1
|
Sang H, Zhang R, Gao R, Zhang S, Liu H, Pei J, Wang J, Gao S. Comparison of annealing and heat-moisture modification on effects of Tartary buckwheat starch under plasma-activated water condition. Food Chem 2025; 481:144014. [PMID: 40168865 DOI: 10.1016/j.foodchem.2025.144014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
This study investigated the effects of plasma-activated water (PAW) assisted annealing and heat-moisture treatment (HMT) on the physicochemical, structural properties, and in vitro digestibility of Tartary buckwheat starch (TBS). The results showed that there were much aggregates on the surface of starch granules under annealing and HMT conditions, it was more pronounced when subjected in PAW. The modified starches showed higher R1047/1022 and pasting temperature, which led to reducing digestibility of TBS. Notably, the highest resistant starch content (71.08 %) was observed with PAW-HMT under the moisture content of 30 %. In addition, all the modified starches remained A type pattern except HMT and PAW-HMT samples, which displayed an A + V type pattern. Therefore, TBS was more sensitive to the combined HMT and PAW treatment. These findings offered valuable insights into the application of PAW combined with thermal treatments to enhance the quality of TBS in the utilization of functional foods.
Collapse
Affiliation(s)
- Huilong Sang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rui Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruiyang Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Si Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Jiamei Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Shanshan Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Jiachang F, Liuyang C, Yan W, Weiguang Z, Hao W, Shaobowen Y, Jiacheng L, He W, Qiyang W, Dianlei H. Preparation of temperature-responsive pickering emulsions for encapsulating compound essential oils and their application in fresh noodle preservation. Food Chem 2025; 479:143822. [PMID: 40086380 DOI: 10.1016/j.foodchem.2025.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
In the present study, corn starch was modified to create temperature-responsive particles, which were employed as an emulsifier to formulate Pickering emulsions (PE) for the encapsulation of compound essential oils (CEO). The temperature responsiveness of CEOPE endows PE with the characteristics of faster release rate at lower temperature and more stability at room temperature, aligning with the typical low-temperature storage conditions of fresh noodles. The characteristics of CEOPE with different oil-water ratios were analyzed by morphology, particle size, PDI, zeta-potential, FTIR and rheological measurements. The CEOPE exhibited antibacterial activity against E. coli and S. aureus, making it an ideal candidate for non-contact antibacterial packaging. The antibacterial effect was further confirmed in the storage experiment of fresh noodles. The results have significant implications for the development of a temperature-responsive, bacteriostatic packaging material derived from natural components, offering a novel approach to the preservation of fresh noodles.
Collapse
Affiliation(s)
- Feng Jiachang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Chen Liuyang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang Yan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Zhao Weiguang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang Hao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yan Shaobowen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Liu Jiacheng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang He
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang Qiyang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han Dianlei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Sudheesh C, Pillai S. A review on research advances in efficient approaches to augment hydrothermal techniques for starch functionalization: Mechanisms, properties and potential food applications. Carbohydr Polym 2025; 357:123441. [PMID: 40158978 DOI: 10.1016/j.carbpol.2025.123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The applications of hydrothermally modified starches in conventional water media, such as distilled water (DW), are limited due to their poor performance. Therefore, researchers are introducing innovative techniques in various environments, including ethanol solutions, salt solutions, acidic or alkaline conditions, plasma-activated water (PAW), and hydrogen-infused water (HW), to enhance the efficiency of annealing (ANN) and heat moisture treatment (HMT). The present review discusses these new approaches aimed at improving the performance of ANN and HMT, their potential mechanisms for starch modification, the resulting changes in the functional properties of starch, and their role in various food applications. Additionally, it systematically elucidates the challenges, opportunities, and future directions in this field. Unlike classical water-based ANN or HMT, innovative and sustainable approaches adopted for hydrothermal methods drastically enhance the structural stability, resistance to digestive enzymes, and low-temperature storage stability of starch. However, these changes depend on controlled parameters, such as the concentration of ethanol or salt, pH of the medium, incubation time, moisture level, treatment temperature, and starch properties (e.g., amylose/amylopectin ratio) during treatment. This consolidated report on cutting-edge techniques designed to enhance the effectiveness of hydrothermal modifications seeks to expand the potential applications of ANN and HMT in food-grade products.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India.
| | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Yu Y, Su D, Xu H, Lv W, Song H, Li F, Zhao W, Sun X, Guo Y. Unveiling lotus root processing under vacuum microwave: starch-malic acid interactions based on moisture, structure, and in vitro digestibility. Food Chem 2025; 471:142862. [PMID: 39823907 DOI: 10.1016/j.foodchem.2025.142862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles. MVMP preserved higher levels of phenolic and flavonoid compounds. FT-IR analysis revealed an additional absorption peak at 1740 cm-1. The maximum degree of substitution was 0.131. Starch from MVMP-treated LR exhibited higher crystallinity, with a maximum resistant starch (RS) content of 68.3 %. In addition, microwave power considerably influenced amylose content, solubility, swelling power, and thermal enthalpy.
Collapse
Affiliation(s)
- Yiyang Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Dianbin Su
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Huihui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hualu Song
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
5
|
Yan Y, Wang Z, Liu S, Zhang X, Ji X, Shi M, Niu B. Effect of atmospheric cold plasma pretreatment on the formation of ternary complexes among wheat starch, β-lactoglobulin and fatty acids with different chain lengths. Food Chem 2025; 471:142798. [PMID: 39793358 DOI: 10.1016/j.foodchem.2025.142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
This study aims to examine the effect of atmospheric cold plasma (ACP) pretreatment (1-4 min) on the formation, structure, and digestibility of ternary complexes among wheat starch (WS), β-lactoglobulin (βLG) and fatty acids with different chain lengths (octanoic acid (OA), capric acid (CA), lauric acid (LA)). The complexing index results demonstrated that the greatest quantity (72.53 %, 70.38 %, 67.38 %) of WS-fatty acids-βLG complexes was formed when WS was treated with ACP for 1 min, leading to the best ordered structure and lowest digestibility caused by the increase in amylose content of WS (30.02 %). Furthermore, OA formed more complexes (72.53 %) with the same modified WS and βLG than CA and LA due to higher solubility. In conclusion, short-term ACP pretreatment of WS could promote the WS-fatty acids-βLG complexes and improve structural orderliness and resistant starch content. The present study provides an emerging green technology to facilitate the formation of starch-fatty acids-protein complexes.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, PR China.
| | - Ziyu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shuyang Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xinxin Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
6
|
Yan Y, Fang J, Zhang X, Ji X, Shi M, Niu B. Insight into formation and structure of wheat starch-lauric acid complexes by extrusion: Effect of plasma-activated water. Food Chem 2025; 469:142640. [PMID: 39733567 DOI: 10.1016/j.foodchem.2024.142640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
The objective of this study is to examine how plasma-activated water (PAW) affects the formation of complexes between wheat starch (WS) and lauric acid (LA) during extrusion. The findings from various analysis, including complexing index, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and differential scanning calorimetry, revealed that PAW promoted the formation of WS-LA complexes during extrusion, resulting in a better long-range and short-range ordered structure, as well as higher gelatinization enthalpy. Consequently, PAW led to lower solubility, swelling power, gel property, and rapidly digestible starch content but higher resistant starch content. Notably, the promotional impact of PAW60 (distilled water underwent plasma treatment for 60 s) was greater than PAW120 (distilled water underwent plasma treatment for 120 s) and PAW180 (distilled water underwent plasma treatment for 180 s). This study provides an efficacious technique to enhance the formation of starch complexes, being of great value in starch-based functional foods.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou, 450001, PR China.
| | - Jiao Fang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xinxin Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
7
|
Sun Y, Ma H, Xia R, Wu D, Wang Y, Cheng W, Wang Z, Xia X, Yang P, Tang X. Insight into the interaction between starch and guest molecules for quality improvement of buckwheat wantuo through extrusion and blending. Int J Biol Macromol 2025; 308:142429. [PMID: 40164269 DOI: 10.1016/j.ijbiomac.2025.142429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
As a "clean labelled" food additive, extruded Tartary buckwheat flour (ETBF) was used to enhance the eating quality of functional coarse cereal foods. However, it is unclear whether it can enhance the quality of the traditional Chinese starchy food buckwheat wantuo (BWT). This study investigated how blending ETBF at different ratios (5 %, 10 %, and 15 %) affected the physicochemical properties of Tartary buckwheat flour (TBF) and BWT quality. The results revealed degradation of amylopectin and amylose during extrusion, along with changes in colour, hydration, and pasting properties of TBF due to blending. Blending also improved the total polyphenol content (TPC), antioxidant activity, texture, and anti-digestibility of BWT. The evolution of starch conformation and polyphenol state influenced texture and digestion, with the local concentration ratio between the host and the guest being a key factor. Sensory evaluation combined with digestion data indicated that a blending ratio of 10 % was optimal. These findings provide valuable insights into developing functional coarse cereal foods.
