1
|
Shi J, Zhou Y, Yang S, Xue Y, Wang Y, Hu H, Liu Y. The key metabolic pathway of roots and leaves responses in Arachis hypogaea under Al toxicity stress. BMC PLANT BIOLOGY 2025; 25:439. [PMID: 40189501 PMCID: PMC11974018 DOI: 10.1186/s12870-025-06460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Aluminum (Al) toxicity inhibits plant growth and alters gene expression and metabolite profiles. However, the molecular mechanisms underlying the effects of Al toxicity on peanut plants remain unclear. Transcriptome and metabolome analyses were conducted to investigate the responses of peanut leaves and roots to Al toxicity. RESULTS Al toxicity significantly inhibited peanut growth, disrupted antioxidant enzyme systems in roots and leaves, and impaired nutrient absorption. Under Al toxicity stress, the content of indole-3-acetic acid-aspartate (IAA-Asp) decreased by 23.94% in leaves but increased by 12.91% in roots. Methyl jasmonate (MeJA) levels in leaves increased dramatically by 2642.86%. Methyl salicylate (MeSA) content in leaves and roots increased significantly by 140.00% and 472.22%, respectively. Conversely, isopentenyl adenosine (IPA) content decreased by 78.95% in leaves and 20.66% in roots. Transcriptome analysis identified 5831 differentially expressed genes (DEGs) in leaves and 6405 DEGs in roots, whereas metabolomics analysis revealed 210 differentially accumulated metabolites (DAMs) in leaves and 240 DAMs in roots. Under Al toxicity stress, both leaves and roots were significantly enriched in the "linoleic acid metabolism" pathway. Genes such as lipoxygenase LOX1-5 and LOX2S were differentially expressed, and metabolites, including linoleic acid and its oxidized derivatives, were differentially accumulated, mitigating oxidative stress. CONCLUSIONS This study elaborates on the potential complex physiological and molecular mechanisms of peanuts under aluminum toxicity stress, and highlights the importance of linoleic acid metabolism in coping with aluminum toxicity. These findings enhance our understanding of the impact of aluminum toxicity on peanut development and the response of key metabolic pathways, providing potential molecular targets for genetic engineering to improve crop resistance to aluminum stress.
Collapse
Affiliation(s)
- Jianning Shi
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yishuang Zhou
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shaoxia Yang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanyan Wang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hanqiao Hu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ying Liu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Bonasia A, Lazzizera C, Elia A, Conversa G. Pre-Harvest Strategy for Improving Harvest and Post-Harvest Performance of Kale and Chicory Baby Leaves. PLANTS (BASEL, SWITZERLAND) 2025; 14:863. [PMID: 40265809 PMCID: PMC11945244 DOI: 10.3390/plants14060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/24/2025]
Abstract
A greenhouse trial was conducted in Southern Italy to examine the effects of foliar applications of two substances, methyl-jasmonate (MeJA) and a zeolite, on the harvest and post-harvest performance of two hydroponically grown baby leaf genotypes (leafy chicory 'Cicoria costa rossa'; kale 'Cavolo nero'). MeJA is a phyto-hormone primarily studied for fruit and post-harvest applications, while zeolite is typically used for pest and disease biological control. MeJA (Sigma-Aldrich Merck KGaA, Darmstadt, Germany), and a commercial zeolite (Big-Zeo, Agricola Internazionale s.r.l., Pisa, Italy) (BigZeo) were sprayed twice at the second and fourth true leaf stages (BigZeo, 5 kg ha-1; MeJA, 250 µM). Bio-physiological (yield, dry matter DM, chlorophyll CHL, weight loss WL) and qualitative (nitrate, carotenoids, phenols, flavonoids, anthocyanins, antioxidant activity) traits were evaluated in both raw and fresh-cut (7 day-cold-stored) products. Treatments did not significantly affect yield (1.0 kg m-2), while plant responses to the substances concerning other traits were genotype-dependent. MeJA enhanced greenness (CHL), texture (DM), and antioxidant activity (by increasing carotenoids and flavonoids) in chicory. In contrast, zeolite improved greenness, texture, and antioxidant activity (by increasing carotenoids, anthocyanins, and phenols), and reduced nitrate in kale. Treatments did not affect weight loss (2.2 g 100 g-1 f.w., on average). After 7 days of storage, MeJA-treated chicory and zeolite-treated kale exhibited improved textural and nutritional quality.
