1
|
Wang L, Li T, Wu C, Fan G, Zhou D, Li X. Unlocking the potential of plant polyphenols: advances in extraction, antibacterial mechanisms, and future applications. Food Sci Biotechnol 2025; 34:1235-1259. [PMID: 40110409 PMCID: PMC11914671 DOI: 10.1007/s10068-024-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 03/22/2025] Open
Abstract
Plant polyphenols are widely distributed in most higher plants, garnering significant attention from researchers due to their remarkable antioxidative, antibacterial, anticancer, and anti-radiation properties. They also offer multiple health benefits for various lifestyle-related diseases and oxidative stress. While there has been considerable research on the extraction and antibacterial application of plant polyphenols, developing a rapid and efficient extraction method remains a persistent challenge. Furthermore, the introduction of novel technologies is imperative to enhance the bioavailability of polyphenolic compounds. This comprehensive review synthesizes recent research findings pertaining to the extraction, antibacterial mechanisms, and applications of plant polyphenols. This research highlights the prevalent issues of low extraction rates of plant polyphenols and the ambiguous antibacterial mechanisms in current research. To address these challenges, this research proposes innovative directions for improving extraction technology and expanding antibacterial applications. Additionally, this review outlines promising future research avenues within the realm of plant polyphenols. Graphical abstract
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Xiaojing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| |
Collapse
|
2
|
Sousa JN, Sousa BVDO, Santos EPD, Ribeiro GHM, Pereira APM, Guimarães VHD, Queiroz LDRP, Motta-Santos D, Farias LC, Guimarães ALS, de Paula AMB, Santos SHS. Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC-α expression. Gene 2024; 926:148606. [PMID: 38788813 DOI: 10.1016/j.gene.2024.148606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Berenilde Valéria de Oliveira Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Eduardo Pinheiro Dos Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ana Paula Maciel Pereira
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Sports Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
4
|
Mihaylova D, Dimitrova-Dimova M, Popova A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int J Mol Sci 2024; 25:4769. [PMID: 38731987 PMCID: PMC11084633 DOI: 10.3390/ijms25094769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Maria Dimitrova-Dimova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
5
|
Gangane P, Sharma V, Selokar M, Vidhate D, Pawar K, Mahajan N. A Review of Anti-Inflammatory Phytoconstituents Used in Herbal Cosmeceuticals for the Treatment of Atopic Dermatitis. Curr Drug Deliv 2024; 21:312-325. [PMID: 37183468 DOI: 10.2174/1567201820666230512110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 05/16/2023]
Abstract
Skin diseases such as atopic dermatitis affect babies, children, and adults and are characterized by red skin/spots, severe itching that appears on the face, head, legs, neck, and hands, and various causes of illness caused by various external and internal factors. AD is a type IIgE-mediated hypersensitivity reaction. Herbal preparations treat various dermatological diseases like dry skin, melasma, acne, and eczema. Cosmeceuticals are the connection between cosmetics and medicine, one of the world's most used forms of medicine. Cosmeceuticals products are beneficial in treating AD. Herbal cosmetics play a major role in curing various skin diseases. Today, various herbs used in cosmeceuticals have anti-inflammatory, antioxidant, antibacterial, and antiseptic effects. Compared to synthetic preparations, herbal preparations have fewer side effects. This review paper introduces Atopic dermatitis, cosmeceutical, and various phytoconstituents like gallic acid, ferulic acid, boswellic acid, quercetin, and naringenin tetra hydroxyl flavanol glycoside, glycyrrhizic acid, epigallocatechin gallate, etc., used in atopic dermatitis.
