1
|
Kanmaz H, Şahingil D, Alwazeer D, Bulut M, Kuru M, Makav M, Kuru BB, Bektaşoğlu F, Hayaloğlu AA. Hydrogen-rich water consumption modifies the chemical, biochemical, nutritional, and bioactive properties of the goat's colostrum and mature milk. Food Chem 2025; 480:143855. [PMID: 40112728 DOI: 10.1016/j.foodchem.2025.143855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
This study aimed to investigate the effects of hydrogen-rich water (HRW) consumption in goats on the chemical composition, antioxidant activity, total phenolic content, in vitro antidiabetic activity (α-amylase and α-glucosidase inhibitions), free fatty acid profile, and volatile compounds of colostrum and mature milk. Goats were fed ad libitum with either normal water (NW) or HRW for 20-22 days before and 28 days after parturition. Colostrum and milk samples were collected from goats on the day of parturition, as well as on days 7, 14, 21, and 28 days. The milk fat content of goats fed with HRW was found to be higher compared to those fed with NW. On day 7, the total phenolic content was higher in the NW-fed milk compared to the HRW-fed milk. The ABTS radical scavenging activity of the HRW-fed colostrum was higher than NW. The inhibitory activity of α-amylase and α-glucosidase was higher in the HRW-fed milk. Some free fatty acids, including C2, C8, C10, C15, C18, and C20, increased in HRW-fed milk. Some volatile components were more abundant in the HRW-fed milk. The findings from this study may lead to new insights into the potential health benefits of milk from goats consuming HRW.
Collapse
Affiliation(s)
- Hilal Kanmaz
- Department of Food Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Didem Şahingil
- Department of Food Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Iğdır, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| | - Menekşe Bulut
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Iğdır, Türkiye; Department of Gastronomy, Faculty of Tourism, Igdir University, 76000, Igdır, Türkiye.
| | - Mushap Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, 36100 Kars, Türkiye.
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars 36100, Türkiye.
| | - Buket Boğa Kuru
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars 36100, Türkiye.
| | - Fikret Bektaşoğlu
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars 36100, Türkiye.
| | | |
Collapse
|
2
|
Ni M, Peng L, Zhang Y, Wang L, Wei Q, Li X, Zhang L, Chen J. Comparative lipidomics analysis of human colostrum, mature milk and yak mature milk. Food Chem 2025; 476:143396. [PMID: 39965348 DOI: 10.1016/j.foodchem.2025.143396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Yak milk is a promising lipid source substitute for infant formulas designed to mimic human milk. However, comparative studies on the lipid profiles between human and yak milk are scarce. To address this gap, in this study, we thoroughly analysed and compared the lipidome and fatty acid (FA) composition of human colostrum, human mature milk and yak mature milk. A total of 2686 lipid species from 30 lipid classes were identified in the three milk types. Notably, yak mature milk surpassed both human milk stages in the total content of lipid species, triglycerides (TG) and saturated FA. In particular, three potential lipid biomarkers, namely TG(6,0_8,0_14:0) + NH4, TG(16,0_6,0_8:0) + NH4 and TG(10,0_12,0_12,0) + NH4, were identified to differentiate yak mature milk from human colostrum and mature milk. Moreover, upon analysing the lipid metabolic pathways, it was found that the lipids involved in the pathways of acetylcholine synthesis, as well as starch and sucrose metabolism, may not manifest notable differences between yak mature milk and human colostrum, indicating the presence of similar neurodevelopment-regulating and metabolic characteristics in yak milk as in colostrum. Therefore, this comprehensive comparison offers novel insights into the potential of yak mature milk lipids to enhance the humanisation of infant formulas.
Collapse
Affiliation(s)
- Mengmei Ni
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlan Peng
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuanyuan Zhang
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Liang Wang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Qijie Wei
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China..
| |
Collapse
|
3
|
Wang X, Li Q, Zhang Q, Wu Y, Chen R, Sun Y, Pan Y, Li S, Wang Z. Precise and panoramic study on the nutritional components of specific milk of goats and sheep. Food Chem 2025; 466:142263. [PMID: 39608118 DOI: 10.1016/j.foodchem.2024.142263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
This study analyzed human, goat, sheep, and pig milks using metabolomics, lipidomics, and proteomics, specifically untargeted LC-MS/MS metabolomics, untargeted LC-MS/MS lipidomics, and 4D-label-free proteomics. The aim was to determine differences among these milks and identify components with similar functions to human milk, providing a reference for the research and development of infant formulae. In goat milk, expression of lactoperoxidase, inosine, and allantoin were relatively high, while in sheep milk, concentrations of ceruloplasmin and alpha-ketoglutarate were higher. The content of linoleic acid (LA) was relatively high in both goat and sheep milks. A relatively high content of milk fat globule EGF factor 8 protein was found in pig milk.