Collapse
Affiliation(s)
- Anna Bonasia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (C.L.); (A.E.); (G.C.)
| | | | | | | |
Collapse
|
3
|
Tafreshi YM, Eghlima G, Hatami M, Vafadar M. Exploring the potential impact of salicylic acid and jasmonic acid in promoting seed oil content, vitamin C and antioxidant activity in rosehip (Rosa canina L.). BMC PLANT BIOLOGY 2025; 25:249. [PMID: 39994508 PMCID: PMC11849359 DOI: 10.1186/s12870-025-06251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Rosehip (Rosa canina L.) is a perennial medicinal plant from the Rosaceae family. Due to its important bioactive compounds and oil, its use in the food, pharmaceutical, and cosmetic industries is expanding. As elicitation is an effective strategy for the production of secondary metabolites and oil, this study aimed to investigate the exogenous application of salicylic acid (SA) (0, 1, 2, and 3 mM) and jasmonic acid (JA) (0, 0.5, 1, and 1.5 mM) on the accumulation and production of oil, the profile of seed fatty acids, as well as the content of phenolic acids, vitamin C, total carotenoid, anthocyanin, total phenolic content, and total flavonoid content of rosehip pericarp. Based on the results, applying SA and JA externally increased the seed oil content by 32.57% compared to the control. The treatment of 3 mM SA and 1.5 mM JA resulted in the highest (11.68%) seed oil content. Eicosanoic acid and palmitic acid production increased under this treatment, while the amount of linoleic acid decreased as the concentrations of SA and JA increased. There was a significant increase in the amount of phenolic acids in rosehip pericarp extract under the influence of SA and JA treatments. Spraying with 3 mM SA and 1.5 mM JA increased vitamin C content and total phenol content by 50.44% and 39.13%, respectively, compared to the control. Additionally, the treatment of 2 mM SA and 1.5 mM JA resulted in the highest total flavonoid content, antioxidant activity, and total carotenoid. These results suggest that using appropriate concentrations of SA and JA as biodegradable, fast, and cost-effective stimulants can be a suitable solution for increasing the production of seed oil content and secondary metabolites of rosehip extract on a large scale, supplying raw material for pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Yasaman Mashhadi Tafreshi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Facualty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mahnaz Vafadar
- Department of Biology, Faculty of Science, University of Zanajn, Zanajn, Iran
| |
Collapse
|
4
|
Ruan L, Wu L, Liang Y, Pang B, Shang C. Physiological response of microalga Dunaliella parva when treated with MeJA, GA3. PLoS One 2024; 19:e0308730. [PMID: 39436914 PMCID: PMC11495637 DOI: 10.1371/journal.pone.0308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/30/2024] [Indexed: 10/25/2024] Open
Abstract
DpAP2 is a transcription factor regulating carotenoid biosynthesis pathway. It was speculated that MeJA significantly decreased expression of DpAP2 gene, then the decreasing DpAP2 expression significantly inhibited expression of some key enzyme genes such as PSY, PDS and GGPS in carotenoid biosynthesis pathway. In contrast, it was speculated that GA3 significantly increased expression of DpAP2 gene, then the increasing DpAP2 expression significantly increased expression of some key enzyme genes such as PDS and GGPS in carotenoid biosynthesis pathway. To increase the content of carotenoid, we evaluated the effect of DpAP2 overexpression on carotenoid accumulation in D. parva. Transgenic D. parva showed a higher carotenoid content (3.18 mg/g DW) compared with control group (2.13 mg/g DW) at 9 d. The dosage effects of exogenous hormones MeJA and GA3 were found in D. parva cells treated with different concentrations of MeJA (10, 20, 50, 100 μM) and GA3 (10, 20, 50, 100 μM). The high concentrations of MeJA (10-100 μM) inhibited the accumulation of carotenoid, and the relative expression of DpAP2, PSY, PDS and GGPS decreased significantly. On the contrary, the relative expression of DpAP2, PDS and GGPS increased significantly when D. parva was treated with 10, 20, 50 and 100 μM GA3, which promoted the biosynthesis of carotenoid. Therefore, we inferred that there was a hierarchical regulation from hormone, transcription factor, key enzyme gene to carotenoid accumulation in carotenoid biosynthesis. Carotenoid biosynthesis was enhanced by DpAP2 overexpression (1.4930 fold of control) and exogenous substances such as GA3 (1.5889 fold of control), which laid a foundation for massive accumulation of carotenoids in microalgae. In the future, further studies were required to demonstrate the complex regulatory network.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Lina Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Yanyan Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Bingbing Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
5
|
Jiang Y, Zeng Z, He G, Liu M, Liu C, Liu M, Lv T, Wang A, Wang Y, Zhao M, Wang K, Zhang M. Genome-wide identification and integrated analysis of the FAR1/FHY3 gene family and genes expression analysis under methyl jasmonate treatment in Panax ginseng C. A. Mey. BMC PLANT BIOLOGY 2024; 24:549. [PMID: 38872078 DOI: 10.1186/s12870-024-05239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.
