protein. APP had a reddish-grey coloration (L* 56.49 ± 1.39, a* 11.07 ± 0.47, b* 27.69 ± 1.76), pH 4.19 ± 0.15 and Aw 0.235 ± 0.084. Pomace powder was used successfully in higher amounts than experiences reported before. Key physicochemical parameters such as specific volume (≥2.5 cm3/g) and cohesiveness or resilience values (0.538 and 0.378, respectively) suggested good acceptability for gluten-free breads with 8% APP. Additionally, breads were a source of antioxidant potential (437.66 ± 38.95 µM DPPHeq/g APP), fiber (80.13 ± 6.07 g/100 g) and micronutrients such as Cu, Mg, Mn and Fe. In conclusion, local apple varieties are a good source of raw material for gluten-free bread manufacture, which offers a solution for environmental pollution and may contribute to boosting the circular economy.
Collapse
|
19
|
Gómez M. Gluten-free bakery products: Ingredients and processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:189-238. [PMID: 35595394 DOI: 10.1016/bs.afnr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an increasing demand for gluten-free products around the world because certain groups of people, which have increased in the last decades, need to eliminate gluten from their diet. A growing number of people consider gluten-free products to be healthier. However, making gluten-free products such as bread is a technological challenge due to the important role of the gluten network in their development. However, other products, such as cakes and cookies usually made with wheat flour, can easily be made with gluten-free starches or flours since gluten does not play an essential role in their production. To replace wheat flour in these elaborations it is necessary to resort to gluten-free starches and/or flours and to gluten substitutes. Additionally, it can be convenient to incorporate other ingredients such as proteins, fibers, sugars or oils, as well as to modify their quantities in wheat flour formulations. Regarding gluten-free flours, it will also be necessary to know the parameters that influence their functionality in order to obtain regular products. These problems have originated a lower availability of gluten-free products which have a worse texture and are less tasty and more expensive than their homologues with gluten. These problems have been partially solved thanks to research on these types of products, their ingredients and their production methods. In recent years, studies about the nutritional improvement of these products have increased. This chapter delves into the main ingredients used in the production of gluten-free products, the processes for making gluten-free breads, cakes and cookies, and the nutritional quality of these products.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain.
| |
Collapse
|
20
|
Naibaho J, Butula N, Jonuzi E, Korzeniowska M, Laaksonen O, Föste M, Kütt ML, Yang B. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Yao W, Gong Y, Li L, Hu X, You L. The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chem X 2022; 13:100252. [PMID: 35498986 PMCID: PMC9040006 DOI: 10.1016/j.fochx.2022.100252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
The physicochemical properties of DFs are related to their digestive behaviors. DFs are degraded in the intestines due to the fermentation of gut microbiota. DFs and their metabolites exert beneficial effects on gut microbiota. The fermentation of DFs improve gut barrier function and immune function.
Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yufeng Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
22
|
Thirathumthavorn D, Sintongtanaput A, Wongpracharat S, Chai-Uea P, Udomrati S. Physicochemical properties of instant fried gluten-free noodles incorporating defatted Riceberry bran and soy protein isolate. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.04522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Fruit and vegetable by-products' flours as ingredients: A review on production process, health benefits and technological functionalities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Delving into the Role of Dietary Fiber in Gluten-Free Bread Formulations: Integrating Fundamental Rheological, Technological, Sensory, and Nutritional Aspects. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides3010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evidenced relevance of dietary fibers (DF) as functional ingredients shifted the research focus towards their incorporation into gluten-free (GF) bread, aiming to attain the DF contents required for the manifestation of health benefits. Numerous studies addressing the inclusion of DF from diverse sources rendered useful information regarding the role of DF in GF batter’s rheological properties, as well as the end product’s technological and nutritional qualities. The presented comprehensive review aspires to provide insight into the changes in fiber-enriched GF batter’s fundamental rheological properties, and technological, sensory, and nutritional GF bread quality from the insoluble and soluble DF (IDF and SDF) perspective. Different mechanisms for understanding IDF and SDF action on GF batter and bread were discussed. In general, IDF and SDF can enhance, but also diminish, the properties of GF batter and bread, depending on their addition level and the presence of available water in the GF system. However, it was seen that SDF addition provides a more homogenous GF batter structure, leading to bread with higher volumes and softer crumb, compared to IDF. The sensory properties of fiber-enriched GF breads were acceptable in most cases when the inclusion level was up to 7 g/100 g, regardless of the fiber type, enabling the labeling of the bread as a source of fiber.
