1
|
Huang H, Xie C, Zhang F, Wu C, Li T, Li X, Zhou D, Fan G. Impact of pH and protein/polysaccharide ratio on phycocyanin-okra polysaccharides complex. Int J Biol Macromol 2025; 284:138049. [PMID: 39608547 DOI: 10.1016/j.ijbiomac.2024.138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Phycocyanin is a natural blue pigment that tends to denature and lose its color in acidic solutions. In response to this problem, the complexes of phycocyanin (PC) with okra polysaccharides (OP) were prepared by ultrasonic processing at different pH conditions, and the molecular interactions of the complexes were characterized. The results showed that there were significant differences in the color, functional groups, and surface morphology of the complexes formed at different pH conditions. By colorimetry and particle size tester, it was demonstrated that the complex solution showed a steady blue color at pH 3.4. The highest fluorescence intensity (1.55 × 107 a.u.) and the significant red-shift of the complexes were observed at 0.4 % m/v polysaccharides addition. Infrared spectroscopy test further demonstrated that OP induced the formation of higher-order trimers of PC, which kept the color stable. Molecular dynamics simulations showed that the binding energy of PC/OP complex was -42.21 ± 2.61 kcal/mol, indicating that the binding affinity was very strong. Overall, this study suggests that this complex stabilizes the structure of PC, which in turn exerts a biological effect and will facilitate the use of PC as an artificial color substitute in food or beverage applications.
Collapse
Affiliation(s)
- Haoyi Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunyan Xie
- College of Life Science, Langfang Normal University, Langfang 065000, Hebei, China
| | - Fuqiang Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
2
|
Ayodele T, Tijani A, Liadi M, Alarape K, Clementson C, Hammed A. Biomass-Based Microbial Protein Production: A Review of Processing and Properties. Front Biosci (Elite Ed) 2024; 16:40. [PMID: 39736011 DOI: 10.31083/j.fbe1604040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/31/2024]
Abstract
A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice. The production of MPs promotes benefits, including reducing deforestation and CO2 emissions. Several microorganism types, such as bacteria, yeast, fungi, and algae, use a variety of substrates for MP production, from agricultural residues to lignocellulosic biomass. These complex substrates, including lignocellulosic biomass, are converted to fermentable sugar through either chemical, physical, or biological methods. Indeed, fermentation can occur through submerged cultures or other methods. However, this depends on the substrate and microorganisms being utilized. MPs have properties that make them versatile and useful ingredients in various applications. Using residues and lignocellulosic biomass as raw materials for producing MPs offers sustainability, cost-effectiveness, and waste reduction advantages. These properties are consistent with the principles established by green chemistry, which aims to conserve resources effectively and operate sustainably in all areas. This review highlights the importance of studying manufacturing aspects and the characteristics associated with MPs, which can be implemented to solve problems and encourage novel methods in the global food/feed industry.
Collapse
Affiliation(s)
- Tawakalt Ayodele
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Abodunrin Tijani
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Musiliu Liadi
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Kudirat Alarape
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Clairmont Clementson
- Agricultural and Biosystems Engineering, Faculty of Agriculture, North Dakota State University, Fargo, ND 58102, USA
| | - Ademola Hammed
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
- Agricultural and Biosystems Engineering, Faculty of Agriculture, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
3
|
Cao R, Wang B, Bai T, Zhu Y, Cheng J, Zhang J. Structural and functional impacts of glycosylation-induced modifications in rabbit myofibrillar proteins. Int J Biol Macromol 2024; 283:137583. [PMID: 39577516 DOI: 10.1016/j.ijbiomac.2024.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Rabbit meat, recognized for its nutritional value, is gaining global attention. However, the inferior functional properties of rabbit myofibrillar proteins lead to quality degradation during the production process. Glycosylation represents an effective method for enhancing protein functionality. This study investigated the glycosylation modification of rabbit myofibrillar proteins. The results demonstrated that solubility of glucose-glycosylated products increased by 34 %, while the reduction capacity improved from 0.15 mg/mL to 1.6 mg/mL. The·OH free radical scavenging ability increased from 63.94 % to 94.21 %. β-Glucan-glycosylated products exhibited the highest thermal stability, and their DPPH free radical scavenging rate increased from 19.68 % to 76.21 %. Glycosylation also induced changes in protein conformation, characterized by a 10-30 °C increase in thermal denaturation peak temperature, gradual attenuation of endogenous fluorescence intensity, gradual enhancement of λmax redshift, and a 30-40 % decrease in surface hydrophobicity. Molecular docking simulations revealed that the primary interactions between glucose, lactose, and β-Glucan with myofibrillar proteins involve hydrogen bonds and van der Waals forces. In conclusion, glycosylation can effectively improve the functional properties of proteins, contributing to the development and production of high-quality, stable, and nutritious rabbit meat products.