Collapse
Affiliation(s)
- Yue Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Hong Ma
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ruhui Xia
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yang Wang
- Xiangxi Tujia and Miao Autonomous Prefecture Food and Drug Inspection Institute, Jishou 416099, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xifeng Xia
- Nanjing Univ Sci & Technol, Anal & Testing Ctr, Nanjing 210094, China
| | - Peiqiang Yang
- Suzhou Niumag Analytical Instrument Corporation, Suzhou 215151, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
8
|
Trejo-Zuñiga A, Flores-Silva PC, Hernandez-Hernandez E, Neira-Velazquez G, Hernandez-Gamez JF, Mendez-Padilla G, Saucedo-Salazar E, Sifuentes-Nieves I. Plasma-Activated Water/Ultrasound as a Green Method to Modify Wood Fiber By-Product: Insights of Their Mechanical Performance in Polylactic Acid-Based Biofilms. Biopolymers 2025; 116:e23655. [PMID: 39825514 DOI: 10.1002/bip.23655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction. The addition of modified WF in the PLA matrix increased the storage modulus (2937 up to 5834) and Young modulus (3990 up to 6000 MPa), indicating well fiber/matrix interactions. The results corroborated that the use of modified WF as fillers could reduce the cost of extruded PLA-based composites and expand the production of bio-based materials for the mobility or packaging field.
Collapse
Affiliation(s)
- Alexandra Trejo-Zuñiga
- Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Pachuca, Hidalgo, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shi M, Chen Y, Zhu X, Ji X, Yan Y. Effect of Yam Flour Modified with Plasma-Activated Water Combined with Extrusion Treatment on the Quality of Chinese Noodles. Foods 2024; 14:77. [PMID: 39796367 PMCID: PMC11720290 DOI: 10.3390/foods14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Yam noodles were produced by replacing high-gluten wheat flour with yam flour modified with plasma-activated water and twin-screw extrusion (PAW-TSE). The effects of varying amounts of modified yam flour on the color, cooking characteristics, texture, and in vitro digestibility of the noodles were investigated. As the amount of modified yam flour increased, the noodles became darker in color, while the bound water content increased, and the free water content decreased. The modified yam flour also affected the cooking properties, reducing the optimal cooking time, decreasing the water absorption, and increasing the cooking loss. Textural analysis revealed that the addition of modified yam flour improved the texture of raw noodles, enhancing their elasticity and chewiness after cooking, thus providing a better eating experience. Furthermore, the modified yam flour increased the resistant starch content, thereby enhancing the nutritional value of the noodles. These findings provide valuable insights for food manufacturers seeking to develop healthier and more appealing noodle products, potentially leading to greater consumer acceptance and market success.
Collapse
Affiliation(s)
- Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.S.); (Y.C.); (X.Z.); (Y.Y.)
| | - Yirui Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.S.); (Y.C.); (X.Z.); (Y.Y.)
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.S.); (Y.C.); (X.Z.); (Y.Y.)
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.S.); (Y.C.); (X.Z.); (Y.Y.)
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.S.); (Y.C.); (X.Z.); (Y.Y.)
| |
Collapse
|
10
|
Bohlooli S, Ramezan Y, Esfarjani F, Hosseini H, Eskandari S. Effect of soaking in plasma-activated liquids (PALs) on heavy metals and other physicochemical properties of contaminated rice. Food Chem X 2024; 24:101788. [PMID: 39310885 PMCID: PMC11415596 DOI: 10.1016/j.fochx.2024.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, plasma-activated liquids (PALs) were produced by a cold plasma gliding arc device at two different exposure times (7.5 and 15 min) and compared with deionized water (DW) as a control. The results showed that the amount of arsenic (As: 98 %), cadmium (Cd: 93 %), and lead (Pb: 93.3 %) were significantly decreased in all samples after soaking in PALs and DW than raw rice (p < 0.05). However, 15-min PALs were more successful. All soaked samples did not exceed the maximum residue limits (MRLs). A softer and easier chewing texture was observed for rice samples soaked in PALs than the sample soaked in DW. The samples treated with PALs also showed a lower gelatinization temperature and enthalpy. The color parameters and microstructure of rice samples were affected by treatment with PALs. Therefore, soaking rice in PALs before cooking can be considered an effective method to reduce the heavy metals in rice.
Collapse
Affiliation(s)
- Shahnaz Bohlooli
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Esfarjani
- Research Department of Food and Nutrition Policy and Planning, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute (NNFTRI), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (IR-FDA), Ministry of Health and Medical Education (MOH+ME), Enghelab St., Fakhr-e Razi St., Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, 1416643931 Tehran, Iran
| |
Collapse
|
11
|
Yan Y, Fang J, Zhu X, Ji X, Shi M, Niu B. Effect of extrusion using plasma-activated water on the structural, physicochemical, antioxidant and in vitro digestive properties of yam flour. Food Chem 2024; 460:140687. [PMID: 39106813 DOI: 10.1016/j.foodchem.2024.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
The synergistic effects of plasma-activated water (PAW) and twin-screw extrusion (TSE) on the structural, physicochemical, antioxidant, and digestive properties of yam flour (YF) were studied. Compared to common TSE, PAW-TSE reduced the protein, starch, and polyphenol contents, swelling power, and gel property of YF, while PAW-TSE enhanced the flavonoid content, whiteness index, solubility, and antioxidant property of YF. Moreover, the results of structural characterization and differential scanning calorimetry indicated that the long-range or short-range ordering, and gelatinization enthalpy of starch in YF were reduced after PAW-TSE, while the structure ordering of proteins in YF increased. Furthermore, the in vitro digestibility results demonstrated a reduction in the rate of enzymatic hydrolysis, coupled with an increase in total contents of slowly digestible and resistant starch after PAW-TSE. It should be noted that TSE using PAW prepared by a longer plasma treatment resulted in a more significant improvement effect on YF.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, PR China.
| | - Jiao Fang
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
12
|
Deng J, Bolgazy A, Wang X, Zhang M, Yang Y, Jiang H. The properties of potato starch with different moisture content treated by cold plasma:Structure, physicochemical and digestive properties. Int J Biol Macromol 2024; 282:137541. [PMID: 39532173 DOI: 10.1016/j.ijbiomac.2024.137541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
To investigate the effect and mechanism of water on the structure, physicochemical properties, and in vitro digestibility of starch treated with CP, different moisture content (16.7 %, 28.6 %, 37.5 %, 44.4 %, and 50 %, w/w) were used, followed by treatment with CP (40 V, 1 A, 3 mins). Results show that CP treatment preserves the Maltese cross pattern, crystal morphology, and Fourier transform infrared spectroscopy spectra of potato starch. However, significant changes were observed in molecular weight, chain length distribution, average particle size, ordered structure, and relative crystallinity. As moisture content increased, the etching effect on the particle surface intensified, leading to further reductions in molecular weight and ordered structure. Concurrently, amylose content, solubility, relative crystallinity, and resistant starch content increased. At higher water levels, water molecules exhibited protective effects, mitigating CP-induced structural damage by reducing etching and loss of molecular weight. These findings suggest that the role of water in CP treatment is complex and provide insights into the interaction between CP and water in starch properties, highlighting its potential applications in starch-based foods.