Collapse
Affiliation(s)
- Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zixia Zeng
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mengna Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Tingting Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Aimin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
6
|
Fan J, Chen N, Rao W, Ding W, Wang Y, Duan Y, Wu J, Xing S. Genome-wide analysis of bZIP transcription factors and their expression patterns in response to methyl jasmonate and low-temperature stresses in Platycodon grandiflorus. PeerJ 2024; 12:e17371. [PMID: 38708338 PMCID: PMC11067905 DOI: 10.7717/peerj.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.
Collapse
Affiliation(s)
- Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Na Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, Anhui, China
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Andressa I, Kelly Silva do Nascimento G, Monteiro Dos Santos T, Rodrigues RDS, de Oliveira Teotônio D, Paucar-Menacho LM, Machado Benassi V, Schmiele M. Technological and health properties and main challenges in the production of vegetable beverages and dairy analogs. Food Funct 2024; 15:460-480. [PMID: 38170850 DOI: 10.1039/d3fo04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.
Collapse
Affiliation(s)
- Irene Andressa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Tatiane Monteiro Dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, PO Box 354, Zip Code: 96.160-000, Pelotas, RS, Brazil
| | - Daniela de Oliveira Teotônio
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Perú
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| |
Collapse
|
8
|
Liu H, Chen Y, Wang H, Huang Y, Hu Y, Zhao Y, Gong Y. Identification of Potential Factors for the Promotion of Fucoxanthin Synthesis by Methyl Jasmonic Acid Treatment of Phaeodactylum tricornutum. Mar Drugs 2023; 22:7. [PMID: 38276645 PMCID: PMC10817275 DOI: 10.3390/md22010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Fucoxanthin, a vital secondary metabolite produced by marine diatoms, has great economic value and research potential. However, its popularization and application have been greatly restricted due to its low content, difficult extraction, and high production cost. Methyl jasmonic acid (MeJA) exerts similar inductive hormones in the growth and development as well as metabolic processes of plants. In Phaeodactylum tricornutum (P. tricornutum), MeJA treatment can increase fucoxanthin content. In this study, the effects of different concentrations of MeJA on the cell growth and the fucoxanthin content of P. tricornutum were explored. Meanwhile, this study used high-throughput sequencing technology for transcriptome sequencing of P. tricornutum and subsequently performed differential gene expression analysis, gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and weighted gene co-expression network analysis (WGCNA) for screening the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum. On this basis, the functions of the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum were further analyzed. The results revealed that the carotenoid synthesis-related genes PHATRDRAFT_54800 and PHATRDRAFT_20677 were the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum. PHATRDRAFT_54800 may be a carotenoid isomerase, while PHATRDRAFT_20677 may be involved in the MeJA-stimulated synthesis of fucoxanthin by exerting the role of SDR family NAD(P)-dependent oxidoreductases.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (H.L.); (Y.C.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315200, China;
- Institute of Bioengineering, Biotrans Technology Co., Ltd., Shanghai 201500, China
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Yawen Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (H.L.); (Y.C.)
| | - Heyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315200, China;
| | - Yaxuan Huang
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Ying Hu
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Yuxiang Zhao
- Institute of Bioengineering, Biotrans Technology Co., Ltd., Shanghai 201500, China
- United New Drug Research and Development Center, Biotrans Technology Co., Ltd., Changsha 410000, China; (Y.H.); (Y.H.)