Collapse
Affiliation(s)
- Ruiqi Cao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Zhu
- Chongqing General Station of Animal Husbandry Technology Extension, Chongqing 401331, PR China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
4
|
Tian H, Zhang Z, Li W, Sun X, Yuan L, Yang X. W/O/W Pickering emulsions stabilized by complex modified phycocyanin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9001-9013. [PMID: 39101210 DOI: 10.1002/jsfa.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND A water-in-oil-in-water (W/O/W) double emulsion can simultaneously load hydrophilic and hydrophobic substances due to its unique two-membrane, three-phase structure. However, thermodynamic instability greatly limits the application of double emulsions in food processing. Further development of Pickering emulsions based on proteins, etc., can improve the stability and loading capacity. It is of great significance to promote their practical application. RESULTS Herein, we prepared ultrasound pretreatment complex glycation-modified phycocyanin (UMPC) to stabilize a W/O/W Pickering emulsion for the codelivery of vitamin B12 (VB12) and vitamin E (VE). First, an inner water phase and oil phase containing polyglycerin polyricinoleate were homogenized to prepare a W/O emulsion. Subsequently, the W/O emulsion was homogenized with an outer water phase containing UMPC to obtain a W/O/W Pickering emulsion. A gel-like inner phase emulsion with excellent storage and thermal stabilities was obtained under the condition that the W/O emulsion volume ratio was 80% and the UMPC was stabilized by 10 g kg-1. The double emulsion after loading VB12 and VE showed good encapsulation effect during the storage period, the encapsulation rate could reach more than 90%, it also showed excellent protection effect under long-time storage and UV irradiation and the retention rate increased by more than 65%. In addition, the bioavailability of VB12 and VE significantly increased during simulated gastrointestinal digestion and reached 46.02% and 52.43%, respectively. CONCLUSION These results indicate that the UMPC-stabilized W/O/W Pickering emulsion is an effective carrier for the codelivery of hydrophilic and hydrophobic bioactive molecules and also provides a means for useful exploration of an efficient and stable emulsion system stabilized by biological macromolecules. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongye Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
5
|
Gouda M, Lv JM, Huang Z, Chen JC, He Y, Li X. Bioprobe-RNA-seq-microRaman system for deep tracking of the live single-cell metabolic pathway chemometrics. Biosens Bioelectron 2024; 261:116504. [PMID: 38896978 DOI: 10.1016/j.bios.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The integration between RNA-sequencing and micro-spectroscopic techniques has recently profiled the advanced transcriptomic discoveries on the cellular level. In the current study, by combining the sensation approach (including bio-molecules structural evaluation, high throughput next-generation sequencing (HT-NGS), and confocal Raman microscopy) the functionality on the single live cancer cells' ferroptosis and apoptosis signaling pathways is visualized. Our study reveals a hydrophobic tunnel by phycocyanin-isoprene molecule (PC-SIM) electrostatic charge within hepatoma cells (HepG2) that activates the ferritin light chain (FTL) and caspase-8 associate protein (CASP8AP2) ferroptosis responsible genes. Moreover, this research proves that PC-vanillin (VAN) stimulation induces the actin-binding factor profilin-1 (PFN1), subsequently in situ tracking its expression at 1139.75 cm-1 microRaman wavenumber. While PC-thymol (THY) induces the lysophospholipase-2 (LYPLA2) (p-value = 0.009) and acetylneuraminate-9-O-acetyltransferase (CASD1) (p-value = 0.022) at 1143.19 cm-1. Our findings establish a new concept to promote the cross-disciplinary use of instant cellular-based detection technology for intermediary evaluating the signaling cellular transcriptome.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Ji-Min Lv
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Zhenxiong Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jian-Chu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Minic S, Velickovic L, Annighöfer B, Thureau A, Gligorijevic N, Jovanovic Z, Brûlet A, Combet S. Probing the structural stability of R-phycocyanin under pressure. Protein Sci 2024; 33:e5145. [PMID: 39150070 PMCID: PMC11328111 DOI: 10.1002/pro.5145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
The red macroalgae Porphyra, commonly known as Nori, is widely used as food around the world due to its high nutrient content, including the significant abundance of colored phycobiliproteins (PBPs). Among these, R-phycocyanin (R-PC) stands out for its vibrant purple color and numerous bioactive properties, making it a valuable protein for the food industry. However, R-PC's limited thermal stability necessitates alternative processing methods to preserve its color and bioactive properties. Our study aimed to investigate the in-situ stability of oligomeric R-PC under high pressure (HP) conditions (up to 4000 bar) using a combination of absorption, fluorescence, and small-angle X-ray scattering (SAXS) techniques. The unfolding of R-PC is a multiphase process. Initially, low pressure induces conformational changes in the R-PC oligomeric form (trimers). As pressure increases above 1600 bar, these trimers dissociate into monomers, and at pressures above 3000 bar, the subunits begin to unfold. When returned to atmospheric pressure, R-PC partially refolds, retaining 50% of its original color absorbance. In contrast, heat treatment causes irreversible and detrimental effects on R-PC color, highlighting the advantages of HP treatment in preserving both the color and bioactive properties of R-PC compared to heat treatment.