Collapse
Affiliation(s)
- Jishuang Deng
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Aiym Bolgazy
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Xinxin Wang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Yang Yang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China.
| |
Collapse
|
13
|
Yu M, Qu C, Li D, Jiang Z, Liu J, Yang F, Liu C, Yue W, Wu Q. Study on the effects of endogenous polyphenols on the structure, physicochemical properties and in vitro digestive characteristics of Euryales Semen starch based on multi-spectroscopies, enzyme kinetics, molecular docking and molecular dynamics simulation. Int J Biol Macromol 2024; 282:137245. [PMID: 39505170 DOI: 10.1016/j.ijbiomac.2024.137245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Euryales Semen (ES) is a highly nutritious food with low digestibility, which is closely associated with its endogenous phenolic compounds. In this study, five phenolic compounds (naringenin, isoquercitrin, gallic acid, epicatechin and quercetin) with high concentrations in ES were selected to prepare starch-polyphenol complexes. Subsequently, the effects of endogenous polyphenols on the structure, physicochemical properties and digestion characteristics of ES starch were studied using multiple techniques. The addition of phenolic compounds markedly reduced the in vitro digestibility, swelling power, gelatinization enthalpy, while increased the solubility of ES starch. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that phenolic compounds interacted with the starch through non-covalent bonds. Five phenolic compounds inhibited α-amylase activity through a mixed competitive inhibition mechanism, with the inhibition potency ranked as follows: quercetin > epicatechin > gallic acid > isoquercitrin > naringenin. The spectroscopic analysis and molecular dynamics simulations confirmed that five phenolic compounds interacted with the amino acid residues of α-amylase through hydrogen bonding and hydrophobic interactions, caused α-amylase static fluorescence quenching, and altered its conformation and microenvironment. This study provides a better understanding of the interaction mechanisms between ES starch and polyphenols, and supports the development of ES as a food that lowers sugar levels.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dishuai Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chanchan Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qinan Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Sifuentes-Nieves I, Soler A, Flores-Silva PC. Effect of plasma-activated water on the supramolecular structure and techno-functional properties of starch: A review. Food Chem 2024; 456:139997. [PMID: 38865820 DOI: 10.1016/j.foodchem.2024.139997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
This review discusses the changes in the multi-scale structure and functionality of starch after its hydrothermal modification using plasma-activated water (PAW). PAW contains reactive species that decrease the pH of the water and increase the oxidation-reduction potential, which promotes the oxidation and degradation of the surface of the starch granules to varying extents, depending on the botanical source and treatment conditions. In this article, we compile the information published so far on the effects of using PAW during heat-moisture and annealing treatments and discuss the results of the substitution of water with PAW on the long and short-range crystallinity, helical order, thermal behavior, functional properties, and digestibility. Additionally, we highlighted the possible application of PAW-modified starches. Finally, we provided an overview of future challenges, suggesting several potential directions to understand the mechanisms behind PAW use for developing sustainable modified starches for the food industry.
Collapse
Affiliation(s)
- Israel Sifuentes-Nieves
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253, Saltillo, Coahuila, Mexico.
| | - Adrian Soler
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - Pamela C Flores-Silva
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253, Saltillo, Coahuila, Mexico.
| |
Collapse
|
15
|
Tappiban P, Sraphet S, Srisawad N, Ahmed S, Bao J, Triwitayakorn K. Cutting-edge progress in green technologies for resistant starch type 3 and type 5 preparation: An updated review. Food Chem X 2024; 23:101669. [PMID: 39139492 PMCID: PMC11321431 DOI: 10.1016/j.fochx.2024.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Resistant starch (RS) is a dietary fiber that resists starch hydrolysis in the small intestine, and is fermented in the colon by microorganisms. RS not only has a broad range of benefits in the food and non-food industries but also has a significance impact on health promotion and prevention of non-communicable diseases. RS types 3 and 5 have been the focus of research from an environment-friendly perspective. RS3 is normally formed by recrystallization after physical modification, whereas RS5 is obtained by the complexation of starch and fatty acids through the thermomechanical methods. This review provides updates and approaches to RS3 and RS5 preparations that promote RS content based on green technologies. This information will be useful for future research on RS development and for identifying preparation methods for functional food.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| | - Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| | - Nattaya Srisawad
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China
| | - Kanokporn Triwitayakorn
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhorn Pathom, 73170, Thailand
| |
Collapse
|
16
|
Niu B, Qin Y, Xie X, Zhang B, Cheng L, Yan Y. Effect of ultrasound-pretreated starch on the formation, structure and digestibility of starch ternary complexes from lauric acid and β-lactoglobulin. ULTRASONICS SONOCHEMISTRY 2024; 109:106990. [PMID: 39018891 PMCID: PMC11298633 DOI: 10.1016/j.ultsonch.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Starch, lipids, and proteins are key macronutrients in starchy foods. Their interactions during processing can form starch-lipid-protein ternary complexes, significantly affecting food quality. Ultrasonic treatment, as a common processing method, is expected to regulate the quality of starchy foods by influencing the formation of ternary complexes. This study aimed to understand the effect of ultrasonic pretreatment on the formation of starch-lipid-protein ternary complexes using various types of starches. Wheat starch (WS), maize starch (MS), and potato starch (PS) were gelatinized and treated with ultrasound at various power densities (0-40 W/L) to form complexes with lauric acid (LA) and β-lactoglobulin (βLG), respectively. Ultrasound increased the amylose content of gelatinized WS, MS, and PS and shifted their chain length distribution towards the short chains. Results from Fourier transform infrared spectroscopy, laser confocal micro-Raman, X-ray diffraction, and differential scanning calorimetry showed that the largest amount of WS-LA-βLG complexes was formed at the ultrasonic power density of 10 W/L, and MS-LA-βLG and PS-LA-βLG complexes at 20 W/L. Additionally, ultrasound enhanced the content of resistant starch (RS) in the starch-LA-βLG complexes. The RS content increased from 14.12 % to 18.31 % for WS-LA-βLG, and from 19.18 % and 20.69 % to 27.60 % and 28.63 % for MS-LA-βLG and PS-LA-βLG complexes, respectively. This study presents an approach for facilitating the formation of ternary complexes, contributing to the development of low-GI functional foods.
Collapse
Affiliation(s)
- Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Yingnan Qin
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou, 450001, PR China.
| |
Collapse
|
17
|
Chen X, Wang W. The lipid-amylose complexes enhance resistant starch content in candelilla wax-based oleogels cookies. Int J Biol Macromol 2024; 278:134804. [PMID: 39154677 DOI: 10.1016/j.ijbiomac.2024.134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The substitution of margarine with candelilla wax (CW)-based oleogel is currently a prominent focus of research in the bakery industry. However, the use of CW-based oleogel in cookies increased starch digestibility, potentially posing a risk to human health. Thus, the anti-enzymatic mechanism of lipid-amylose complexes was used to evaluate the influence of olive diacylglycerol stearin (ODS) on starch digestibility in CW-based oleogel cookies. The in vitro digestibility analysis demonstrated that the DCW/ODS-35 cookie exhibited a increase of 27.72 % in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cookie formulated with margarine. The in-vivo glycemic index analysis revealed that the DCW/ODS-35 cookie had a medium glycemic index of 68. XRD pattern suggested that the presence of ODS in oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of ODS resulted in the gelatinization enthalpy of DCW-based cookies increased from 389.9 to 3314.9 J/g. The FTIR spectra indicated that the combination of ODS could promote a short-range ordered structure in DCW-based cookies. Overall, these findings demonstrated that the utilization of DCW-based oleogel presented a viable alternative to commercial margarine in the development of CW-based cookies with reduced starch digestibility.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
18
|
Li J, Yue Y, Lu Z, Hu Z, Tong Y, Yang L, Ji G, Liu P. Comparative sensitivity of A-type and B-type starch crystals to ultrahigh magnetic fields. Int J Biol Macromol 2024; 277:134552. [PMID: 39116966 DOI: 10.1016/j.ijbiomac.2024.134552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In this study, maize starch (A-type) and potato starch (B-type) were treated with ultrahigh magnetic fields (UMF) of different intensities (5 T and 15 T) to investigate their sensitivity to UMF by measuring changes in their structure and rheological properties. The results indicate that the crystallinity of A-type starch significantly decreases, reaching a minimum of 20.01 % at 5 T. In contrast, the crystallinity of B-type starch significantly increases, peaking at 21.17 % at 15 T, accompanied by a brighter polarized cross and a more perfect crystal structure. Additionally, B-type starch exhibited a significant increase in double helix content (from 32.67 % to 42.07 %), branching degree (from 1.96 % to 3.84 %), and R1022/995 (from 0.803 to 0.519), compared to A-type starch. B-type starch also showed a greater propensity for cross-linking reactions forming OCOR groups (from 0 % to 6.81 %), and its enthalpy change (∆H) increased substantially (from 19.28 J/g to 31.70 J/g), indicating a marked enhancement in thermal stability. Furthermore, the average hydrodynamic radius (Rh) decreased more for B-type starch, reflecting an increase in gel strength. These findings demonstrate that B-type starch is more sensitive to UMF than A-type starch. This study provides foundational data on the effects of UMF treatment on different crystalline starches, aiming to explore its potential applications in food and industrial fields.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Yonggang Yue
- China Inner Mongolia EHV Power Supply Bureau, Hohhot 010080, China; State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China
| | - Zhijian Lu
- State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China
| | - Ziang Hu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Yue Tong
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Lanjun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China.