Collapse
|
25
|
Soleimanian Y, Sanou I, Turgeon SL, Canizares D, Khalloufi S. Natural plant fibers obtained from agricultural residue used as an ingredient in food matrixes or packaging materials: A review. Compr Rev Food Sci Food Saf 2021; 21:371-415. [PMID: 34941013 DOI: 10.1111/1541-4337.12875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/25/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Every year, agrifood activities generate a large amount of plant byproducts, which have a low economical value. However, the valorization of these byproducts can contribute to increasing the intake of dietary fibers and reducing the environmental pollution. This review presents an overview of a wide variety of agricultural wastes applied in the formulation of different food products and sustainable packaging. In general, the incorporation of fibers into bakery, meat, and dairy products was successful, especially at a level of 10% or less. Fibers from a variety of crops improved the consistency, texture, and stability of sauce formulations without affecting sensory quality. In addition, fiber fortification (0.01-6.4%) presented considerable advantages in terms of rheology, texture, melting behavior, and fat replacement of ice cream, but in some cases had a negative impact on color and mouthfeel. In the case of beverages, promising effects on texture, viscosity, stability, and appetite control were obtained by the addition of soluble dietary fibers from grains and fruits with small particle size. Biocomposites used in packaging benefited from reinforcing effects of various plant fiber sources, but the extent of modification depended on the matrix type, fiber pretreatment, and concentration. The information synthesized in this contribution can be used as a tool to screen and select the most promising fiber source, fiber concentration, and pretreatment for specific food applications and sustainable packaging.
Collapse
Affiliation(s)
- Yasamin Soleimanian
- Soils Science and Agri-Food Engineering Department, Laval University, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Ibrahima Sanou
- Soils Science and Agri-Food Engineering Department, Laval University, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Sylvie L Turgeon
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada.,Food Science Department, Laval University, Québec City, Québec, Canada
| | - Diego Canizares
- Department of Food Engineering and Technology, Institute of Biosciences, Language and Physical Sciences (IBILCE), UNESP - São Paulo State University, São José do Rio Preto, Brazil
| | - Seddik Khalloufi
- Soils Science and Agri-Food Engineering Department, Laval University, Québec City, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| |
Collapse
|
26
|
Cao Y, Zhao J, Tian Y, Jin Z, Xu X, Zhou X, Wang J. Physicochemical properties of rice bran after ball milling. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yawen Cao
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Jianwei Zhao
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Zhengyu Jin
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Xueming Xu
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Xing Zhou
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Jinpeng Wang
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
27
|
Naibaho J, Korzeniowska M, Wojdyło A, Figiel A, Yang B, Laaksonen O, Foste M, Vilu R, Viiard E. Fiber modification of brewers’ spent grain by autoclave treatment to improve its properties as a functional food ingredient. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Liu Y, Yi S, Ye T, Leng Y, Alomgir Hossen M, Sameen DE, Dai J, Li S, Qin W. Effects of ultrasonic treatment and homogenization on physicochemical properties of okara dietary fibers for 3D printing cookies. ULTRASONICS SONOCHEMISTRY 2021; 77:105693. [PMID: 34343823 PMCID: PMC8348173 DOI: 10.1016/j.ultsonch.2021.105693] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This paper presents a means to modify the attributes of okara fiber using ultrasonic and high-speed shearing treatment. The results of scanning electron microscopy and differential scanning calorimetry reveal that the modified okara fiber demonstrates small particle size and high thermal stability. When the 500 W-15,000 rpm combination is used for okara-fiber