Collapse
Affiliation(s)
- Simeon Minic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Luka Velickovic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Burkhard Annighöfer
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| | | | - Nikola Gligorijevic
- Department of Chemistry, University of Belgrade-Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Zorana Jovanovic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Belgrade, Serbia
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| | - Annie Brûlet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Yu Z, Zhao W, Sun H, Mou H, Liu J, Yu H, Dai L, Kong Q, Yang S. Phycocyanin from microalgae: A comprehensive review covering microalgal culture, phycocyanin sources and stability. Food Res Int 2024; 186:114362. [PMID: 38729724 DOI: 10.1016/j.foodres.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.
Collapse
Affiliation(s)
- Zengyu Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Hui Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China.
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Sun X, Zhang Z, Li W, Tian H, Yuan L, Yang X. Stability of high internal-phase emulsions prepared from phycocyanin and small-molecule sugars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2917-2927. [PMID: 38036304 DOI: 10.1002/jsfa.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The use of high internal-phase Pickering emulsions in the food industry is widespread due to their excellent stability and special rheological properties. Proteins are often used as food-grade Pickering stabilizers due to their safety and nutritious properties. Nowadays, the development and efficient utilization of novel proteins as Pickering stabilizers has become a new challenge. RESULTS Phycocyanin complexes with small-molecule sugars (SMS), formed as a result of non-thermal interactions, can serve as stabilizers for high internal-phase Pickering emulsions. The addition of SMS-enabled gel-like emulsions significantly reduced the amount of emulsifier used. When the SMS was sorbitol, the emulsion had excellent elastic properties and self-supporting ability and was stable during long-term storage, when subjected to centrifugation, and under different temperature conditions. The fluorescent property of phycocyanin was utilized to investigate the formation mechanism of the emulsion. Small-molecule sugars were able to form 'sugar-shell' structures on the surface of proteins to enhance the structural stability of proteins. Phycocyanin-SMS-stabilized emulsions provided superior protection for photosensitive and volatile substances. The retention rates of trans-resveratrol and n-hexane increased by 384.75% and 30.55%, respectively. CONCLUSION These findings will encourage the development of proteins that stabilize Pickering emulsions. They will also provide new ideas for protecting photosensitive and volatile substances. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongye Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
9
|
Gao K, Zha F, Rao J, Chen B. Nonenzymatic glycation as a tunable technique to modify plant proteins: A comprehensive review on reaction process, mechanism, conjugate structure, and functionality. Compr Rev Food Sci Food Saf 2024; 23:e13269. [PMID: 38284590 DOI: 10.1111/1541-4337.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Plant proteins are expected to become a major protein source to replace currently used animal-derived proteins in the coming years. However, there are always challenges when using these proteins due to their low water solubility induced by the high molecular weight storage proteins. One approach to address this challenge is to modify proteins through Maillard glycation, which involves the reaction between proteins and carbohydrates. In this review, we discuss various chemical methods currently available for determining the indicators of the Maillard reaction in the early stage, including the graft degree of glycation and the available lysine or sugar, which are involved in the very beginning of the reaction. We also provide a detailed description of the most popular methods for determining graft sites and assessing different plant protein structures and functionalities upon non-enzymatic glycation. This review offers valuable insights for researchers and food scientists in order to develop plant-based protein ingredients with improved functionality.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
10
|