| | - Guojun Ji
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China.
| | - Peiling Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore.
| |
Collapse
|
19
|
Liu S, Tian G, Gao S, Liu H. Changes in structure, physicochemical properties and in vitro digestibility of quinoa starch during heat moisture treatment with hydrogen-infused and plasma-activated waters. Int J Biol Macromol 2024; 280:136025. [PMID: 39326621 DOI: 10.1016/j.ijbiomac.2024.136025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this study, comparative effect of heat moisture treatment (HMT) with distilled, hydrogen-infused and plasma-activated waters on the structure, physicochemical properties and in vitro digestibility of quinoa starch (QS) was investigated. To our knowledge, this study is the first to apply hydrogen-infused water to starch modification. The surface of HMT-modified samples was much rougher than that of native QS. HMT did not change the typical "A"-type X-ray diffraction pattern of QS but it increased its relative crystallinity. Meanwhile, amylose content, gelatinization temperature and water absorption capacity of QS significantly increased, whereas viscosity and swelling power markedly decreased. The rapidly digestible starch level of HMT-treated samples was significantly lower than that of native QS, and the resistant starch content markedly increased. These alterations were dependent on treatment moisture level. Furthermore, compared to distilled water, the HMT with hydrogen-infused and plasma-activated waters induced much more extensive effect on above properties, and the sample treated with plasma-activated water had the highest extent due to the acidic or alkaline environment and reactive oxygen and nitrogen species. These results identified that the combination of HMT with hydrogen-infused or plasma-activated water was a novel strategy to improve the thermal stability and functionality of quinoa starch.
Collapse
Affiliation(s)
- Shuang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Ge Tian
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Shanshan Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China.
| |
Collapse
|
20
|
Li H, Li H, Liu Y, Liu R, Siriamornpun S. Optimization of Heat-Moisture Treatment Conditions for High-Amylose Starch and Its Application in High-Resistant Starch Triticale Noodles. Foods 2024; 13:2724. [PMID: 39272490 PMCID: PMC11395564 DOI: 10.3390/foods13172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Heat-moisture treatment (HMT) is a widely used method for modifying starch properties with the potential to reduce the digestibility of high-amylose starch (HAS). This study aimed to optimize the HMT conditions for HAS and apply the resulting HMT-HAS to triticale noodles to develop low-glycemic-index products. HMT significantly increased the resistant starch (RS) content and decreased the rapidly digestible starch (RDS) content of HAS. The treatment conditions-temperature, heating time, and moisture content-were found to significantly influence the starch composition. Optimal HMT conditions were determined using response surface methodology: a temperature of 108 °C, a heating time of 5.8 h, and a moisture content of 25.50%. Under these conditions, the RS content of HMT-HAS was 60.23%, nearly double that of the untreated sample. Increasing the level of HMT-HAS in triticale noodles led to significant decreases in short-range order, relative crystallinity, and viscosities, while the RS content increased from 12.08% to 34.41%. These findings suggest that incorporating HMT-HAS into triticale noodles effectively enhances starch digestive resistance, supporting the development of functional, low-glycemic-index triticale-based foods.
Collapse
Affiliation(s)
- Hua Li
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Hua Li
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
| | - Yu Liu
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
| | - Ruixin Liu
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Sirithon Siriamornpun
- Research Unit of Thai Food Innovation (TFI), Mahasarakham University, Kantarawichai 44150, Thailand
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Kantarawichai 44150, Thailand
| |
Collapse
|
21
|
Chen X, Chen X, Li D, Wang W. Long-Chain Saturated Fatty Acids in Olive Diacylglycerol Stearin Enhances Resistant Starch Content of Candelilla Wax Oleogel Cookies. Foods 2024; 13:2589. [PMID: 39200516 PMCID: PMC11353616 DOI: 10.3390/foods13162589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
The purpose of this study was to substitute shortening with olive diacylglycerol oil/candelilla wax (OCW)-olive diacylglycerol stearin (ODS) oleogels and evaluate their impact on starch digestibility in cookies. The in vitro digestibility study confirmed that the OCW/ODS-based cookies exhibited a notable enhancement of 14.6% in slowly digestible starch (SDS) and an increase of 3.14% in resistant starch (RS) values when contrasted with shortening cookies. The XRD pattern indicated that the existence of ODS may improve the formation of complexes between lipids and amylose. The DSC analysis demonstrated that the incorporation of ODS led to a remarkable rise in enthalpy alteration, escalating from 0.90 to 437.70 J/g, suggesting an improved ability to resist gelatinization. The FTIR spectra suggested that the incorporation of ODS might strengthen interactions between the hydrogen bonds and form the short-range ordered structure in OCW/ODS-based cookies. Overall, these results indicated that incorporating OCW/ODS-based oleogels could serve as a feasible substitute for conventional shortening in cookies with decreased starch digestibility.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Xiaoxia Chen
- Department of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510640, China;
| | - Daoming Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| |
Collapse
|
22
|
Liang D, Luo H, Sun Z, Liu Q, Zhao L, Li W. Effect of amylose partial extraction on citrate esterification of potato starch and its role in structure and physicochemical modification. Carbohydr Polym 2024; 338:122208. [PMID: 38763729 DOI: 10.1016/j.carbpol.2024.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
This study examines the impact and influence of amylose on the starch esterification reaction through partial extraction of amylose. Citric acid was added for the esterification reaction, and then the esterified starches' multiscale structure, physicochemical, and functional properties were evaluated. As the extraction time of amylose increased, the amylose content in the starch decreased. Higher concentrations of citric acid will lead to samples with a higher degree of substitution, with DS rising from 0.203 % (0 h) to 0.231 % (3.5 h) at CA3 treatment. While removing amylose had minimal effects on the crystal structure of starch granules, it did decrease the ratio of A and B1 chains and the molecular weight of amylose. Acid hydrolysis exacerbated these changes upon the addition of citric acid. Furthermore, removing amylose followed by citrate esterification resulted in lower pasting viscosity, enthalpy of gelatinization (from 13.37 J to 2.83 J), and degree of short-range ordering. Also, digestion shows a decrease caused by the increasing content of slow-digesting starch. The presence of amylose in starch granules does affect the formation of starch esters, and removing it before esterification modification may improve production efficiency and reduce costs to some extent.
Collapse
Affiliation(s)
- Danyang Liang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100, Yangling, People's Republic of China
| | - Haiyu Luo
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100, Yangling, People's Republic of China
| | - Zhuangzhuang Sun
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100, Yangling, People's Republic of China
| | - Qing Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100, Yangling, People's Republic of China
| | - Lipin Zhao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100, Yangling, People's Republic of China
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100, Yangling, People's Republic of China.
| |
Collapse
|
23
|
Xu Z, Liu X, Zhang C, Ma M, Gebre BA, Mekonnen SA, Corke H, Sui Z. Mild alkali treatment alters structure and properties of maize starch: The potential role of alkali in starch chemical modification. Int J Biol Macromol 2024; 274:133238. [PMID: 38897493 DOI: 10.1016/j.ijbiomac.2024.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g-1 to 21.95 J·g-1, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.