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315200, China; (H.L.); (Y.C.)
| |
Collapse
|
9
|
Yang B, Pan F, Yasmeen F, Shan L, Pan J, Zhang M, Weng X, Wang M, Li M, Wang Q, Cheng K. Integrated multi-omic analysis reveals the cytokinin and sucrose metabolism-mediated regulation of flavone glycoside biosynthesis by MeJA exposure in Ficus pandurata Hance. Food Res Int 2023; 174:113680. [PMID: 37981372 DOI: 10.1016/j.foodres.2023.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Ficus pandurata Hance (FPH) holds a rich history as a traditional Chinese botanical remedy, utilized both as a culinary condiment and a medicinal intervention for diverse ailments. This study focuses on enhancing FPH's therapeutic potential by subjecting it to exogenous methyl jasmonate (MeJA) treatment, a strategy aimed at elevating the levels of active constituents to align with clinical and commercial requirements. Employing metabolomics, the impact of MeJA treatment on the lipid and flavonoid profiles of FPH leaves was investigated, revealing a marked increase in flavone glycosides, a subset of flavonoids. Investigation into the regulatory mechanism governing flavone glycoside biosynthesis uncovered elevated expression of structural genes associated with flavonoid production in response to MeJA exposure. Global endogenous hormone analysis pinpointed the selective activation of JA and cytokinin biosynthesis following MeJA treatment. Through a comprehensive integration of transcriptomic and metabolomic data, the cooperative stimulation of glucosyltransferase activity, alongside the JA and cytokinin signaling pathways, orchestrated by MeJA were explored. Furthermore, genes linked to sucrose metabolism exhibited heightened expression, concomitant with a noteworthy surge in antioxidant activity subsequent to MeJA treatment. These findings validate the augmentation of FPH leaf antioxidant capacity through MeJA intervention, while also offering profound insights into the regulatory role of MeJA in flavone glycoside biosynthesis, mediated by the interplay between cytokinin and sucrose metabolism pathways.
Collapse
Affiliation(s)
- Bingxian Yang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Fupeng Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Farhat Yasmeen
- Department of Biosciences, University of Wah, Wah Cantt 47040, Pakistan
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Meng Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinying Weng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyu Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mengxin Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Kejun Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Pei X, Wang F, Du H, He M, Li L, Gou C, Chen Z, Wang Y, Kong F, Zhao L. Genome-wide identification and functional prediction of BYPASS1-related (BPS1) homologs in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:59. [PMID: 37496826 PMCID: PMC10366038 DOI: 10.1007/s11032-023-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
The BYPASS1-related gene (BPS1) encodes a protein with an unknown functional domain that regulates plant organ growth and development by inhibiting the continuous production of a root-derived long-distance signaling molecule called bypass (bps). We conducted a comprehensive study to investigate the BPS gene family in soybean and identified twenty-three BPS genes in Glycine max and twenty BPS genes in Glycine soja (wild soybean). Collinearity analysis revealied the existence of multiple orthologs of soybean BPS genes in wild soybean, indicating incomplete conservation between the BPS genes of soybean and wild soybean. Phylogenetic analysis successfully categorized all BPS genes into five distinct groups. We further scrutinized their chromosomal locations, gene structures, conserved motifs, cis-acting elements, and expression patterns. Leveraging publicly available data on genetic variation, phenotypic variation, and single-cell transcriptome sequencing of root nodules, we discovered a potential association between BPS genes and multiple soybean traits, particularly those related to the root nodule phenotype. This pioneering study provides a systematic and comprehensive examination of the BPS gene family in soybean. The findings establish a robust foundation for future investigations into the functional roles of BPS genes in plant growth and development. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01403-2.
Collapse
Affiliation(s)
- Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fan Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haiping Du
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lanxin Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chuanjie Gou
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanan Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Enhanced Production of Active Photosynthetic and Biochemical Molecules in Silybum marianum L. Using Biotic and Abiotic Elicitors in Hydroponic Culture. Molecules 2023; 28:molecules28041716. [PMID: 36838704 PMCID: PMC9967248 DOI: 10.3390/molecules28041716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Elicitors are stressors that activate secondary pathways that lead to the increased production of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture significantly increased the concentration of photosynthetic pigments and total phenolic contents. The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs (silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g-1 FW) and chlorophyll b (33.6 µg g-1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor, following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA (100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure times of 120-144 h proved to be the most promising in the accretion of valuable bioactive molecules. The study opens new insights into the use of these elicitors, individually or in combination, by using different concentrations and compositions.