Collapse
Affiliation(s)
- Purushottam Gangane
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, MS, 440037, India
| | - Vidhi Sharma
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, MS, 440037, India
| | - Mokshada Selokar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, MS, 440037, India
| | - Dipali Vidhate
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, MS, 440037, India
| | - Kapil Pawar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, MS, 440037, India
| | - Nilesh Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, MS, 440037, India
| |
Collapse
|
6
|
Dias L, Milheiro J, Ribeiro M, Fernandes C, Neves N, Filipe-Ribeiro L, Cosme F, Nunes FM. Fast and Simple UPLC-Q-TOF MS Method for Determination of Bitter Flavan-3-ols and Oligomeric Proanthocyanidins: Impact of Vegetable Protein Fining Agents on Red Wine Composition. Foods 2023; 12:3313. [PMID: 37685245 PMCID: PMC10486807 DOI: 10.3390/foods12173313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wine phenolic compounds, particularly proanthocyanidins (PAs), play a significant role in wine sensory characteristics, specifically bitterness and astringency. Although not consensual, flavan-3-ols and oligomeric PAs are generally considered the primary contributors to wine bitterness. Patatin, a vegetable protein fining agent, has been explored as an alternative to animal and synthetic fining agents for reducing wine bitterness. However, contradictory results exist regarding its effectiveness in removing flavan-3-ols and oligomeric PAs in red wines. In this work, a UPLC-Q-TOF MS/MS method was optimized and validated for accurately measuring flavan-3-ols, as well as dimeric and trimeric PAs, in red wines. The MS/MS analysis of flavan-3-ols, in addition to the typical fragmentation described in the literature, revealed an intense mass fragment resulting from the loss of C3O2 and C3O2 + H2O from the parent ion. It was observed that flavan-3-ols and PAs undergo oxidation during sample preparation, which was reversed by the addition of 5 g/L of ascorbic acid. The method demonstrated good linearity range (2 mg/L to 20 mg/L), detection limit (0.3 mg/L to 0.7 mg/L), quantification limit (0.8 mg/L to 2.2 mg/L), precision (repeatability 2.2% to 7.3%), and accuracy (recovery 98.5% to 100.5%). The application of patatin at different doses (5 g/L to 30 g/L) in two different red wine matrices did not reduce the levels of monomeric, dimeric, and trimeric PAs in red wines. However, similar behaviors were observed for pea protein and gelatin. Therefore, wine fining trials and efficiency measurements of the treatments in each matrix are strongly advised.
Collapse
Affiliation(s)
- Lara Dias
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Juliana Milheiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | | | - Nuno Neves
- Sogrape Vinhos S.A., 4430-809 Avintes, Portugal; (C.F.); (N.N.)
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
8
|
Ma Q, Yu Y, Zhou Z, Wang L, Cao R. Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
Castañeda R, Cáceres A, Cruz SM, Aceituno JA, Marroquín ES, Barrios Sosa AC, Strangman WK, Williamson RT. Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115755. [PMID: 36181985 DOI: 10.1016/j.jep.2022.115755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of kidney disease has increased rapidly in recent years and has emerged as one of the leading causes of mortality worldwide. Natural products have been suggested as valuable nephroprotective agents due to their multi-target and synergistic effects on modulating important proteins involved in kidney injury. There is a large number of plant species that have been used traditionally for kidney-related conditions in Mesoamerican medicine by different cultural groups that could provide a valuable source of nephroprotective therapeutic candidates and could lead to potential drug discovery. AIM OF REVIEW This review aims to provide an overview of the currently known efficacy of plant species used traditionally in Mesoamerica by Mayan groups to treat kidney-related conditions and to analyze the phytochemical, pharmacological, molecular, toxicological, and clinical evidence to contribute to public health efforts and for directing future research. METHODS Primary sources of plant use reports for traditional kidney-related disorders in Mesoamerica were searched systematically from library catalogs, theses, and scientific databases (PubMed, Google Scholar; and