Collapse
Affiliation(s)
- Zekun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoning Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuangchuang Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengting Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bilatu Agza Gebre
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Solomon Abate Mekonnen
- Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhongquan Sui
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
24
|
Ma S, Zhang M, Wang X, Yang Y, He L, Deng J, Jiang H. Effect of plasma-activated water on the quality of wheat starch gel-forming 3D printed samples. Int J Biol Macromol 2024; 274:133552. [PMID: 39025747 DOI: 10.1016/j.ijbiomac.2024.133552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
In this study, a new method for preparing gels suitable for 3D printing of food structures using wheat starch and plasma activated water (PAW) is presented. The investigation focused on the effect of PAW on starch pasting and the final 3D printed product. It was found that the use of PAW for 15 min in the preparation of wheat starch gels optimized carrier stability and improved height retention in the printed constructs, showing significant shape retention even after prolonged storage. This durability can be attributed to the hindrance of polymerization between starch molecules and the promotion of intermolecular starch polymerization when reactive groups and ions are integrated into the starch structure. The incorporation of PAW with soluble reactive groups, ions and acidity not only accelerates the breakdown of the starch molecules but also facilitates additional hydrogen bonding within the double helix, which strengthens the structure of the gel. This interaction accelerates the retrogradation of the starch, thereby enhancing its overall stability. This study provides a new green approach to modify the 3D printing properties of starch gels.
Collapse
Affiliation(s)
- Shu Ma
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Meng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xinxin Wang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Yang Yang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Ling He
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jishuang Deng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hao Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
25
|
Zuo Y, Zou F, Yang M, Xu G, Wu J, Wang L, Wang H. Effects of plasma-activated water combined with ultrasonic treatment of corn starch on structural, thermal, physicochemical, functional, and pasting properties. ULTRASONICS SONOCHEMISTRY 2024; 108:106963. [PMID: 38936293 PMCID: PMC11259921 DOI: 10.1016/j.ultsonch.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this study, corn starch was used as the raw material, and modified starch was prepared using a method combining plasma-activated water and ultrasound treatment (PUL). This method was compared with treatments using plasma-activated water (PAW) and ultrasound (UL) alone. The structure, thermal, physicochemical, pasting, and functional properties of the native and treated starches were evaluated. The results indicated that PAW and UL treatments did not alter the shape of the starch granules but caused some surface damage. The PUL treatment increased the starch gelatinization temperature and enthalpy (from 11.22 J/g to 13.13 J/g), as well as its relative crystallinity (increased by 0.51 %), gel hardness (increased by 16.19 %) compared to untreated starch, without inducing a crystalline transition. The PUL treatment resulted in a whitening of the samples. The dual treatment enhanced the thermal stability of the starch paste, which can be attributed to the synergistic effect between PAW and ultrasound (PAW can modify the starch structure at a molecular level, while ultrasound can further disrupt the granule weak crystalline structures, leading to improved thermal properties). Furthermore, FTIR results suggested significant changes in the functional groups related to the water-binding capacity of starch, and the order of the double-helical structure was disrupted. The findings of this study suggest that PUL treatment is a promising new green modification technique for improving the starch structure and enhancing starch properties. However, further research is needed to tailor the approach based on the specific properties of the raw material.
Collapse
Affiliation(s)
- Yongxuan Zuo
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangfei Xu
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
| | - Junhua Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongying Wang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Chen R, Zhao J, Sui Z, Danino D, Corke H. Comparative analysis of granular starch hydrolysis and multi-structural changes by diverse α-amylases sources: Insights from waxy rice starch. Food Chem 2024; 444:138622. [PMID: 38310779 DOI: 10.1016/j.foodchem.2024.138622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Three cultivars of waxy rice starch with different multi-scale structures were subjected to α-amylase hydrolysis to determine amylopectin fine structure, production of oligosaccharides, morphology, and crystallinity of the partially hydrolyzed starch granules. α-amylases hydrolyzed the amylopectin B2 chain during the initial stage of hydrolysis, suggesting that it is primarily located in the outer shell of the granules. For waxy rice starch with loose structure, α-amylases attacked the crystalline and amorphous regions simultaneously in the initial stage, while for starch granules with compact structure, the outer shell blocklet (crystalline structure) can be a hurdle for α-amylases to proceed to hydrolysis of the internal granule structure. The ability of α-amylases from porcine pancreatic α-amylases to attack the outer shell crystalline structure was lower than that of α-amylases from Bacillus amyloliquefaciens and Aspergillus oryzae. These results show that α-amylase source and rice cultivar combinations can be used to generate diverse structures in degraded waxy rice starch.
Collapse
Affiliation(s)
- Ri Chen
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Jingjing Zhao
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dganit Danino
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Harold Corke
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
27
|
Chen X, Lan D, Li D, Wang W, Wang Y. Enhancement of resistant starch content in ethyl cellulose-based oleogels cakes with the incorporation of glycerol monostearate. Curr Res Food Sci 2024; 8:100770. [PMID: 38860263 PMCID: PMC11163166 DOI: 10.1016/j.crfs.2024.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
The objective of this work was to completely replace margarine with peanut diacylglycerol oil/ethyl cellulose-glycerol monostearate oleogel (DEC/GMS) oleogel, and evaluate its effect on starch digestibility of cakes. The in vitro digestibility analysis demonstrated that the DEC/GMS-6 cake exhibited a 26.36% increase in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cakes formulated with margarine. The increased SDS and RS contents might mainly be due to the hydrophobic nature of OSA-wheat flour, which could promote the formation of lipid-amylose complexes with GMS and peanut diacylglycerol oil. XRD pattern suggested that the presence of GMS in DEC-based oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of GMS resulted in a significant increase in gelatinization enthalpy, rising from 249.7 to 551.9 J/g, which indicates an improved resistance to gelatinization. The FTIR spectra indicated that the combination of GMS could enhance the hydrogen bonding forces and short-range ordered structure in DEC-based cakes. The rheological analysis revealed that an increase in GMS concentration resulted in enhanced viscoelasticity of DEC-based cake compared to TEC-based cakes. The DEC-based cakes exhibited a more satisfactory texture profile and higher overall acceptability than those of TEC-based cakes. Overall, these findings demonstrated that the utilization of DEC-based oleogel presented a viable alternative to commercial margarine in the development of cakes with reduced starch digestibility.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Daoming Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
28
|
Ji H, Li D, Zhang L, Li M, Ma H. Effect of atmospheric pressure plasma jet on the structure and physicochemical properties of wheat starch. Front Nutr 2024; 11:1386778. [PMID: 38765812 PMCID: PMC11100464 DOI: 10.3389/fnut.2024.1386778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The effect of atmospheric pressure plasma jet (APPJ) with different discharge power (0, 400, 600, and 800 W) on the structure and physicochemical properties of wheat starch were evaluated in this study. After APPJ treatments, significant declines in peak viscosity, breakdown viscosity, and final viscosity of wheat starch pasting parameters were observed with increase of plasma treatment power. Being treated with discharge power of 800 W, the PV and BD value of wheat starch paste significantly dropped to 2,578 and 331 cP, respectively. Apparently, APPJ could raise the solubility of wheat starch, while reduce the swelling capacity, and also lower the G' and G″ value of wheat starch gel. Roughness and apparent scratch was observed on the surface of the treated wheat starch granules. Although APPJ treatment did not alter wheat starch's crystallization type, it abated the relative crystallinity. APPJ treatment might be useful in producing modified wheat starch with lower viscosity and higher solubility.