Collapse
|
12
|
Concurrent Production of α- and β-Carotenes with Different Stoichiometries Displaying Diverse Antioxidative Activities via Lycopene Cyclases-Based Rational System. Antioxidants (Basel) 2022; 11:antiox11112267. [DOI: 10.3390/antiox11112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
α- and β-carotenes belong to the most essential carotenoids in the human body and display remarkable pharmacological value for health due to their beneficial antioxidant activities. Distinct high α-/β-carotene stoichiometries have gained increasing attention for their effective preventions of Alzheimer’s disease, cardiovascular disease, and cancer. However, it is extremely difficult to obtain α-carotene in nature, impeding the accumulations of high α-/β-carotene stoichiometries and excavation of their antioxidant activities. Herein, we developed a dynamically operable strategy based on lycopene cyclases (LCYB and LCYE) for concurrently enriching α- and β-carotenes along with high stoichiometries in E. coli. Membrane-targeted and promoter-centered approaches were firstly implemented to spatially enhance catalytic efficiency and temporally boost expression of TeLCYE to address its low competitivity at the starting stage. Dynamically temperature-dependent regulation of TeLCYE and TeLCYB was then performed to finally achieve α-/β-carotene stoichiometries of 4.71 at 37 °C, 1.65 at 30 °C, and 1.06 at 25 °C, respectively. In the meantime, these α-/β-carotene ratios were confirmed to result in diverse antioxidative activities. According to our knowledge, this is the first time that both the widest range and antioxidant activities of high α/β-carotene stoichiometries were reported in any organism. Our work provides attractive potentials for obtaining natural products with competitivity and a new insight on the protective potentials of α-/β-carotenes with high ratios for health supply.
Collapse
|
13
|
Li C, Zhu J, Cheng Y, Hou J, Sun L, Ge Y. Acibenzolar-S-methyl activates mitogen-activated protein kinase cascade to mediate chlorophyll and carotenoid metabolisms in the exocarp of Docteur Jules Guyot pears. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4435-4445. [PMID: 35092628 DOI: 10.1002/jsfa.11797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acibenzolar-S-methyl (ASM), a well-known plant activator, has been used to protect fruit and vegetable from fungal invasion and maintain quality. However, little is known about the molecular mechanism of ASM in regulating chlorophyll and carotenoid metabolisms. Therefore, Docteur Jules Guyot pears were used as the materials to study the changes of hydrogen peroxide (H2 O2 ) production, mitogen-activated protein kinase (MAPK) cascade, transcription factors, chlorophyll, and carotenoid metabolisms after ASM and PD98059 (a MAPK cascade blocker) treatments. RESULTS ASM increased NADPH oxidase (NOX) and superoxide dismutase (SOD) activities, and H2 O2 content, promoted PcMAPKKK1, PcMAPKK3, and PcMAPK6 expressions, and down-regulated PcMYC2, PcPIF1, PcPIF3, and PcPIF4 expressions in exocarp of pears. ASM also delayed the decrease of chlorophyll a and b contents, and inhibited the accumulation of β-carotene, lycopene and lutein, PcNYC1, PcHCAR, PcPPH, PcSGR1/2, PcPAO, PcPSY, PcLCYB, PcCRTZ2, PcCCS1 expressions, and promoted PcLCYE expression. PD98059 + ASM treatments depressed SOD and NOX activities and H2 O2 content, inhibited PcMAPKKK1, PcMAPKK3, PcMAPK6, PcPIF1, and PcPIF3 expressions, and promoted PcMYC2 and PcPIF4 expressions in exocarp of pears. Additionally, PD98059 + ASM accelerated PcNYC1, PcHCAR, PcPPH, PcSGR1/2, PcPAO, PcPSY, PcCYB, PcCRTZ2, and PcCCS1 expressions, thereby reducing chlorophyll a and b contents, and promoting β-carotene, lycopene and lutein contents. CONCLUSIONS Postharvest ASM treatment promoted the production of H2 O2 to activate the MAPK cascade, then phosphorylated/dephosphorylated transcription factors expression, and delayed chlorophyll decomposition and carotenoid synthesis in pears. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, P. R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P. R. China
| | - Jie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, P. R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P. R. China
| | - Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou, P. R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P. R. China
| | - Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou, P. R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P. R. China
| | - Lei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, P. R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P. R. China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, P. R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P. R. China
| |
Collapse
|
14
|
He Y, Song S, Li C, Zhang X, Liu H. Effect of germination on the main chemical compounds and 5-methyltetrahydrofolate metabolism of different quinoa varieties. Food Res Int 2022; 159:111601. [DOI: 10.1016/j.foodres.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
15
|
Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Tropaeolum tuberosum Ruíz and Pav. “Mashua” is a crop from the Andean region associated with preventing chronic degenerative diseases. This study evaluated the content of bioactive compounds (phenolics, glucosinolates, carotenoids, and ascorbic acid) in twenty-seven Peruvian mashua morphotypes. Furthermore, three morphotypes (MAC 067, MAC 092, and MAC 123) were selected to evaluate further the effect of methyl jasmonate (MeJA) on the accumulation of bioactive compounds. Phenolic content in the mashua morphotypes ranged from 2990.76 ± 273.5 mg/kg to 24,217.36 ± 1144 mg/kg; whereas carotenoids ranged from 12.8 ± 0.6 mg/kg to 85.8 ± 3.1 mg/kg. Moreover, total glucosinolate content ranged from 65 ± 11 mmol/kg to 1289 ± 65 mmol/kg. The different mashua morphotypes showed low levels of ascorbic acid (lower than 5 mg/kg) compared with other crops. Except for glucosinolates, MeJA application augmented the level of bioactive compounds, showing increases of up to 150.1%, 535.0%, and 542% for total phenolics, carotenoids, and ascorbic acid, respectively. Results indicated that mashua is an excellent source of phenolics and glucosinolates, whereas it contains adequate levels of carotenoids and low levels of vitamin C. MeJA application during postharvest represented a simple approach to increase the content of bioactive compounds in mashua.