Li Y, Li Q, Gillilan RE, Abbaspourrad A. Reversible disassembly-reassembly of C-phycocyanin in pressurization-depressurization cycles of high hydrostatic pressure. Int J Biol Macromol 2023; 253:127623. [PMID: 37879586 PMCID: PMC10842036 DOI: 10.1016/j.ijbiomac.2023.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Hydrostatic pressure can reversibly modulate protein-protein and protein-chromophore interactions of C-phycocyanin (C-PC) from Spirulina platensis. Small-angle X-ray scattering combined with UV-Vis spectrophotometry and protein modeling was used to explore the color and structural changes of C-PC under high pressure conditions at different pH levels. It was revealed that pressures up to 350 MPa were enough to fully disassemble C-PC from trimers to monomers at pH 7.0, or from monomers to detached subunits at pH 9.0. These disassemblies were accompanied by protein unfolding that caused these high-pressure induced structures to be more extended. These changes were reversible following depressurization. The trimer-to-monomer transition proceeded through a collection of previously unrecognized, L-shaped intermediates resembling C-PC dimers. Additionally, pressurized C-PC showed decayed Q-band absorption and fortified Soret-band absorption. This was evidence that the folded tetrapyrroles, which had folded at ambient pressure, formed semicyclic unfolded conformations at a high pressure. Upon depressurization, the peak intensity and shift all recovered stepwise, showing pressure can precisely manipulate C-PC's structure as well as its color. Overall, a protein-chromophore regulatory theory of C-PC was unveiled. The pressure-tunability could be harnessed to modify and stabilize C-PC's structure and photochemical properties for designing new delivery and optical materials.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Qike Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Wang L, Li W, Li F, Zeng M. Mechanism of Enhancing Chlorophyll Photostability through Light-Induced Chlorophyll/Phycocyanin Aggregation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19010-19019. [PMID: 37991348 DOI: 10.1021/acs.jafc.3c06096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Chlorophyll (Chl) is the most abundant pigment in photosynthetic plants, but it is prone to degradation during processing and storage, limiting its usage in the food industry. This study developed a technique for increasing Chl photostability by light-induced Chl/phycocyanin (PC) triple synergistic aggregation. Under continuous illumination settings, the results revealed that the Chl retention increased to 406% compared to the control. A model of Chl/PC complexes was constructed using multiligand molecular docking, and the aggregation mechanism was investigated by quantum chemistry, which demonstrated that PC could provide an ideal central hydrophobic cavity for Chl aggregates and thus further enhance the aggregation of Chl on the basis of Chl/PC complexes. The core driver of the improved photostability of Chl is photoexcitation-induced Chl aggregates. This study enriches our understanding of the interaction mechanism between PC and Chl, and we hope that this study can provide broader ideas for the development of natural pigment products.
Collapse
Affiliation(s)
- Lijuan Wang
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| | - Wei Li
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| | - Fangwei Li
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| | - Mingyong Zeng
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| |
Collapse
|
12
|
Hu Y, Chen H, Yang Y, Zhang S, Xie Z, Liu J, Jiang Q, Liu J, Wen P. Comparison of ovalbumin glycation induced by high-temperature steaming and high-temperature baking: A study combining conventional spectroscopy with high-resolution mass spectrometry. Food Res Int 2023; 173:113279. [PMID: 37803592 DOI: 10.1016/j.foodres.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 10/08/2023]
Abstract
High-temperature steaming (HTS) and high-temperature baking (HTB)-induced ovalbumin (OVA)-glucose glycation (140 °C, 1-3 min) were compared, and the different mechanisms were evaluated by changes in protein conformation, glycation sites and average degree of substitution per peptide molecule (DSP) values as well as the antioxidant activity of glycated OVA. Conventional spectroscopic results suggested that in comparison with HTB, HTS promoted protein expansion, increased β-sheet content and made OVA structure more orderly. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis showed that 10 glycation sites were found under HTB, while 4 new glycation sites R111, R200, R219 and K323 appeared under HTS, and 2 of them (R219 and K323) were located in internal β-sheet chains. The antioxidant activities of glycated OVA increased with increasing treatment time, and HTS showed stronger enhancement effect than HTB. Furthermore, the DSP values were generally higher under HTS than HTB. Compared with HTB, HTS with high penetrability could enhance the change of OVA primary structure and spatial conformation, making the protein structure more unfolded and stable, leading to more protein-sugar collisions occurred in inner OVA molecular and significantly promoted glycation. In conclusion, HTS is a promising method for high-temperature short-time glycation reaction, with drastically increasing the protein antioxidant activities.
Collapse
Affiliation(s)
- Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yifan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Siqiong Zhang
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China
| | - Zuohua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China.