Science Direct), and were filtered according to usage frequency in Mayan groups and plant endemism. The database of traditional plants was further analyzed based on associations with published reports of the phytochemical, pharmacological, molecular, toxicological, and clinical evidence. RESULTS The most reported kidney-related conditions used traditionally in Mayan medicine involve reducing renal damage (a cultural interpretation that considers an inflammatory or infectious condition), cleaning or purifying the blood and kidney, reducing kidney pain, and eliminating kidney stones. A total of 208 plants used for kidney-related problems by 10 Mayan groups were found, representing 143 native species, where only 42 have reported pharmacological activity against kidney damage, mainly approached by in vitro and in vivo models of chemical- or drug-induced nephrotoxicity, diabetes nephropathy, and renal injury produced by hypertension. Nephroprotective effects are mainly mediated by reducing oxidative stress, inflammatory response, fibrosis mechanisms, and apoptosis in the kidney. The most common nephroprotective compounds associated with traditional Mayan medicine were flavonoids, terpenoids, and phenolic acids. The most widely studied traditional plants in terms of pharmacological evidence, bioactive compounds, and mechanisms of action, are Annona muricata L., Carica papaya L., Ipomoea batatas (L.) Lam., Lantana camara L., Sechium edule (Jacq.) Sw., Tagetes erecta L., and Zea mays L. Most of the plant species with reported pharmacological activity against kidney damage were considered safe in toxicological studies. CONCLUSION Available pharmacological reports suggest that several herbs used in traditional Mayan medicine for renal-associated diseases may have nephroprotective effects and consistent pharmacological evidence, nephroprotective compounds, and mechanisms of action in different models of kidney injury. However, more research is required to fully understand the potential of traditional Mayan medicine in drug discovery given the limited ethnobotanical studies and data available for most species with regards to identification on bioactive components, pharmacological mechanisms, and the scarce number of clinical studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Sully M Cruz
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - J Agustín Aceituno
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - E Sebastián Marroquín
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Ana C Barrios Sosa
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - Wendy K Strangman
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - R Thomas Williamson
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| |
Collapse
|
10
|
Arruda HS, Araújo MVL, Marostica Junior MR. Underexploited Brazilian Cerrado fruits as sources of phenolic compounds for diseases management: A review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100148. [PMID: 36439937 PMCID: PMC9694390 DOI: 10.1016/j.fochms.2022.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 04/18/2023]
Abstract
The Brazilian Cerrado is home to a large number of native and endemic species of enormous potential, among which we can highlight the cagaita, gabiroba, jatobá-do-cerrado, lobeira, and mangaba. In this review, we report the nutritional and phenolic composition, as well as bioactivities of these five Brazilian Cerrado fruits. The compiled data indicated that these fruits have high nutritional, functional, and economic potential and contribute to the daily intake of macro- and micronutrients, energy, and phenolic compounds by inhabitants of the Cerrado region. Phenolic-rich extracts obtained from these fruits have shown several bioactivities, including antioxidant, anti-inflammatory, antidyslipidemic, antidiabetic, analgesic, anticarcinogenic, hepatoprotective, gastrointestinal protective, and antimicrobial properties. Therefore, these fruits can be explored by the food industry as a raw material to develop food products of high value-added, such as functional foods, and can also be employed as plant sources to obtain bioactive compounds for food, cosmetic, and pharmaceutical purposes.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Maria Vitória Lopes Araújo
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Mario Roberto Marostica Junior