Collapse
Affiliation(s)
- Hongfang Ji
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- National Pork Processing Technology Research and Development Professional Center, Xinxiang, China
| | - Dandan Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Lingwen Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Manjie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- National Pork Processing Technology Research and Development Professional Center, Xinxiang, China
| |
Collapse
|
29
|
Niu B, Qin Y, Zhu X, Zhang B, Cheng L, Yan Y. Effect of plasma-activated water on the formation of endogenous wheat starch-lipid complexes during extrusion. Int J Biol Macromol 2024; 257:128647. [PMID: 38056152 DOI: 10.1016/j.ijbiomac.2023.128647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The aim of this study was to investigate the effect of plasma-activated water (PAW) during extrusion on the formation of endogenous starch complexes with wheat starch (WS) as a model material. Using PAW during the extrusion process resulted in an increase in amylose content from 27.87 % to 30.07 %. Results from Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry indicated that the PAW facilitated the formation of endogenous starch-lipid complexes during extrusion. PAW120 (distilled water treated by plasma for 120 s) showed a better promotion effect than PAW60 (distilled water treated by plasma for 60 s). EWS120 (WS extruded using PAW120) exhibited lower peak viscosity and swelling power, but higher solubility, particle size, and resistant starch content compared with EWS0 (WS extruded using distilled water) and EWS60 (WS extruded using PAW60). In a word, the acidic substances in PAW may lead to hydrolysis of starch and generate more amylose, thus improving the amount of endogenous starch-lipid complexes. The present study provides a novel extrusion method to obtain modified starch with higher RS content than common extrusion, which has potential application in the industrial production of functional foods with low glycemic index.
Collapse
Affiliation(s)
- Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, PR China
| | - Yingnan Qin
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, PR China
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, PR China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, PR China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China.
| |
Collapse
|
30
|
Hao M, Zhu X, Ji X, Shi M, Yan Y. Effect of Konjac Glucomannan on Structure, Physicochemical Properties, and In Vitro Digestibility of Yam Starch during Extrusion. Foods 2024; 13:463. [PMID: 38338597 PMCID: PMC10855837 DOI: 10.3390/foods13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the effect of konjac glucomannan (KGM, 0-5%) on the structure, physicochemical properties, and in vitro digestibility of extruded yam starch (EYS) was investigated. The EYS became rougher on the surface and the particle size increased as observed using scanning electron microscopy and particle size analysis. X-ray diffraction and Raman results revealed that the relative crystallinity (18.30% to 22.30%) of EYS increased, and the full width at half maxima at 480 cm-1 decreased with increasing KGM content, indicating the increment of long-range and short-range ordered structure. Differential scanning calorimetry and rheological results demonstrated that KGM enhanced thermal stability and the gel strength of EYS due to enhanced interaction between KGM and YS molecules. Additionally, a decrease in the swelling power and viscosity of EYS was observed with increased KGM content. The inclusion of KGM in the EYS increased the resistant starch content from 11.89% to 43.51%. This study provides a dual-modified method using extrusion and KGM for modified YS with high thermal stability, gel strength, and resistance to digestion.
Collapse
Affiliation(s)
- Mengshuang Hao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
31
|
Yan Y, Zhu X, Hao M, Ji X, Shi M, Niu B. Understanding the multi-scale structure, physicochemical and digestive properties of extruded yam starch with plasma-activated water. Int J Biol Macromol 2024; 254:128054. [PMID: 37956800 DOI: 10.1016/j.ijbiomac.2023.128054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
In this study, the synergistic effect of plasma-activated water (PAW) combined with twin-screw extrusion (TSE) on multi-scale structure, physicochemical and digestive properties of yam starch (YS) was studied. PAW-TSE resulted in higher amylose content in YS than TSE alone. Compared with single TSE, the relative crystallinity, short-range ordered degree, and gelatinization enthalpy of YS were increased by PAW-TSE according to the results of X-ray diffraction, Fourier transform infrared, Raman spectroscopy, and differential scanning calorimetry. Furthermore, rapid viscosity and dynamic rheological analysis showed that the peak and breakdown viscosity of PAW-TSE treated YS paste were considerably reduced, and the storage modulus and loss modulus were significantly increased, indicating that the gel strength and thermal stability were improved. In addition, the resistant starch (RS) content of YS treated by PAW-TSE increased from 6.04 % to 21.21 %. Notably, the effect of PAW-TSE on YS enhanced with the preparation time of PAW increased. Finally, correlation analysis indicated that the characteristic indexes of PAW had a significant impact on the long or short-range ordered structure, thermal properties, and in vitro digestibility of YS during extrusion. Therefore, PAW-TSE, as an emerging dual modification technology, will greatly expand the application of extrusion technology.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, PR China.
| | - Xiaopei Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Mengshuang Hao
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
32
|
Sadighara P, Ghanbari R, Mahmudiono T, Kavousi P, Limam I, Fakhri Y. Concentration and probabilistic health risk assessment of benzo(a)pyrene in extra virgin olive oils supplied in Tehran, Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:238-247. [PMID: 36371808 DOI: 10.1080/09603123.2022.2144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
One hundred and sixteen samples of extra virgin olive oils (VOOs) from markets of Tehran were analyzed by high-performance liquid chromatography (HPLC) to detect the amount of benzo (a)pyrene. The values of LOD and LOQ were calculated as 0.03 and 0.05 µg/kg, respectively. The concentration of benzo (a) pyrene was from 0.03 to 0.95 µg/kg. The results indicate that the levels of benzo (a) pyrene are lower than the limits approved. Target Hazard quotient (THQ) and Margin of Exposure (MOE) were estimated. The mean of THQ for adults and children was 0.0006 and 0.0028 and also mean of MOE for adults and children was 43,503 and 9438, respectively. The probabilistic health risk shows that THQ is less than 1 value; hence consumers are not at non-cancer risk. The mean of MOE value for adults was more than 10,000 but for children was less than 10,000. Hence, children are at health risk borderline.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | | | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
33
|
Flores-Silva PC, Ramírez-Vargas E, Palma-Rodriguez H, Neira-Velazquez G, Hernandez-Hernandez E, Mendez-Montealvo G, Sifuentes-Nieves I. Impact of plasma-activated water on the supramolecular structure and functionality of small and large starch granules. Int J Biol Macromol 2023; 253:127083. [PMID: 37769757 DOI: 10.1016/j.ijbiomac.2023.127083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Hydrothermal (HMT) and water agitation (WA) treatments using plasma-activated water (PAW) were employed as sustainable methods to modify the molecular and functional performance of small (rice) and large (potato) starch granules. HMT-PAW and WA-PAW treatments resulted in etched and damaged granular surfaces that rearranged the long and short-range crystallinity of the modified starches. Both treatments seemed to predominantly occur in the amorphous region of the rice starch and the crystalline regions of the potato starch, changing the crystallinity values from 22.9 and 14.8 % to 31.8 and 10.4 %, respectively. Thus, the level of the arrangement of chains reached after PAW treatment decreased the ability of rice starch granules to swell (16 to 9 %) and leach out starch molecules from the granules (4.5 to 1.3 %), decreasing the viscosity and pasting profiles as indicated by n and k values. Opposite behavior was observed in the modified potato starches since starch components leached out to a higher extent (1.7 to 5.4 %). The results showed that HMT and WA treatments using PAW are feasible eco-friendly methods for modifying starch granules without chemical reagents. These modified starches could be suitable as functional ingredients or biopolymeric matrices for the food and packaging industry.
Collapse
Affiliation(s)
- Pamela C Flores-Silva
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico.
| | - Eduardo Ramírez-Vargas
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Heidi Palma-Rodriguez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| | - Guadalupe Neira-Velazquez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Ernesto Hernandez-Hernandez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Guadalupe Mendez-Montealvo
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - Israel Sifuentes-Nieves
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico.
| |
Collapse
|
34
|
Li F, Chen Z, Chang M, Zhang X, Liu X, Wang J. Three anthocyanin-rich berry extracts regulate the in vitro digestibility of corn starch: Physicochemical properties, structure and α-amylase. Int J Biol Macromol 2023; 253:127484. [PMID: 37875184 DOI: 10.1016/j.ijbiomac.2023.127484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
This study aimed to compare the regulatory effects of blue honeysuckle anthocyanins (BHA), blueberry anthocyanins (BBA), and blackcurrant anthocyanins (BCA) on the in vitro digestibility of corn starch in terms of starch physicochemical properties and structure, as well as α-amylase inhibition. The results revealed that adding all three anthocyanins lowered digestibility in the following order: BHA > BCA > BBA. The terminal digestibility (C∞) decreased from 73.84 % to 57.3 % with the addition of 10 % BHA, while the resistant starch (RS) content increased from 4.39 % to 48.82 %. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis indicated that anthocyanins and starch interacted through noncovalent bonds. Differential scanning calorimetry (DSC) analysis showed that the gelatinization enthalpy was dramatically lowered in all three anthocyanin groups, with 10 % BHA producing a 38.58 % drop. Rheological property analysis showed that anthocyanins increased the apparent viscosity and modulus with starch. The interaction between anthocyanin and α-amylase was mainly through the formation of hydrogen bonds and hydrophobic forces. This research provides theoretical guidance for developing low glycemic index (GI) anthocyanin starch-based foods.