treatment, the latter exhibits excellent swelling (SC) as well as water- and oil-holding capacities. When 6% of modified okara fiber is added to the dough, the resulting cookies demonstrate the best printing performance. Subsequently, the printing parameters can be optimized to obtain the best filling rate of 30%. The corresponding nozzle diameter and printing speed equal 0.8 mm and 50 mm/s, respectively. Finally, the 3D-printed cookies containing okara fiber are compared against those commonly available in the market via sensory evaluation. As observed, the 3D-printed cookies were more acceptable to people. Therefore, the addition of the okara dietary fiber to the cookie dough not only improves the okara utilization rate but also increases the dietary-fiber content in the cookie, thereby alleviating the occurrence of obesity in modern society.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Shengkui Yi
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Tingting Ye
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Ying Leng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
29
|
Martínez-Girón J, Osorio C, Ordoñez-Santos LE. Effect of temperature and particle size on physicochemical and techno-functional properties of peach palm peel flour ( Bactris gasipaes, red and yellow ecotypes). FOOD SCI TECHNOL INT 2021; 28:535-544. [PMID: 34210179 DOI: 10.1177/10820132211025133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the effect of temperature and particle size on the techno-functional properties of the flour from peach palm fruit peels (Bactris gasipaes, red and yellow ecotype) were evaluated. The flour from peach palm epicarp obtained by natural convective drying was physicochemically characterized, including the assessment of total dietary fiber determined under the gravimetric enzymatic method. The results obtained showed that temperature and particle size present a significant effect (p < 0.001) on techno-functional properties except for swelling capacity. The flour from the red ecotype presented better nutritional: total dietary fiber 47.93 ± 1.72%, protein 6.87 ± 0.15% and techno-functional properties: water retention capacity (WRC) 7.13 ± 0.29 g/g, oil retention capacity (ORC) 6.24 ± 0.08 g/g, emulsifier activity (EA) 56.84 ± 0.28%, emulsifier stability (ES) 50.33 ± 0.31% than the yellow one water absorption capacity (WAC) 5.31 ± 0.03 g/g and water solubility (WS) 59.58 ± 0.04% at 60 °C and 0.25 mm. Therefore, this study showed that the flour obtained from peach palm fruit peels contains high fiber and protein values and could be used as a promising natural additive (source of dietary fiber or emulsifier) for the food industry.
Collapse
Affiliation(s)
- Jader Martínez-Girón
- Departamento de Ingeniería, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia-Sede Palmira, Valle del Cauca, Colombia.,Tecnología en Alimentos, Universidad del Valle-Sede Palmira, Valle del Cauca, Colombia
| | - Coralia Osorio
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luis Eduardo Ordoñez-Santos
- Departamento de Ingeniería, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia-Sede Palmira, Valle del Cauca, Colombia
| |
Collapse
|
30
|
Yao J, Zhang Q, Liu M. Effects of apricot kernel skins addition and ultrasound treatment on the properties of the dough and bread. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jian‐Li Yao
- Institute of Food & Physical Field Processing School of Food Engineering and Nutrition Sciences Shaanxi Normal University Xi'an PR China
| | - Qing‐An Zhang
- Institute of Food & Physical Field Processing School of Food Engineering and Nutrition Sciences Shaanxi Normal University Xi'an PR China
- Shaanxi International Science and Technology Cooperation Bases: Cereal Science International Joint Research Center Xi'an PR China
| | - Meng‐Jia Liu
- Institute of Food & Physical Field Processing School of Food Engineering and Nutrition Sciences Shaanxi Normal University Xi'an PR China
| |
Collapse
|
31
|
Delgado-Ospina J, Martuscelli M, Grande-Tovar CD, Lucas-González R, Molina-Hernandez JB, Viuda-Martos M, Fernández-López J, Pérez-Álvarez JÁ, Chaves-López C. Cacao Pod Husk Flour as an Ingredient for Reformulating Frankfurters: Effects on Quality Properties. Foods 2021; 10:foods10061243. [PMID: 34070789 PMCID: PMC8229612 DOI: 10.3390/foods10061243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