| | - Jiaojiao Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun Liu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
13
|
Zhang J, Zou Y, Yan B, Zhang N, Zhao J, Zhang H, Chen W, Fan D. Microwave treatment on structure and digestibility characteristics of Spirulina platensis protein. Curr Res Food Sci 2023; 7:100581. [PMID: 37691697 PMCID: PMC10484979 DOI: 10.1016/j.crfs.2023.100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
As a novel protein resource, the low digestibility of Spirulina platensis protein (SPP) limits its large-scale application. From the perspective of food processing methods, different heating treatments were explored to improve the structure and digestibility of SPP. In this study, SPP was heated by water bath and microwave at the same heating rate and heating temperature. Microwave accelerated protein denaturation and structure unfolded as the heating intensity increases, causing more exposed hydrophobic residues and enhancing surface hydrophobicity. The data of free sulfhydryl group, particle size, and gel electrophoresis, showed that microwave treatment promoted the formation of protein aggregates. The structural changes can potentially improve the accessibility of digestive enzymes, promote the in vitro digestibility rate, and further accelerate the production of small molecular peptides and the release of free amino acids. This study provided an innovative approach to improve the digestibility and therefore the utilization efficiency of SPP.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yingying Zou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
Wang M, Li Y, Ma C, Zhang Z, Guo L, Huang M, Sun J. Stability of native/thermally denatured myofibrillar protein particles: Improvement with decreasing pH. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Sun Y, Cui Y, Wang R, Ma J, Sun H, Cheng L, Yang R. The Hydrolysis of Pigment-Protein Phycoerythrin by Bromelain Enhances the Color Stability. Foods 2023; 12:2574. [PMID: 37444311 DOI: 10.3390/foods12132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Phycoerythrin (PE) is a natural protein-pigment complex with a strong pink color, but it is sensitive to thermal and light variations. In this study, PE was extracted from Porphyra haitanensis in a yield of 0.2% (w/w). The phycoerythrin hydrolysates (PEH) (3-10 kDa) were prepared by enzymatic hydrolysis of PE with bromelain (8000 U/g) at 47 °C for 30 min, with a degree of hydrolysis (DH) of 11.57 ± 0.39% and a color degradation rate of 7.98 ± 0.39%. The physicochemical properties of PEH were evaluated. The UV and fluorescence spectra indicated that bromelain changed the microenvironment around phycoerythrobilin (PEB). The infrared spectrum revealed that the bromelain hydrolysis increased the α-helix content of PEH. The scanning electron microscope showed that bromelain destroyed the dense and smooth structure of PE, resulting in irregular porous structures. The radical scavenging activities of DPPH and ABTS of PEH were increased relative to that of PE (p < 0.05). The thermal (50-80 °C)-, UV (0.5-3 h)-, visible light irradiation (2-8 h)-, and metal ion exposing stabilities of PEH were significantly improved (p < 0.05). This study provides a potential scheme for overcoming the sensitivity of PE to thermal and light variations and facilitates PEH as a natural colorant ingredient in food and pigment applications.
Collapse
Affiliation(s)
- Yifei Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuanmeng Cui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruhua Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haili Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Zhuxin L, Biao Y, Badamkhand D, Yifan C, Honghong S, Xiao X, Mingqian T, Zhixiang W, Chongjiang C. Carboxylated chitosan improved the stability of phycocyanin under acidified conditions. Int J Biol Macromol 2023; 233:123474. [PMID: 36720327 DOI: 10.1016/j.ijbiomac.2023.123474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Phycocyanin, a natural blue colorant, derived from Spirulina platensis, is now widely used in the food industry. However, its main drawbacks are loss of color and denature of structure in an acidic environment. In this study, carboxylated chitosan (0.1 %-1 % w/v) was chosen as an additive in acid-denatured phycocyanin for preserving phycocyanin's blue color and natural structure. Zeta-potential and particle size revealed that the carboxylated chitosan with high negative charge adsorbed on phycocyanin and provided stronger electrostatic repulsion to overcome the protein aggregation. Ultraviolet-visible absorption spectrum and fluorescence spectroscopy showed that the carboxylated chitosan recovered the microenvironment of tetrapyrrole chromophores and β-subunits, which led the secondary structure changed and the trimers depolymerized into the monomers changed by the acidic environment. Furthermore, Fourier transform infrared spectroscopy revealed highly negatively charged carboxylated chitosan with the groups (NH2, COOH and OH) could restored the microenvironment of tetrapyrrole chromophores and β-subunits of phycocyanin, and interact with phycocyanin through hydrogen bonding, NH bonding, ionic bonding and van der Waals, which led to a change in secondary structure and depolymerization of trimers into monomers. Our study demonstrated the carboxylated chitosan played a beneficial role in recovering the structure of acid-denatured phycocyanin and its blue color.
Collapse
Affiliation(s)
- Li Zhuxin
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuan Biao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Dashnyam Badamkhand
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Cao Yifan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shan Honghong
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xu Xiao
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Tan Mingqian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wang Zhixiang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Cao Chongjiang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
17
|
Rashed SA, Hammad SF, Eldakak MM, Khalil IA, Osman A. Assessment of the Anticancer Potentials of the Free and Metal-Organic Framework (UiO-66) - Delivered Phycocyanobilin. J Pharm Sci 2023; 112:213-224. [PMID: 36087776 DOI: 10.1016/j.xphs.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Phycocyanin (C-PC) is a constitutive chromoprotein of Arthrospira platensis, which exhibits promising efficacy against different types of cancer. In this study, we cleaved C-PC's chromophore phycocyanobilin (PCB) and demonstrated its ability as an anti-cancer drug for Colorectal cancer (CRC). PCB displayed an anti-cancer effect for CRC (HT-29) cells with IC50 of 108 µg/ml. Assessing the transcripts levels of some biomarkers revealed that the PCB caused an upregulation in the anti-metastatic gene NME1 level and downregulation of the COX-2 level. The flow cytometric results showed the effect of PCB on the arrest of the cell cycle's G1 phase. In addition, we successfully synthesized the UiO-66 (Zr-MOF). We incorporated the PCB into UiO-66 nanoparticles with a loading percentage of 46 %. Assessment of the cytotoxic effects of UiO-66@PCB showed a 2-fold improvement in the IC50 compared to the free PCB. In conclusion, we have shown that PCB displayed a promising potential as an anti-cancer agent. Yet, it is considered a safe and natural substance that can help to mitigate cancer spread and symptoms. In the meantime, UiO-66 can be used as a safe nano-delivery tool for PCB.