Collapse
Affiliation(s)
- Fengfeng Li
- College of Food Science, Northeast Agriculture University, Harbin, Heilongjiang 150030, China
| | - Zhao Chen
- College of Food Science, Northeast Agriculture University, Harbin, Heilongjiang 150030, China
| | - Meina Chang
- College of Food Science, Northeast Agriculture University, Harbin, Heilongjiang 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agriculture University, Harbin, Heilongjiang 150030, China.
| | - Xiaochen Liu
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224003, China
| | - Jinge Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
35
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
36
|
Sahraeian S, Rashidinejad A, Niakousari M. Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. Int J Biol Macromol 2023; 249:126098. [PMID: 37543265 DOI: 10.1016/j.ijbiomac.2023.126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Hydrocolloids are important ingredients in food formulations and their modification can lead to novel ingredients with unique functionalities beyond their nutritional value. Cold plasma is a promising technology for the modification of food biopolymers due to its non-toxic and eco-friendly nature. This review discusses the recent published studies on the effects of cold plasma treatment on non-starch hydrocolloids and their derivatives. It covers the common phenomena that occur during plasma treatment, including ionization, etching effect, surface modification, and ashing effect, and how they contribute to various changes in food biopolymers. The effects of plasma treatment on important properties such as color, crystallinity, chemical structure, rheological behavior, and thermal properties of non-starch hydrocolloids and their derivatives are also discussed. In addition, this review highlights the potential of cold plasma treatment to enhance the functionality of food biopolymers and improve the quality of food products. The mechanisms underlying the effects of plasma treatment on food biopolymers, which can be useful for future research in this area, are also discussed. Overall, this review paper presents a comprehensive overview of the current knowledge in the field of cold plasma treatment of non-starch hydrocolloids and their derivatives and highlights the areas that require further investigation.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
37
|
Raza H, Xu H, Zhou Q, He J, Zhu B, Li S, Wang M. A review of green methods used in starch-polyphenol interactions: physicochemical and digestion aspects. Food Funct 2023; 14:8071-8100. [PMID: 37647014 DOI: 10.1039/d3fo01729j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The interactions of starch with lipids, proteins, and other major food components during food processing are inevitable. These interactions could result in the formation of V-type or non-V-type complexes of starch. The starch-lipid complexes have been intensively studied for over five decades, however, the complexes of starch and polyphenols are relatively less studied and are the subject of recent interest. The interactions of starch with polyphenols can affect the physicochemical properties and its digestibility. The literature has highlighted several green methods such as ultrasound, microwave, high pressure, extrusion, ball-milling, cold plasma etc., to assist interactions of starch with polyphenols. However, comprehensive information on green methods to induce starch-polyphenol interactions is still scarce. Therefore, in light of the importance and potential of starch-polyphenol complexes in developing functional foods with low digestion, this review has summarized the novel green methods employed in interactions of starch with flavonoids, phenolic acids and tannins. It has been speculated that flavonoids, phenolic acids, and tannins, among other types of polyphenols, may have anti-digestive activities and are also revealed for their interaction with starch to form either an inclusion or non-inclusion complex. Further information on the effects of these interactions on physicochemical parameters to understand the chemistry and structure of the complexes is also provided.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK, 1958, Denmark
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
38
|
Yan Y, An H, Liu Y, Ji X, Shi M, Niu B. Debranching facilitates malate esterification of waxy maize starch and decreases the digestibility. Int J Biol Macromol 2023:125056. [PMID: 37245772 DOI: 10.1016/j.ijbiomac.2023.125056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/15/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
In this study, the debranching followed by malate esterification was employed to prepare malate debranched waxy maize starch (MA-DBS) with a high degree of substitution (DS) and low digestibility using malate waxy maize starch (MA-WMS) as the control. The optimal esterification conditions were obtained using an orthogonal experiment. Under this condition, the DS of MA-DBS (0.866) was much higher than that of MA-WMS (0.523). A new absorption peak was generated at 1757 cm-1 in the infrared spectra, indicating the occurrence of malate esterification. Compared with MA-WMS, MA-DBS had more particle aggregation, resulting in an increase in the average particle size from scanning electron microscopy and particle size analysis. The X-ray diffraction results showed that the relative crystallinity decreased after malate esterification, in which the crystalline structure of MA-DBS almost disappeared, which was consistent with the decrease of decomposition temperature by thermogravimetric analysis and the disappearance of the endothermic peak by differential scanning calorimeter. In vitro digestibility tests showed an order: WMS > DBS > MA-WMS > MA-DBS. The MA-DBS showed the highest content of resistant starch (RS) of 95.77 % and the lowest estimated glycemic index of 42.27. In a word, pullulanase debranching could produce more short amylose, promoting malate esterification and improving the DS. The presence of more malate groups inhibited the formation of starch crystals, increased particle aggregation, and enhanced resistance to enzymolysis. The present study provides a novel protocol for producing modified starch with higher RS content, which has potential application in functional foods with a low glycemic index.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China.
| | - Hong An
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Yanqi Liu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
39
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Shi M, Dong X, Cheng Y, Ji X, Liu Y, Yan Y. Preparation and Characterization of Extruded Yam Starch-Soy Protein Isolate Complexes and Their Effects on the Quality of Dough. Foods 2023; 12:foods12020360. [PMID: 36673452 PMCID: PMC9857982 DOI: 10.3390/foods12020360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Extrusion is a method of processing that changes the physicochemical and rheological properties of starch and protein under specific temperature and pressure conditions. In this study, twin-screw extrusion technology was employed to prepare yam starch-soy protein isolate complexes. The structure and properties of the complexes and their effects on the quality of dough were studied. The results showed changes in the X-ray diffraction, rheology, and in vitro digestibility of the complexes. The extruded starch-protein complex formed an A+V-type crystal structure with the addition of soy protein isolate. A small amount of soy protein isolate could improve the complex's viscoelasticity. As the content of soy protein isolate increased, the content of slow-digesting starch and resistant starch in the complexes increased, and the digestibility decreased. The microstructure of the dough indicated that the network structure of the puffed yam starch-protein complex dough was more uniform than that of the same amount of puffed yam starch. The moisture distribution of the dough showed that with the addition of extruded flour, the closely bound water content of the dough increased, and the weakly bound water content decreased. The hardness, gumminess, chewiness, and resilience of the dough decreased. In conclusion, extruded starch-protein complexes can improve dough quality and provide technical support for the broad application of yam.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhe Yan
- Correspondence: ; Tel.: +86-135-9258-3213
| |
Collapse
|
41
|
Ansari MJ, Jasim SA, Taban TZ, Bokov DO, Shalaby MN, Al-Gazally ME, Kzar HH, Qasim MT, Mustafa YF, Khatami M. Anticancer Drug-Loading Capacity of Green Synthesized Porous Magnetic Iron Nanocarrier and Cytotoxic Effects Against Human Cancer Cell Line. J CLUST SCI 2023; 34:467-477. [DOI: 10.1007/s10876-022-02235-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
|
42
|
Kang X, Zhu W, Xu T, Sui J, Gao W, Liu Z, Jing H, Cui B, Qiao X, Abd El-Aty AM. Characterization of starch structures isolated from the grains of waxy, sweet, and hybrid sorghum ( Sorghum bicolor L. Moench). Front Nutr 2022; 9:1052285. [PMID: 36583213 PMCID: PMC9792479 DOI: 10.3389/fnut.2022.1052285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, starches were isolated from inbred (sweet and waxy) and hybrid (sweet and waxy) sorghum grains. Structural and property differences between (inbred and hybrid) sweet and waxy sorghum starches were evaluated and discussed. The intermediate fraction and amylose content present in hybrid sweet starch were lower than those in inbred sweet starch, while the opposite trend occurred with waxy starch. Furthermore, there was a higher A chain (30.93-35.73% waxy, 13.73-31.81% sweet) and lower B2 + B3 chain (18.04-16.56% waxy, 24.07-17.43% sweet) of amylopectin in hybrid sorghum starch. X-ray diffraction (XRD) and Fourier transform infrared reflection measurements affirm the relative crystalline and ordered structures of both varieties as follows: inbred waxy > hybrid waxy > hybrid sweet > inbred sweet. Small angle X-ray scattering and 13C CP/MAS nuclear magnetic resonance proved that the amylopectin content of waxy starch was positively correlated with lamellar ordering. In contrast, an opposite trend was observed in sweet sorghum starch due to its long B2 + B3 chain content. Furthermore, the relationship between starch granule structure and function was also concluded. These findings could provide a basic theory for the accurate application of existing sorghum varieties precisely.