The cocoa pod husk is considered a source of dietary fiber with a high content of water-soluble pectins, bioactive compounds which should be viewed as a by-product with the potential to be incorporated into food. This study aimed to investigate the effect of adding different cocoa pod husk flour (CPHF) levels as a starch replacement for reformulating frankfurters. Results showed that the addition of 1.5 and 3.0% pod husk proportionally increased the frankfurter’s fiber content by 0.49 ± 0.08 and 0.96 ± 0.19 g/100 g, which is acceptable for a product that does not contain fiber. Textural properties and sensory characteristics were affected when substituting the starch with CPHF, either totally or partially, although these samples had higher water content, hardness, and adhesiveness while springiness decreased. Non-adverse effects of nitrite on polyphenolic compounds content were evidenced in samples enriched with CPHF. The incorporation of CPHF did not significantly affect the color parameters (ΔE < 3). Finally, the panelists indicated a sensation of the unsalted sausage, suggesting that CPHF may have natural mucoadhesion properties. In conclusion, in formulated meat products such as sausages, plant co-products such as cacao pod husks could be a valid new ingredient to improve technological parameters, functional characteristics, and stability.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Maria Martuscelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 # 8-49, Puerto Colombia 081008, Colombia
| | - Raquel Lucas-González
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| | - Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
- Faculty of Science, King Abdelaziz University, Jedda 21589, Saudi Arabia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| |
Collapse
|
32
|
Laignier F, Akutsu RDCCDA, Maldonade IR, Bertoldo Pacheco MT, Silva VSN, Mendonça MA, Zandonadi RP, Raposo A, Botelho RBA. Amorphophallus konjac: A Novel Alternative Flour on Gluten-Free Bread. Foods 2021; 10:foods10061206. [PMID: 34071793 PMCID: PMC8229984 DOI: 10.3390/foods10061206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
The demand for gluten-free products is rising, but their production with similar quality as their gluten counterparts is challenging. This study aimed to develop gluten-free bread samples using different concentrations of Amorphophallus konjac flour (0%, 12.5%, 25%, 37.5%, and 50% of the total flour content) and to evaluate their nutritional and physicochemical properties. Proteins, lipids, carbohydrates, moisture, ash content, fibers, resistant starch, firmness, specific volume, and color were evaluated using official methods. Protein varied from 2.95% to 4.94%, the energy value from 347.93 to 133.55 kcal/100 g, dietary fiber from 8.19 to 17.90%, and resistant starch from 0.67% to 0.75% on wet basis. The addition of konjac flour positively influenced the specific volume. Higher concentrations of konjac flour in the formulations led to lower calories of the bread due to the significant addition of water to the dough. The bread samples with konjac showed high fiber content due to the composition of the flour. They had lower levels of carbohydrates, which can positively influence the glycemic index. Konjac flour provided dough mold, growth, and better texture for gluten-free bread. The best formulations were prepared in concentrations up to 37.5% konjac. The 50% konjac bread showed slightly reduced specific volume and pale color.
Collapse
Affiliation(s)
- Fernanda Laignier
- Department of Nutrition, College of Health Sciences, University of Brasília, Brasília 70910900, Brazil; (F.L.); (R.d.C.C.d.A.A.); (R.P.Z.)
| | | | | | | | | | - Marcio Antônio Mendonça
- College of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910900, Brazil;
| | - Renata Puppin Zandonadi
- Department of Nutrition, College of Health Sciences, University of Brasília, Brasília 70910900, Brazil; (F.L.); (R.d.C.C.d.A.A.); (R.P.Z.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (A.R.); (R.B.A.B.); Tel.: +55-61-981378620 (R.B.A.B.)
| | - Raquel Braz Assunção Botelho
- Department of Nutrition, College of Health Sciences, University of Brasília, Brasília 70910900, Brazil; (F.L.); (R.d.C.C.d.A.A.); (R.P.Z.)