Collapse
Affiliation(s)
- Suzan A Rashed
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherif F Hammad
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Moustafa M Eldakak
- Genetics Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Islam A Khalil
- Pharmaceutics Department, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6 October, Egypt
| | - Ahmed Osman
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Department of Biochemistry, Faculty of Science, Ain shams University, Cairo, Egypt
| |
Collapse
|
18
|
Li Y, Zhang Z, Abbaspourrad A. Improving solubility and functional properties of phycocyanin under acidic conditions by glutaminase deamidation and succinylation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Yuan B, Li Z, Shan H, Dashnyam B, Xu X, McClements DJ, Zhang B, Tan M, Wang Z, Cao C. A review of recent strategies to improve the physical stability of phycocyanin. Curr Res Food Sci 2022; 5:2329-2337. [PMID: 36467748 PMCID: PMC9712502 DOI: 10.1016/j.crfs.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/10/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
There is an increasing demand for more healthy and sustainable diets, which led to an interest in replacing synthetic colors with natural plant-based ones. Phycocyanin, which is commonly extracted from Spirulina platensis, has been explored as a natural blue pigment for application in the food industry. It is also used as a nutraceutical in food, cosmetic, and pharmaceutical products because of its potentially beneficial biological properties, such as radical scavenging, immune modulating, and lipid peroxidase activities. The biggest challenges to the widespread application of phycocyanin for this purpose are its high sensitivity to chemical degradation when exposed to heat, light, acids, high pressure, heavy metal cations, and denaturants. Consequently, it is of considerable importance to improve its chemical stability, which requires a thorough knowledge of the relationship between the structure, environment, and chemical reactivity of phycocyanin. To increase the application of this natural pigment and nutraceutical within foods and other products, the structure, biological activities, and factors affecting its stability are reviewed, as well as strategies that have been developed to improve its stability. The information contained in this article is intended to stimulate further studies on the development of effective strategies to improve phycocyanin stability and performance.
Collapse
Affiliation(s)
- Biao Yuan
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhuxin Li
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Honghong Shan
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Badamkhand Dashnyam
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | | | - Bingquan Zhang
- Zhejiang Binmei Biotechnology Co. LTD, Linhai, Zhejiang, 318000, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Zhixiang Wang
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
20
|
Zeng Y, Chen E, Zhang X, Li D, Wang Q, Sun Y. Nutritional Value and Physicochemical Characteristics of Alternative Protein for Meat and Dairy-A Review. Foods 2022; 11:3326. [PMID: 36359938 PMCID: PMC9654170 DOI: 10.3390/foods11213326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 09/12/2023] Open
Abstract
In order to alleviate the pressure on environmental resources faced by meat and dairy production and to satisfy the increasing demands of consumers for food safety and health, alternative proteins have drawn considerable attention in the food industry. However, despite the successive reports of alternative protein food, the processing and application foundation of alternative proteins for meat and dairy is still weak. This paper summarizes the nutritional composition and physicochemical characteristics of meat and dairy alternative proteins from four sources: plant proteins, fungal proteins, algal proteins and insect proteins. The difference between these alternative proteins to animal proteins, the effects of their structural features and environmental conditions on their properties, as well as the corresponding mechanism are compared and discussed. Though fungal proteins, algal proteins and insect proteins have shown some advantages over traditional plant proteins, such as the comparable protein content of insect proteins to meat, the better digestibility of fungal proteins and the better foaming properties of algal proteins, there is still a big gap between alternative proteins and meat and dairy proteins. In addition to needing to provide amino acid composition and digestibility similar to animal proteins, alternative proteins also face challenges such as maintaining good solubility and emulsion properties. Their nutritional and physicochemical properties still need thorough investigation, and for commercial application, it is important to develop and optimize industrial technology in alternative protein separation and modification.