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Pereira ABD, Gomes JHDS, Pereira AC, Pádua RMD, Côrtes SF, Sena MM, Braga FC. Definition of chemical markers for Hancornia speciosa Gomes by chemometric analysis based on the chemical composition of extracts, their vasorelaxant effect and α-glucosidase inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115692. [PMID: 36084818 DOI: 10.1016/j.jep.2022.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa Gomes (Apocynaceae) is a tree found in the Brazilian savannah, traditionally used to treat several diseases, including diabetes and hypertension. The anti-hypertensive activity of H. speciosa leaves (HSL) has been demonstrated in different models and is credited to the vasodilator effect and ACE (angiotensin-converting enzyme) inhibition. The hypoglycemic effect of HSL has been also reported. AIM OF THE STUDY To establish correlations between the biological activities elicited by H. speciosa extracts and the contents of their major compounds, aiming to define chemical markers related to the potential antihypertensive and antidiabetic effects of the species. Additionally, it aimed to isolate and characterize the chemical structure of a marker related to the α-glucosidase inhibitory effect. MATERIALS AND METHODS Extracts of a single batch of H. speciosa leaves were prepared by extraction with distinct solvents (ethanol/water in different proportions; methanol/ethyl acetate), employing percolation or static maceration as extraction techniques, at different time intervals. The contents of chlorogenic acid, rutin and FlavHS (a tri-O-glycoside of quercetin) were quantified by a developed and validated HPLC-PDA method. Bornesitol was determined by HPLC-PDA after derivatization with tosyl chloride, whereas total flavonoids were measured spectrophotometrically. Identification of other constituents in the extracts was performed by UPLC-DAD-ESI-MS/MS analysis. The vasorelaxant activity was assayed in rat aortic rings precontracted with phenylephrine, and α-glucosidase inhibition was tested in vitro. Principal component analysis (PCA) was employed to evaluate the contribution of each marker to the biological responses. Isolation of compound 1 was carried out by column chromatography and structure characterization was accomplished by NMR and UPLC-DAD-ESI-MS/MS analyses. RESULTS The contents of the chemical markers (mean ± s.d. % w/w) varied significantly among the extracts, including total flavonoids (2.68 ± 0.14 to 5.28 ± 0.29), bornesitol (5.11 ± 0.26 to 7.75 ± 0.78), rutin (1.46 ± 0.06 to 1.97 ± 0.02), FlavHS (0.72 ± 0.05 to 0.94 ± 0.14) and chlorogenic acid (0.67 ± 0.09 to 0.91 ± 0.02). All extracts elicited vasorelaxant effect (pIC50 between 4.97 ± 0.22 to 6.48 ± 0.10) and α-glucosidase inhibition (pIC50 between 3.49 ± 0.21 to 4.03 ± 0.10). PCA disclosed positive correlations between the vasorelaxant effect and the contents of chlorogenic acid, rutin, total flavonoids, and FlavHS, whereas a negative correlation was found with bornesitol concentration. No significant correlation between α-glucosidase inhibition and the contents of the above-mentioned compounds was found. On the other hand, PCA carried out with the areas of the ten major peaks from the chromatograms disclosed positive correlations between a peak ascribed to co-eluted triterpenes and α-glucosidase inhibition. A triterpene was isolated and identified as 3-O-β-(3'-R-hydroxy)-hexadecanoil-lupeol. CONCLUSION According to PCA results, the vasorelaxant activity of H. speciosa extracts is related to flavonoids and chlorogenic acid, whereas the α-glucosidase inhibition is associated with lipophilic compounds, including esters of lupeol like 3-O-β-(3'-R-hydroxy)-hexadecanoil-lupeol, described for the first time for the species. These compounds can be selected as chemical markers for the quality control of H. speciosa plant drug and derived extracts.
Collapse
Affiliation(s)
- Ana Bárbara D Pereira
- Departament of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.
| | - José Hugo de Sousa Gomes
- Departament of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.
| | - Aline Carvalho Pereira
- Departament of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.
| | - Rodrigo Maia de Pádua
- Departament of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.
| | - Steyner F Côrtes
- Departament of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.
| | - Marcelo Martins Sena
- Departament of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCT-Bio), Campinas, SP, 13083-970, Brazil.