- Correspondence: (A.R.); (R.B.A.B.); Tel.: +55-61-981378620 (R.B.A.B.)
| |
Collapse
|
33
|
Fratelli C, Santos FG, Muniz DG, Habu S, Braga ARC, Capriles VD. Psyllium Improves the Quality and Shelf Life of Gluten-Free Bread. Foods 2021; 10:foods10050954. [PMID: 33925416 PMCID: PMC8145964 DOI: 10.3390/foods10050954] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/01/2023] Open
Abstract
Psyllium husk powder was investigated for its ability to improve the quality and shelf life of gluten-free bread. Gluten-free bread formulations containing 2.86%, 7.14%, and 17.14% psyllium by flour weight basis were compared to the control gluten-free bread and wheat bread in terms of performance. The effect of time on crumb moisture and firmness, microbial safety, and sensory acceptability using a 10-cm scale was assessed at 0, 24, 48, and 72 h postproduction. Crumb firming was observed during the storage time, especially for the control gluten-free bread, which had a crumb firmness 8-fold higher than that of the wheat bread. Psyllium addition decreased the crumb firmness values by 65–75% compared to those of the control gluten-free bread during 72 h of storage. The longest delay in bread staling was observed with a 17.14% psyllium addition. The psyllium-enriched gluten-free bread was well accepted during 72 h of storage, and the acceptability scores for aroma, texture, and flavor ranged from 6.8 to 8.3, which resembled those of wheat bread. The results showed that the addition of 17.14% psyllium to the formulation improved the structure, appearance, texture, and acceptability of gluten-free bread and delayed bread staling, resembling physical and sensory properties of wheat bread samples during 72 h of storage. Therefore, according to the obtained results, this approach seems to be promising to overcome some of the limitations of gluten-free breadmaking.
Collapse
Affiliation(s)
- Camilly Fratelli
- Department of Biosciences, Institute of Health and Society (Campus Baixada Santista), Federal University of São Paulo, Rua Silva Jardim, 136, Santos CEP 11015-020, Brazil; (C.F.); (F.G.S.); (D.G.M.); (S.H.); (A.R.C.B.)
| | - Fernanda Garcia Santos
- Department of Biosciences, Institute of Health and Society (Campus Baixada Santista), Federal University of São Paulo, Rua Silva Jardim, 136, Santos CEP 11015-020, Brazil; (C.F.); (F.G.S.); (D.G.M.); (S.H.); (A.R.C.B.)
| | - Denise Garcia Muniz
- Department of Biosciences, Institute of Health and Society (Campus Baixada Santista), Federal University of São Paulo, Rua Silva Jardim, 136, Santos CEP 11015-020, Brazil; (C.F.); (F.G.S.); (D.G.M.); (S.H.); (A.R.C.B.)
| | - Sascha Habu
- Department of Biosciences, Institute of Health and Society (Campus Baixada Santista), Federal University of São Paulo, Rua Silva Jardim, 136, Santos CEP 11015-020, Brazil; (C.F.); (F.G.S.); (D.G.M.); (S.H.); (A.R.C.B.)
- Department Research, Pro Rectory of Research and Post-Graduation, Federal University of Technology—Paraná, Av. Silva Jardim, 775, Curitiba CEP 85504-311, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Institute of Health and Society (Campus Baixada Santista), Federal University of São Paulo, Rua Silva Jardim, 136, Santos CEP 11015-020, Brazil; (C.F.); (F.G.S.); (D.G.M.); (S.H.); (A.R.C.B.)