Collapse
|
16
|
Ortega-Hernández E, Antunes-Ricardo M, Cisneros-Zevallos L, Jacobo-Velázquez DA. Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091271. [PMID: 35567272 PMCID: PMC9100039 DOI: 10.3390/plants11091271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/12/2023]
Abstract
Kale sprouts contain health-promoting compounds that could be increased by applying plant nutrients or exogenous phytohormones during pre-harvest. The effects of selenium (Se), sulfur (S), and methyl jasmonate (MeJA) on lutein, glucosinolate, and phenolic accumulation were assessed in kale sprouts. Red Russian and Dwarf Green kale were chamber-grown using different treatment concentrations of Se (10, 20, 40 mg/L), S (30, 60, 120 mg/L), and MeJA (25, 50, 100 µM). Sprouts were harvested every 24 h for 7 days to identify and quantify phytochemicals. The highest lutein accumulation occurred 7 days after S 120 mg/L (178%) and Se 40 mg/L (199%) treatments in Red Russian and Dwarf Green kale sprouts, respectively. MeJA treatment decreased the level of most phenolic levels, except for kaempferol and quercetin, where increases were higher than 70% for both varieties when treated with MeJA 25 µM. The most effective treatment for glucosinolate accumulation was S 120 mg/L in the Red Russian kale variety at 7 days of germination, increasing glucoraphanin (262.4%), glucoerucin (510.8%), 4-methoxy-glucobrassicin (430.7%), and glucoiberin (1150%). Results show that kales treated with Se, S, and MeJA could be used as a functional food for fresh consumption or as raw materials for different industrial applications.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Jal, Mexico
| |
Collapse
|
17
|
Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1144-1165. [PMID: 35277905 DOI: 10.1111/tpj.15729] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 05/20/2023]
Abstract
Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
18
|
Zhou J, Lin X, Liu S, Wang Z, Liu D, Huo Y, Li D. Effects of Compound Elicitors on the Biosynthesis of Triterpenoids and Activity of Defense Enzymes from Inonotus hispidus (Basidiomycetes). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092618. [PMID: 35565966 PMCID: PMC9102530 DOI: 10.3390/molecules27092618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Inonotus hispidus has various health-promoting activities, such as anticancer effects and immune-stimulating activity. The commercialization of valuable plant triterpenoids faces major challenges, including low abundance in natural hosts and costly downstream purification procedures. In this work, orthogonal design was used to compound methyl jasmonate (MeJA), salicylic acid (SA), oleic acid, and Cu2+, and the effects of combinations on the total triterpenes biosynthesized were studied. The optimal combination was screened out and its effect on the activity of PAL, CAT, and SOD was studied. The optimal concentration of oleic acid was 2% when MeJA was 100 mol/L, and the total triterpenoid content and mycelia production were 3.918 g and 85.17 mg/g, respectively. MeJA treatment induced oxidative stress, and at the same time increased the activity of related defense enzymes. Oleic acid is thought to regulate cell permeability by recombining cell membranes. It promotes the material exchange process between cells and the environment without affecting cell growth. When oleic acid was used in combination with MeJA, a synergistic effect on triterpene production was observed. In conclusion, our findings provide a strategy for triterpenoid enrichment of I. hispidus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehai Li
- Correspondence: ; Tel.: +86-18645005091 or +86-451-82190514
| |
Collapse
|
19
|
Flowerika, Thakur N, Tiwari S. Correlation of carotenoid accumulation and expression pattern of carotenoid biosynthetic pathway genes in Indian wheat varieties. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Jarocka-Karpowicz I, Markowska A. Therapeutic Potential of Jasmonic Acid and Its Derivatives. Int J Mol Sci 2021; 22:ijms22168437. [PMID: 34445138 PMCID: PMC8395089 DOI: 10.3390/ijms22168437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
A modern method of therapeutic use of natural compounds that would protect the body are jasmonates. The main representatives of jasmonate compounds include jasmonic acid and its derivatives, mainly methyl jasmonate. Extracts from plants rich in jasmonic compounds show a broad spectrum of activity, i.e., anti-cancer, anti-inflammatory and cosmetic. Studies of the biological activity of jasmonic acid and its derivatives in mammals are based on their structural similarity to prostaglandins and the compounds can be used as natural therapeutics for inflammation. Jasmonates also constitute a potential group of anti-cancer drugs that can be used alone or in combination with other known chemotherapeutic agents. Moreover, due to their ability to stimulate exfoliation of the epidermis, remove discoloration, regulate the function of the sebaceous glands and reduce the visible signs of aging, they are considered for possible use in cosmetics and dermatology. The paper presents a review of literature data on the biological activity of jasmonates that may be helpful in treatment and prevention.