| | - Fernão Castro Braga
- Departament of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Wu D, Tang L, Zeng Z, Zhang J, Hu X, Pan Q, Geng F, Li H. Delivery of hyperoside by using a soybean protein isolated-soy soluble polysaccharide nanocomplex: Fabrication, characterization, and in vitro release properties. Food Chem 2022; 386:132837. [PMID: 35367793 DOI: 10.1016/j.foodchem.2022.132837] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022]
Abstract
Nanoparticles made from natural proteins and polysaccharides are green, biodegradable, and sustainable. In this study, soybean protein isolate (SPI) and soybean soluble polysaccharide (SSPS) were employed as delivery vehicles for hyperoside (HYP) to explore the mechanism of the formation of complexes and evaluate the performance of this mechanism at different pH values. The structures of SPI-SSPS-HYP complexes were studied by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the stability was evaluated based on free radical scavenging ability, loading rate, and simulated release. The results showed that nanoparticles were subjected to non-covalent electrostatic complexation, which was affected mainly by electrostatic, hydrogen bond, and hydrophobic interactions, and the optimal encapsulation efficiency was 85.56% at pH 3.5. Encapsulated HYP retained its high antioxidant capacity. This study provides a new strategy for developing a biodegradable nanocarrier with superior encapsulation properties, enhancing the application range of HYP.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| | - Lan Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Zhen Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Jing Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Xia Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Purewal SS, Kaur P, Garg G, Sandhu KS, Salar RK. Antioxidant, anti-cancer, and debittering potential of edible fungi (Aspergillus oryzae) for bioactive ingredient in personalized foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Xu Z, Hong LL, Liu CS, Kong JQ. Protein Engineering of PhUGT, a Donor Promiscuous Glycosyltransferase, for the Improved Enzymatic Synthesis of Antioxidant Quercetin 3- O- N-Acetylgalactosamine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4076-4085. [PMID: 35321541 DOI: 10.1021/acs.jafc.2c01029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quercetin 3-O-N-acetylgalactosamine (Q3GalNAc), a derivative of dietary hyperoside, had never been enzymatically synthesized due to the lack of well-identified N-acetylgalactosamine-transferase (GalNAc-T). Herein, PhUGT, an identified flavonoid 3-O-galactosyltransferase from Petunia hybrida, was demonstrated to display quercetin GalNAc-T activity, transferring a N-acetylgalactosamine (GalNAc) from UDP-N-acetylgalactosamine (UDP-GalNAc) to the 3-OH of quercetin to form Q3GalNAc with a low conversion of 11.7% at 40 °C for 2 h. Protein engineering was thus performed, and the resultant PhUGT variant F368T got an enhanced conversion of 75.5% toward UDP-GalNAc. The enzymatically synthesized Q3GalNAc exhibited a comparable antioxidant activity with other quercetin 3-O-glycosides. Further studies revealed that PhUGT was a donor promiscuous glycosyltransferase (GT), recognizing seven sugar donors. This finding overturned a previous notion that PhUGT exclusively recognized UDP-galactose (UDP-Gal). The reason why PhUGT was mistaken for a UDP-Gal-specific GT was demonstrated to be a shorter reaction time, in which many quercetin 3-O-glycosides, except hyperoside, could not be effectively synthesized. The fact that the microbial cell factory expressing PhUGT could yield an array of Q3Gs further confirmed the donor promiscuity of PhUGT. This study laid a foundation for the scale production of Q3GalNAc and provided a potent biocatalyst capable of glycodiversifying quercetin as well.