Collapse
Affiliation(s)
- Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Enhui Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xuewen Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Demao Li
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
21
|
Bozdemir A, Şensu E, Okudan EŞ, Özçelik B, Yucetepe A. Ultrasound‐assisted enzymatic extraction of proteins from
Gracilaria dura
: Investigation of antioxidant activity and techno‐functional properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ayşegül Bozdemir
- Department of Food Engineering, Faculty of Engineering Aksaray University Aksaray Turkey
| | - Eda Şensu
- Department of Food Technology, Istanbul Gelisim Higher Vocational School Gelisim University Istanbul Turkey
| | | | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
- BIOACTIVE Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI‐3, B110, Sarıyer, 34467 Istanbul Turkey
| | - Aysun Yucetepe
- Department of Food Engineering, Faculty of Engineering Aksaray University Aksaray Turkey
| |
Collapse
|
22
|
Wang Z, Gong S, Wang Y, Liu D, Han J. Structural and Emulsifying Properties of Soybean Protein Isolate-Sodium Alginate Conjugates under High Hydrostatic Pressure. Foods 2021; 10:foods10112829. [PMID: 34829111 PMCID: PMC8620206 DOI: 10.3390/foods10112829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean protein isolate (SPI) is a kind of plant derived protein with high nutritional value, but it is underutilized due to its structural limitations and poor functionalities. This study aimed to investigate the effects of high hydrostatic pressure (HHP) treatment on SPI and sodium alginate (SA) conjugates prepared through the Maillard reaction. The physicochemical properties of the conjugate synthesized under 200 MPa at 60 °C for 24 h (SPI–SA–200) were compared with those of the conjugate synthesized under atmospheric pressure (SPI–SA–0.1), SPI-SA mixture, and SPI. The HHP (200 MPa) significantly hindered the Maillard reaction. This effect was confirmed by performing SDS-PAGE. The alterations in the secondary structures, such as α-helices, were analyzed using circular dichroism spectroscopy and the fluorescence intensity was determined. Emulsifying activity and stability indices of SPI-SA-200 increased by 33.56% and 31.96% respectively in comparison with the SPI–SA–0.1 conjugate. Furthermore, reduced particle sizes (356.18 nm), enhanced zeta potential (‒40.95 mV), and homogeneous droplet sizes were observed for the SPI-SA-200 emulsion. The present study details a practical method to prepare desirable emulsifiers for food processing by controlling the Maillard reaction and improving the functionality of SPI.
Collapse
Affiliation(s)
- Zihuan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.W.); (S.G.); (Y.W.)
| | - Shaoying Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.W.); (S.G.); (Y.W.)
| | - Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.W.); (S.G.); (Y.W.)
| | - Danyi Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
- Correspondence: (D.L.); (J.H.)
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.W.); (S.G.); (Y.W.)
- Correspondence: (D.L.); (J.H.)
| |
Collapse
|
23
|
Alinovi M, Bancalari E, Martelli F, Cirlini M, Rinaldi M. Stabilization of
Arthrospira platensis
with high‐pressure processing and thermal treatments: Effect on physico‐chemical and microbiological quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Geada P, Moreira C, Silva M, Nunes R, Madureira L, Rocha CMR, Pereira RN, Vicente AA, Teixeira JA. Algal proteins: Production strategies and nutritional and functional properties. BIORESOURCE TECHNOLOGY 2021; 332:125125. [PMID: 33865652 DOI: 10.1016/j.biortech.2021.125125] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal-based proteins are the most consumed worldwide given their well-balanced nutritional composition. However, the growing demand for animal proteins will not be sustainable due to their low conversion efficiency and high environmental footprint. Specific consumers' dietary restrictions and modern trends emphasize the importance of finding alternative sustainable non-animal sources to meet future food (and, in particular, protein) global needs. Algal biomass is considered a relevant alternative, presenting advantages over terrestrial biomass such as higher growth rate, low water consumption, no competition for arable land, carbon-neutral emissions, and production of numerous bioactive compounds. This review provides an overview of recent research advances on algae as source of proteins, including production strategies from relevant protein-producing species. Particular emphasis will be given to algae protein current applications and forthcoming challenges of their use. Nutritional and functional aspects of algae biomass or its protein-enriched fractions will be overviewed.