Collapse
|
21
|
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. PLANT CELL REPORTS 2021; 40:1471-1494. [PMID: 33821356 DOI: 10.1007/s00299-021-02687-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent updates in JA biosynthesis, signaling pathways and the crosstalk between JA and others phytohormones in relation with plant responses to different stresses. In plants, the roles of phytohormone jasmonic acid (JA), amino acid conjugate (e.g., JA-Ile) and their derivative emerged in last decades as crucial signaling compounds implicated in stress defense and development in plants. JA has raised a great interest, and the number of researches on JA has increased rapidly highlighting the importance of this phytohormone in plant life. First, JA was considered as a stress hormone implicated in plant response to biotic stress (pathogens and herbivores) which confers resistance to biotrophic and hemibiotrophic pathogens contrarily to salicylic acid (SA) which is implicated in plant response to necrotrophic pathogens. JA is also implicated in plant responses to abiotic stress (such as soil salinity, wounding and UV). Moreover, some researchers have recently revealed that JA controls several physiological processes like root growth, growth of reproductive organs and, finally, plant senescence. JA is also involved in the biosynthesis of various metabolites (e.g., phytoalexins and terpenoids). In plants, JA signaling pathways are well studied in few plants essentially Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa L. confirming the crucial role of this hormone in plants. In this review, we highlight the last foundlings about JA biosynthesis, JA signaling pathways and its implication in plant maturation and response to environmental constraints.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biology Department, Faculty of Science, University of Ha'il, P.O. box, Ha'il, 2440, Saudi Arabia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marco Landi
- Department of Agriculture, Food and Environment - University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
22
|
Zhou Z, He W, Li D, Fu Q, Xiao Y, Bao Y, Zhang Z, Song J, Liu C. Accumulation of lutein in broccoli sprouts based on the cultivation conditions of GABA combined with NaCl optimized by response surface methodology. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiyi Zhou
- College of Forestry Northeast Forestry University Harbin China
| | - Weiwei He
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Dajing Li
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Qun Fu
- College of Forestry Northeast Forestry University Harbin China
| | - Yadong Xiao
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Yihong Bao
- College of Forestry Northeast Forestry University Harbin China
| | - Zhongyuan Zhang
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Jiangfeng Song
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Chunquan Liu
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
23
|
Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem 2021; 64:501-512. [PMID: 32602544 DOI: 10.1042/ebc20190085] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Jasmonates (JAs) are physiologically important molecules involved in a wide range of plant responses from growth, flowering, senescence to defence against abiotic and biotic stress. They are rapidly synthesised from α-linolenic acid (ALA; C18:3 ∆9,12,15) by a process of oxidation, cyclisation and acyl chain shortening involving co-operation between the chloroplast and peroxisome. The active form of JA is the isoleucine conjugate, JA-isoleucine (JA-Ile), which is synthesised in the cytoplasm. Other active metabolites of JA include the airborne signalling molecules, methyl JA (Me-JA) and cis-jasmone (CJ), which act as inter-plant signalling molecules activating defensive genes encoding proteins and secondary compounds such as anthocyanins and alkaloids. One of the key defensive metabolites in many plants is a protease inhibitor that inactivates the protein digestive capabilities of insects, thereby, reducing their growth. The receptor for JA-Ile is a ubiquitin ligase termed as SCFCoi1 that targets the repressor protein JA Zim domain (JAZ) for degradation in the 26S proteasome. Removal of JAZ allows other transcription factors (TFs) to activate the JA response. The levels of JA-Ile are controlled through catabolism by hydroxylating enzymes of the cytochrome P450 (CYP) family. The JAZ proteins act as metabolic hubs and play key roles in cross-talk with other phytohormone signalling pathways in co-ordinating genome-wide responses. Specific subsets of JAZ proteins are involved in regulating different response outcomes such as growth inhibition versus biotic stress responses. Understanding the molecular circuits that control plant responses to pests and pathogens is a necessary pre-requisite to engineering plants with enhanced resilience to biotic challenges for improved agricultural yields.