Collapse
Affiliation(s)
- Zhen Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China
| | - Li-Li Hong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China
| | - Chun-Sheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China
| |
Collapse
|
16
|
Unraveling the efficacy of different treatments towards suppressing limonin and naringin content of Kinnow juice: An innovative report. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Peixoto Araujo NM, Silva EK, Arruda HS, Rodrigues de Morais D, Angela A. Meireles M, Pereira GA, Pastore GM. Recovering phenolic compounds from Eugenia calycina Cambess employing high-intensity ultrasound treatments: A comparison among its leaves, fruit pulp, and seed as promising sources of bioactive compounds. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Kim J, Gripenberg S, Karonen M, Salminen JP. Seed tannin composition of tropical plants. PHYTOCHEMISTRY 2021; 187:112750. [PMID: 33845405 DOI: 10.1016/j.phytochem.2021.112750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Seeds collected from trees, shrubs and lianas growing on Barro Colorado Island, Panama, were analyzed for their content of phenolic compounds, oxidative activities and protein precipitation capacities. Proanthocyanidins and hydrolysable tannins were detected in one-third of 189 studied species. The most oxidatively active group of species were the ones containing prodelphinidins and ellagitannins whereas the species that had the highest protein precipitation capacity in relation to their total phenolics were the ones containing punicalagin. In addition, the oxidative activity and relative protein precipitation capacity were exceptionally high in the proanthocyanidin-rich genus Psychotria. This study offers a comprehensive overview on the tannin composition and the alkaline oxidative activities and protein precipitation capacities of the seeds of tropical plants.
Collapse
Affiliation(s)
- Jorma Kim
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK.
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
19
|
Gomes JHDS, Mbiakop UC, Oliveira RL, Stehmann JR, Pádua RMD, Cortes SF, Braga FC. Polyphenol-rich extract and fractions of Terminalia phaeocarpa Eichler possess hypoglycemic effect, reduce the release of cytokines, and inhibit lipase, α-glucosidase, and α-amilase enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113847. [PMID: 33515684 DOI: 10.1016/j.jep.2021.113847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE species of Terminalia (Combretaceae) are used to treat diabetes and metabolic disorders in Asia, Africa, and America. Terminalia phaeocarpa Eichler is an endemic tree from Brazil, popularly known as capitão. This species is closely related to Terminalia argentea Mart., also vulgarly known as capitão, a native but not endemic tree. Due to their phenotype similarity, these species might eventually prove inseparable and they are indistinctly used by locals to treat diabetes, among other diseases. The potential antidiabetic effect of T. argentea has been previously reported, whereas the biological effects and chemical composition of T. phaeocarpa have never been addressed so far. AIM OF THE STUDY investigate the hypoglycaemic effect of an ethanol extract (EE) of T. phaeocarpa leaves and its ethyl acetate (FrEtOAc) and hydromethanolic (FrMEOH) fractions, in addition to their activity on the release of pro-inflammatory mediators and inhibition of lipase, α-amylase, and α-glucosidase enzymes. Additionally, it aimed to characterize the chemical composition of the extract and fractions, seeking to identify the compounds related to the biological activities. MATERIALS AND METHODS The effect on the release of TNF-α, IL-1β, and CCL-2 was evaluated in LPS-stimulated THP-1 cells (ATCC TIB-202). The inhibition of lipase, α-amylase, and α-glucosidase was tested in vitro, whereas the hypoglycemic effect was assayed in the oral starch tolerance test. The chemical composition was investigated by extensive UHPLC-DAD-ESI-MS/MS analyses. RESULTS The extract and derived fractions reduced TNF-α (EE pIC50 = 4.58 ± 0.01; FrEtOAc pIC50 = 4.69 ± 0.01; FrMeOH pIC50 = 4.54 ± 0.02) and IL-1β (EE pIC50 = 4.86 ± 0.02; FrEtOAc pIC50 = 4.86 ± 0.02; FrMeOH pIC50 = 4.75 ± 0.01) release by LPS-stimulated THP-1 cells in a concentration-dependent manner, whereas the inhibitory effect on CCL-2 release did not reach a clear linear relationship for the tested concentrations. The extract and fractions also inhibited in vitro the activity of lipase (EE pIC50 = 3.97 ± 0.12; FrEtOAc pIC50 = 3.87 ± 0.04; FrMeOH pIC50 = 3.67 ± 0.14), α-amylase (EE pIC50 = 4.46 ± 0.27; FrEtOAc pIC50 = 5.47 ± 0.27; FrMeOH pIC50 = 4.26 ± 0.22), and α-glucosidase (EE pIC50 = 5.46 ± 0.05; FrEtOAc pIC50 = 5.79 ± 0.11; FrMeOH pIC50 = 5.74 ± 0.05). The pIC50 values of the test samples were lower than those obtained with orlistat (7.59 ± 0.08) and acarbose (6.04 ± 0.37 and 7.63 ± 0.04) employed as the positive controls respectively in the lipase, α-amylase, and α-glucosidase assays. When assayed in the oral starch tolerance test, the extract and fractions also reduced animal glycaemia. UHPLC-DAD-ESI-MS/MS analyses of the extract and fractions led to the identification of 38 phenolic compounds, mainly phenolic acids, ellagitannins and flavonoids, among others, all of them first-time described for the species. CONCLUSION Based on our findings, T. phaeocarpa has hypoglycaemic activity and polyphenols are the probable bioactive compounds, which support the ethnomedical use of the species.