- Department of Chemical Engineering, Campus Diadema, Federal University of São Paulo, Rua São Nicolau 201, Diadema CEP 09972-270, Brazil
| | - Vanessa Dias Capriles
- Department of Biosciences, Institute of Health and Society (Campus Baixada Santista), Federal University of São Paulo, Rua Silva Jardim, 136, Santos CEP 11015-020, Brazil; (C.F.); (F.G.S.); (D.G.M.); (S.H.); (A.R.C.B.)
- Correspondence:
| |
Collapse
|
34
|
Naibaho J, Korzeniowska M. Brewers' spent grain in food systems: Processing and final products quality as a function of fiber modification treatment. J Food Sci 2021; 86:1532-1551. [PMID: 33895998 DOI: 10.1111/1750-3841.15714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
The nutritional properties of brewers' spent grain (BSG) have been widely studied, considering its potential as a healthy food ingredient. Because of its fiber composition (amount and ratio), however, adding BSG into the food matrix to bring about changes in physical properties has been believed to impact negatively on the acceptability of the final products' properties, particularly color and texture. Fiber modification can enhance the quality of fiber and can be applied to BSG. Although it appears challenging, modifying fiber composition requires further study, particularly if the acceptability of the final products is to be improved. Furthermore, the level of fiber degradation during the modification treatment needs to be examined to meet the increased demand for BSG in final food products. This concise synthesis provides a new perspective for increasing the use of BSG as a food ingredient that is characterized by high nutrition and acceptability.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
35
|
Luo S, Yan X, Fu Y, Pang M, Chen R, Liu Y, Chen J, Liu C. The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill. Food Chem 2021; 348:129032. [PMID: 33508598 DOI: 10.1016/j.foodchem.2021.129032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Our previous work reported that the brown rice flour prepared by low temperature impact mill possessed excellent physicochemical properties. The performance of brown rice flour in making gluten-free bread was further investigated. It was found that the starch crystal structure was destroyed and the damaged starch content increased as the particle size of brown rice flour decreased. The interaction between the starch and water in the model dough and the matrix structures among the endosperm masses were enhanced as the particle size decreased, making the gluten-free dough more viscoelastic. However, dough made with finer flour was too sticky, which limited the expansion of dough. Gluten-free bread prepared with medium-sized brown rice flour had favorable quality characterized by large specific volume, low hardness, numerous and homogeneous gas cells.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yuteng Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Min Pang
- Guilin Guiliu Modern Food Co, Ltd, Changjiang East Road, Guilin 541805, China
| | - Ruiyun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, 7777 Changdong Avenue, Nanchang 330096, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
36
|
Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr Polym 2020; 248:116819. [DOI: 10.1016/j.carbpol.2020.116819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
|
37
|
Effect of Citrus Fiber on the Rheological Properties of Dough and Quality of the Gluten-Free Bread. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196633] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of the study was to evaluate the use of citrus fiber for the nutritional enrichment and technological improvement of gluten-free bread. A partial replacement of starch in bread formulation was analyzed in terms of the dough’s rheological properties and selected quality parameters of the bread. The results allowed to conclude that the presence of citrus fiber modifies the rheological properties of the dough, causing an increase in storage modulus (G′) and loss modulus (G″) values, as well as zero shear viscosity, accompanied with a decrease in instantaneous compliance (J0) and viscoelastic compliance (J1) to the applied stress, which reflects dough strengthening caused by significantly greater water binding and swelling properties characteristic of this ingredient. The introduction of the citrus fiber to bread formulations caused a significant decrease in bread volume and structure changes in crumb visible in the larger porosity and average pore size. The presence of citrus fiber affected texture, decreasing crumb hardness, springiness, cohesiveness and chewiness in comparison to the control. It could also be observed that the use of citrus fiber results in limited crumb hardening during storage, which indicates that this component could be an effective factor retarding the staling of the gluten-free bread based on starch and hydrocolloids.
Collapse
|