Collapse
|
24
|
Effects of Salicylic Acid and Methyl Jasmonate Treatments on Flavonoid and Carotenoid Accumulation in the Juice Sacs of Satsuma Mandarin In Vitro. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salicylic acid and jasmonic acid are two important plant hormones that trigger the plant defense responses and regulate the accumulation of bioactive compounds in plants. In the present study, the effects of salicylic acid (SA) and methyl jasmonate (MeJA) on flavonoid and carotenoid accumulation were investigated in the juice sacs of Satsuma mandarin in vitro. The results showed that SA treatment was effective to enhance the contents of eriocitrin, narirutin, poncirin, and β-cryptoxanthin in the juice sacs (p < 0.05). In contrast, the MeJA treatment inhibited flavonoid and carotenoid accumulation in the juice sacs (p < 0.05). Gene expression results showed that the changes of flavonoid and carotenoid contents in the SA and MeJA treatments were highly regulated at the transcriptional level. In addition, a transcriptional factor CitWRKY70 was identified in the microarray analysis, which was induced by the SA treatment, while suppressed by the MeJA treatment. In the SA and MeJA treatments, the change in the expression of CitWRKY70 was consistent with that of flavonoid and carotenoid biosynthetic key genes. These results indicated that CitWRKY70 might be involved in the regulation of flavonoid and carotenoid accumulation in response to SA and MeJA treatments in the juice sacs of citrus fruit.
Collapse
|
25
|
Pawlowski SP, Sweeney JD, Hillier NK. Electrophysiological Responses of the Beech Leaf-Mining Weevil, Orchestes fagi, to Seasonally-Variant Volatile Organic Compounds Emitted by American Beech, Fagus grandifolia. J Chem Ecol 2020; 46:935-946. [PMID: 32914252 DOI: 10.1007/s10886-020-01216-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022]
Abstract
The beech leaf-mining weevil, Orchestes fagi, is a common pest of European beech, Fagus sylvatica, and has recently become established in Nova Scotia, Canada where it similarly infests American beech, F. grandifolia. We collected volatile organic compounds (VOCs) emitted by F. grandifolia leaves at five developmental stages over one growing season and simultaneously analyzed them for volatile emissions and O. fagi antennal response using gas chromatography-electroantennographic detection (GC-EAD). Volatile profiles changed significantly throughout the growing season, shifting from primarily β-caryophyllene, methyl jasmonate, and simple monoterpene emissions to dominance of the bicyclic monoterpene sabinene during maturity. Two VOCs dominant during bud burst, (R)-(+)-limonene and geranyl-p-cymene, may be of biological relevance due to the highly specific oviposition period of O. fagi at this stage though antennal responses were inconclusive. Senescence showed a decrease in blend complexity with an increase in (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol as well as a resurgence of α-terpinene and geranyl-p-cymene. We present a novel electroantennal preparation for O. fagi. Antennae of both male and female O. fagi responded to the majority of detectable peaks for host volatiles presented via GC-EAD. Females displayed greater overall sensitivities and less specificity to host volatiles and it is hypothesized that this translates to more generalist olfaction than males. It is clear that olfactory cues are important physiologically though their implications on behaviour are still unknown. The results presented in this study provide a baseline and tools on which to connect the complex and highly time-specific phenology of both F. grandifolia and the destructive pest O. fagi through which olfactory-based lures can be investigated for monitoring systems.
Collapse
Affiliation(s)
- Simon P Pawlowski
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada.
| | - Jon D Sweeney
- Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - N Kirk Hillier
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|