Collapse
Affiliation(s)
- José Hugo de Sousa Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil
| | - Ulrich Carlos Mbiakop
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil
| | - Renata Leite Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil
| | - João Renato Stehmann
- Department of Botany, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Brazil.
| |
Collapse
|
20
|
Abstract
Snake fruit (Salacca zalacca (Gaert.) Voss) is a fruit species traditionally cultivated in Indonesia and other Southeast Asian countries. The edible parts of the fruits contain a certain amount of total phenolic, flavonoid, and monoterpenoid compounds, proving them to be their perfect sources. The main goal of this work was to detect, quantify, and identify various phenolic compounds present in snake fruit pulp. Ultrahigh performance liquid chromatography coupled to a Q-Orbitrap tandem mass spectrometer was able to detect 19 phenolic compounds in the salak pulp, including 5 flavanols, 6 phenolic acids, 2 flavonols, 1 flavone, and also 5 presumably new phenolic compounds. Among the detected compounds, 11 were reported and quantified for the first time in salak pulp. Chlorogenic acid was by far the most predominant phenolic compound. The next relatively abundant compounds in snake fruit were epicatechin, isoquercetin, neochlorogenic acid, ferulic acid, gallic acid and procyanidine B2 (levels at ca 5–10 μg/g in MeOH extract), syringic acid, and caffeic acid (levels at ca 1 μg/g in H2O extract). A significant total phenolic content (257.17 μL/mL) and antioxidant activities (10.56 μM TE/g of fruit pulp) were determined. In conclusion, S. zalacca fruit has potential to serve as a natural source of phenolic compounds with antioxidative activities which may be associated with their health benefits.
Collapse
|
21
|
High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants (Basel) 2021; 10:antiox10020234. [PMID: 33557299 PMCID: PMC7914583 DOI: 10.3390/antiox10020234] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.