Collapse
Affiliation(s)
- Pedro Geada
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Catarina Moreira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Maria Silva
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rafaela Nunes
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Leandro Madureira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
25
|
Zhang Q, Zhou Y, Yue W, Qin W, Dong H, Vasanthan T. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Fratelli C, Burck M, Amarante MCA, Braga ARC. Antioxidant potential of nature's “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Formulation of Creams Containing Spirulina Platensis Powder with Different Nonionic Surfactants for the Treatment of Acne Vulgaris. Molecules 2020; 25:molecules25204856. [PMID: 33096785 PMCID: PMC7587940 DOI: 10.3390/molecules25204856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Natural products used in the treatment of acne vulgaris may be promising alternative therapies with fewer side effects and without antibiotic resistance. The objective of this study was to formulate creams containing Spirulina (Arthrospira) platensis to be used in acne therapy. Spirulina platensis belongs to the group of micro algae and contains valuable active ingredients. The aim was to select the appropriate nonionic surfactants for the formulations in order to enhance the diffusion of the active substance and to certify the antioxidant and antibacterial activity of Spirulina platensis-containing creams. Lyophilized Spirulina platensis powder (SPP) was dissolved in Transcutol HP (TC) and different types of nonionic surfactants (Polysorbate 60 (P60), Cremophor A6:A25 (CR) (1:1), Tefose 63 (TFS), or sucrose ester SP 70 (SP70)) were incorporated in creams as emulsifying agents. The drug release was evaluated by the Franz diffusion method and biocompatibility was tested on HaCaT cells. In vitro antioxidant assays were also performed, and superoxide dismutase (SOD) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays were executed. Antimicrobial activities of the selected compositions were checked against Staphylococcus aureus (S. aureus) and Cutibacteriumacnes (C. acnes) (formerly Propionibacterium acnes) with the broth microdilution method. Formulations containing SP 70 surfactant with TC showed the most favorable dissolution profiles and were found to be nontoxic. This composition also showed significant increase in free radical scavenger activity compared to the blank sample and the highest SOD enzyme activity was also detected after treatment with the cream samples. In antibacterial studies, significant differences were observed between the treated and control groups after an incubation time of 6 h.
Collapse
|
29
|
Tong X, Prasanna G, Zhang N, Jing P. Spectroscopic and molecular docking studies on the interaction of phycocyanobilin with peptide moieties of C-phycocyanin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118316. [PMID: 32344374 DOI: 10.1016/j.saa.2020.118316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The binding of C-phycocyanin (CPC), a light harvesting pigment with phycocyanobilin (PCB), a chromophore is instrumental for the coloration and bioactivity. In this study, structure-mediated color changes of CPC from Spirulina platensis during various enzymatic hydrolysis was investigated based on UV-visible, circular dichroism, infra-red, fluorescence, mass spectrometry, and molecular docking. CPC was hydrolyzed using 7.09 U/mg protein of each enzyme at their optimal hydrolytic conditions for 3 h as follows: papain (pH 6.6, 60 °C), dispase (pH 6.6, 50 °C), and trypsin (pH 7.8, 37 °C). The degree of hydrolysis was in the order of papain (28.4%) > dispase (20.8%) > trypsin (7.3%). The sequence of color degradation rate and total color difference (ΔE) are dispase (82.9% and 40.37), papain (72.4% and 24.70), and trypsin (58.7% and 25.43). The hydrolyzed peptides were of diverse sequence length ranging from 8 to 9 residues (papain), 7-12 residues (dispase), and 9-63 residues (trypsin). Molecular docking studies showed that key amino acid residues in the peptides interacting with chromophore. Amino acid residues such as Arg86, Asp87, Tyr97, Asp152, Phe164, Ala167, and Val171 are crucial in hydrogen bonding interaction. These results indicate that the color properties of CPC might associate with chromopeptide sequences and their non-covalent interactions.
Collapse
Affiliation(s)
- Xueyu Tong
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
30
|
Zhang H, Shao S, Han R, Zhang R, Ma X, Wang M, Wan Z, Zhao D, Yan M. Structural, physicochemical and functional properties of Semen Ziziphi Spinosae protein. RSC Adv 2020; 10:29555-29566. [PMID: 35521113 PMCID: PMC9055952 DOI: 10.1039/d0ra03731a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Semen Ziziphi Spinosae (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) is a functional food and a traditional Chinese medicine (TCM) in China. Herein, Semen Ziziphi Spinosae protein (SZSP) was prepared by an alkaline extraction and acid precipitation method, of which the structural, physicochemical, functional and emulsion properties were investigated. Results showed that SZSP contained an ideal amino acid composition. The structural properties of the proteins were characterized using Fourier transform infrared spectroscopy (FTIR), relative fluorescence and circular dichroism (CD) spectroscopy analysis. The electrophoresis profiles showed that the main molecular weight of the protein components was about 10-40 kDa and contained some glycoproteins. Differential scanning calorimetry analysis indicated that the denaturation temperature of SZSP was 110.5 °C. The functional properties showed that SZSP has good water and oil absorption capacity, high emulsifying ability and foaming stability. The overall results suggest that SZSP is a promising protein source for the functional food industry.
Collapse
Affiliation(s)
- Hongyin Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Shuai Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Rongxin Han
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Rongrong Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Xintong Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Miao Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Zhiqiang Wan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
| | - Mingming Yan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 131200 P. R. China
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine 131200 P. R. China
| |
Collapse
|