Collapse
Affiliation(s)
- Xuemin Kang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wentao Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Tongcheng Xu
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jie Sui
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhiquan Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Haichun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Cui
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China,*Correspondence: Bo Cui,
| | - Xuguang Qiao
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,Xuguang Qiao,
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey,A. M. Abd El-Aty,
| |
Collapse
|
43
|
Application of plasma-activated water in the food industry: A review of recent research developments. Food Chem 2022; 405:134797. [DOI: 10.1016/j.foodchem.2022.134797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|
44
|
Wu P, Li Y, Xiao S, Chen D, Chen J, Tang J, Zhang X. Room-Temperature Detection of Perfluoroisobutyronitrile with SnO 2/Ti 3C 2T x Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48200-48211. [PMID: 36226794 DOI: 10.1021/acsami.2c11216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ti3C2Tx MXene is an emerging two-dimensional transition-metal carbide/nitride with excellent properties of large specific surface and high carrier mobility for room-temperature gas sensing. However, achieving high sensitivity and long-term stability of pristine Ti3C2Tx-based gas sensors remains challenging. SnO2 is a typical semiconductor metal oxide with high reaction activity and stable chemical properties ideal for a dopant that can comprehensively improve sensing performance. Ti3C2Tx and SnO2 are investigated for the first time in this study as functional materials for hybridization and room-temperature detection of the gas insulating medium fluorinated nitrile (C4F7N) with microtoxicity. A Ti3C2Tx-SnO2 nanocomposite sensor exhibits superior sensitivity, high selectivity, strong anti-interference ability, and excellent long-term stability. The enhanced sensing mechanism is ascribed to the synergistic effect between SnO2 and Ti3C2Tx and the strong adsorption ability of SnO2 to C4F7N similar to bait for fish. We also established an actual leakage scene and demonstrated the feasibility of the Ti3C2Tx-SnO2 sensor to provide distribution rules with high sensing efficiency for actual engineering applications. The results of this work can expand the gas sensing application of Ti3C2Tx MXene and provide a reference for maintaining C4F7N-based eco-friendly gas-insulated equipment.
Collapse
Affiliation(s)
- Peng Wu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan430072, China
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan430072, China
| | - Song Xiao
- School of Electrical Engineering and Automation, Wuhan University, Wuhan430072, China
| | - Dachang Chen
- School of electrical and electronic engineering, Wuhan Polytechnic University, Wuhan430023, China
| | - Junyi Chen
- School of Electrical Engineering and Automation, Wuhan University, Wuhan430072, China
| | - Ju Tang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan430072, China
| | - Xiaoxing Zhang
- Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan430068, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing400044, China
| |
Collapse
|
45
|
Hai T, Abidi A, Wang L, Ghaderi M, Mahmoud MZ, Rawa MJ, Aybar HŞ. Thermal analysis of building benefits from PCM and heat recovery- installing PCM to boost energy consumption reduction. JOURNAL OF BUILDING ENGINEERING 2022; 58:104982. [DOI: 10.1016/j.jobe.2022.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
46
|
Ji X, Wang Z, Jin X, Qian Z, Qin L, Guo X, Yin M, Liu Y. Effect of inulin on the pasting and retrogradation characteristics of three different crystalline starches and their interaction mechanism. Front Nutr 2022; 9:978900. [PMID: 36159497 PMCID: PMC9493248 DOI: 10.3389/fnut.2022.978900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
At present, there are hardly any studies about the effect of inulin (IN) on the physicochemical properties and structures of different crystalline starches. In this study, three different crystalline starches (wheat, potato, and pea starch) were compounded with natural IN, and its pasting, retrogradation, and structural characteristics were investigated. Then, the potential mechanism of interaction between IN and starch was studied. The results showed that there were some differences in the effects of IN on the three different crystalline starch. Pasting experiments showed that the addition of IN not only increased pasting viscosity but also decreased the values of setback and breakdown. For wheat starch and pea starch, IN reduced their peak viscosity from 2,515 cP, 3,035 cP to 2,131 cP and 2,793 cP, respectively. Retrogradation experiment dates demonstrated that IN delayed gelatinization of all three starches. IN could reduce the enthalpy of gelatinization and retrogradation to varying degrees and inhibit the retrogradation of starch. Among them, it had a better inhibitory effect on potato starch. The addition of IN reduced the retrogradation rate of potato starch from 38.45 to 30.14%. Fourier-transform infrared spectroscopy and interaction force experiments results showed that IN interacted with amylose through hydrogen bonding and observed the presence of electrostatic force in the complexed system. Based on the above, experimental results speculate that the mechanism of interaction between IN and three crystalline starches was the same, and the difference in physicochemical properties was mainly related to the ratio of amylose to amylopectin in different crystalline starches. These findings could enrich the theoretical system of the IN with starch compound system and provide a solid theoretical basis for further applications.
Collapse
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Zhiwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| | - Zhenpeng Qian
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Le Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Xudan Guo
- Basic Medical College, Hebei University of Chinese Medicine, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei TCM Formula Preparation Technology Innovation Center, Shijiazhuang, China
- *Correspondence: Xudan Guo
| | - Mingsong Yin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
- Mingsong Yin
| | - Yanqi Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
- Yanqi Liu
| |
Collapse
|
47
|
Aaliya B, Sunooj KV, Navaf M, Akhila PP, Sudheesh C, Sabu S, Sasidharan A, Sinha SK, George J. Influence of plasma-activated water on the morphological, functional, and digestibility characteristics of hydrothermally modified non-conventional talipot starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
In-vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydr Polym 2022; 291:119600. [DOI: 10.1016/j.carbpol.2022.119600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
49
|
Highly sensitive and selective detection of tryptophan by antipyrine based fluorimetric sensor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Yan Y, Xue X, Jin X, Niu B, Chen Z, Ji X, Shi M, He Y. Effect of annealing using plasma-activated water on the structure and properties of wheat flour. Front Nutr 2022; 9:951588. [PMID: 36034897 PMCID: PMC9403792 DOI: 10.3389/fnut.2022.951588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, wheat flour (WF) was modified by annealing (ANN) using plasma-activated water (PAW) for the first time. Compared with WF and DW-WF, the results of scanning electron microscopy (SEM) and particle-size analysis showed that the granule structure of wheat starch in PAW-WF was slightly damaged, and the particle size of PAW-WF was significantly reduced. The results of X-ray diffraction and Fourier transforming infrared spectroscopy indicated that PAW-ANN could reduce the long-range and short-range order degrees of wheat starch and change the secondary structure of the protein in WF, in which the content of random coils and α-helices was significantly increased. In addition, the analysis of solubility, viscosity, and dynamic rheological properties showed that PAW-ANN improved the solubility and gel properties of WF and decreased its viscosity properties and short-term regeneration. PAW-ANN, as a green modification technology, has the potential for further application in WF modification, as well as in the production of flour products.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xinhuan Xue
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan He
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|