Collapse
|
22
|
Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 2021; 133:110985. [DOI: 10.1016/j.biopha.2020.110985] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
|
23
|
Arruda HS, Neri-Numa IA, Kido LA, Maróstica Júnior MR, Pastore GM. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Peixoto Araujo NM, Arruda HS, dos Santos FN, de Morais DR, Pereira GA, Pastore GM. LC-MS/MS screening and identification of bioactive compounds in leaves, pulp and seed from Eugenia calycina Cambess. Food Res Int 2020; 137:109556. [DOI: 10.1016/j.foodres.2020.109556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
|
25
|
Moloto MR, Phan ADT, Shai JL, Sultanbawa Y, Sivakumar D. Comparison of Phenolic Compounds, Carotenoids, Amino Acid Composition, In Vitro Antioxidant and Anti-Diabetic Activities in the Leaves of Seven Cowpea ( Vigna unguiculata) Cultivars. Foods 2020; 9:foods9091285. [PMID: 32932725 PMCID: PMC7554895 DOI: 10.3390/foods9091285] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cowpea is a well-known nutrition rich African leafy vegetable that has potential to sustain food and nutrition insecurity in sub-Saharan Africa. Consumption of cowpea legumes is associated with reduced risk of type 2 diabetes mellitus. Therefore, the present study was designed to evaluate the (i) variation in phenolic metabolites in seven cowpea cultivars (VOP1, VOP2, VOP3, VOP4, VOP5, VOP7, and VOP8 using UHPLC coupled with high resolution Q-TOF-MS technique, (ii) in vitro antioxidant activity using ferric reducing/antioxidant capacity (FRAP) assay (iii) in vitro anti-diabetic effects and (iv) composition of carotenoids and amino acids of theses cowpea cultivars. The results of this study demonstrated that gentisic acid 5-O-glucoside, quercetin 3-(2G-xylosylrutinoside) and Quercetin 3-glucosyl-(1->2)-galactoside were highest in VOP1 VOP4 and VOP5, respectively. High inhibition (>50%) of α-glucosidase and α-amylase activities was shown by the leaf extracts (50 and 25 mg/mL) of VOP1 and VOP4. Cowpea cultivars VOP1 and VOP4 demonstrated the highest gene expression levels of regulation of glucose transporter GLUT4 in C2C12 skeletal muscle cells, similar to insulin. A positive correlation exited between the phenolic components and the inhibitory effect of antidiabetic enzymes and FRAP activity. Cytotoxic effect was not detected in vitro in any cowpea cultivar. Lutein (124.6 mg/100 g) and all-trans-beta-carotene (92.6 mg/100 g) levels were highest in VOP2 and VOP1, respectively. Cowpea cultivars VOP3 and VOP4 showed potential to fulfil the daily requirements of essential amino acids. Thus, based on this information, cowpea (leaves) genotypes/cultivars can be selected and propagated for the further development of supplementary foods or functional food ingredients.
Collapse
Affiliation(s)
- Mapula R. Moloto
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa;
| | - Anh Dao T. Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4108, Australia; (A.D.T.P.); (Y.S.)
| | - Jerry L. Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Arcadia, Pretoria 0001, South Africa;
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4108, Australia; (A.D.T.P.); (Y.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa;
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4108, Australia; (A.D.T.P.); (Y.S.)
- Correspondence:
| |
Collapse
|
26
|
Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109643] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
López-Fernández O, Domínguez R, Pateiro M, Munekata PE, Rocchetti G, Lorenzo JM. Determination of Polyphenols Using Liquid Chromatography-Tandem Mass Spectrometry Technique (LC-MS/MS): A Review. Antioxidants (Basel) 2020; 9:antiox9060479. [PMID: 32498428 PMCID: PMC7346120 DOI: 10.3390/antiox9060479] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, the consumption of polyphenols has been increasing, largely due to its beneficial effects on health. They are present in a wide variety of foods, but their extraction and characterization are complicated since they are mostly in complex matrices. For this reason, the use of selective, sensitive, and versatile analytical techniques such as liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) is necessary. In this review, the most relevant studies of the last years regarding the analysis of polyphenols in different matrices by comprehensive LC–MS/MS are discussed. Relevant steps such as extraction, sample purification, and chromatographic analysis methods are emphasized. In particular, the following methodological aspects are discussed: (a) the proper selection of the extraction technique, (b) the extraction and elution solvents, (c) the purification step, (d) the selection of both stationary and mobile phases for the chromatographic separation of compounds, and (e) the different conditions for mass spectrometry. Overall, this review presents the data from the most recent studies, in a comprehensive way, thus providing and simplifying the information of the great variety of works that exist in the literature on this wide topic.
Collapse
Affiliation(s)
- Olalla López-Fernández
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Paulo E.S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Gabriele Rocchetti
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: ; Tel.: +34-988-548-277; Fax: +34-988-548-276
| |
Collapse
|