Collapse
Affiliation(s)
- Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanzhi Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinggang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Pan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Williams B, Hewage SPWR, Alexander D, Fernando H. 1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry. Metabolites 2025; 15:110. [PMID: 39997734 PMCID: PMC11857238 DOI: 10.3390/metabo15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Lipids are an important component of human nutrition. Conventional milk is obtained from animals, and dairy milk is consumed by many people worldwide. Recently, milk consumers have been increasingly shifting towards plant-based milk options. The aim of the study was the qualitative identification of lipid metabolites in animal- and plant-based milk, the identification and comparison of the fatty acids (FAs) of milk, and the qualitative identification of the lipid groups among the milk varieties. Methods: Milk samples were obtained from local grocery stores. Lipids were extracted using a modified Folch method and analyzed using nuclear magnetic resonance (NMR) metabolomics. Gas and liquid chromatography mass spectrometry methods (GC-MS and LC-MS) were used to identify the FAs and lipid groups. Lipid weights were compared and the NMR profiles of the lipids analyzed by multivariate statistical analysis. Principal component analysis was performed for the milk lipids obtained from the animal, and plant milk varieties. Results: Clustering of NMR data showed two main clusters: cow/almond/cashew and goat/soy/coconut. GC-MS analysis of the methylated fatty acids (FAs) showed the presence of 12:0, 14:0, 16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:1, and 20:2 in all milk types, while FAs 19:0 and 20:4 were observed only in the dairy milk. LC-MS data showed common masses that may indicate the presence of mono- and diacyl glycerols and several lysophospholipids among the different types of milk. Conclusions: This study shows the advantage of using NMR, GC-MS, and LC-MS to differentiate the lipids among different milk types and compare them on one platform.
Collapse
Affiliation(s)
| | | | | | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA; (B.W.); (S.P.W.R.H.); (D.A.)
| |
Collapse
|
5
|
Liu K, Chen M, Huang G, Su C, Tang W, Li N, Yang J, Wu X, Si B, Zhao S, Zheng N, Zhang Y, Wang J. Variations in the milk lipidomic profile of lactating dairy cows fed the diets containing alfalfa hay versus alfalfa silage. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:261-271. [PMID: 39640557 PMCID: PMC11617287 DOI: 10.1016/j.aninu.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/12/2024] [Accepted: 06/30/2024] [Indexed: 12/07/2024]
Abstract
Alfalfa is primarily stored as silage or hay in livestock production. Previous research has shown that the storage method of grass significantly influences milk composition. This study aimed to investigate milk production performance and lipid composition in dairy cows fed diets consisting of alfalfa hay or alfalfa silage as roughage. Forty-two mid-lactation Holstein dairy cows were selected and randomly divided into three groups, each receiving a total mixed ration consisting of alfalfa hay (AH), 50% alfalfa silage + 50% alfalfa hay (AHAS), or alfalfa silage (AS). The results showed that milk fat content (P = 0.049) and milk fat yield (P < 0.001) were significantly higher in the AH and AHAS groups compared to the AH group. With increased supplementation of alfalfa silage in the diet, ω-3 polyunsaturated fatty acid content increased significantly (P < 0.001), while ω-6 polyunsaturated fatty acid content (P = 0.007) and the ratio of ω-6 to ω-3 polyunsaturated fatty acids decreased (P < 0.001). The contents of sphingomyelins, phosphatidylserines, phosphatidylethanolamines, and phosphatidylglycerols in the AHAS and AS samples were higher than in the AH samples, although the differences were not statistically significant. Additionally, the content of phosphatidylcholines was significantly higher in the AS group compared to the AH group (P = 0.032). In conclusion, feeding dairy cows a diet consisting of alfalfa silage can increase the major phospholipid content and polyunsaturated fatty acid composition in raw milk, which is more conducive to human health. These findings provide valuable insights into the benefits of alfalfa silage for dairy cows.
Collapse
Affiliation(s)
- Kaizhen Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoxin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuanyou Su
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenhao Tang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiyong Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xufang Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boxue Si
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Al-Wraikat M, Zhang L, Li L, Abubaker MA, Liu Y. Recent advances in wolfberry polysaccharides and whey protein-based biopolymers for regulating the diversity of gut microbiota and its mechanism: A review. Int J Biol Macromol 2024; 281:136401. [PMID: 39383924 DOI: 10.1016/j.ijbiomac.2024.136401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/11/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Imbalances in gut microbiota diversity are associated with various health issues, including obesity and related disorders. There is a growing interest in developing synergistic biopolymers based on wolfberry polysaccharides and whey protein to address these problems due to their potential health benefits. This review explores recent advances in understanding how functional foods based on Lycium barbarum polysaccharides (LBP) and whey protein (WP) influence gut microbiota diversity and their underlying mechanisms. We examine the impact of these biopolymers on microbial composition and functionality, focusing on their roles in improving health by regulating gut microbiota. The combined effects of WP and LBP significantly enhance gut microbiome metabolic activities and taxonomic diversity, offering promising avenues for treating obesity and related disorders.
Collapse
Affiliation(s)
- Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
7
|
Harlina PW, Maritha V, Geng F, Nawaz A, Yuliana T, Subroto E, Dahlan HJ, Lembong E, Huda S. Comprehensive review on the application of omics analysis coupled with Chemometrics in gelatin authentication of food and pharmaceutical products. Food Chem X 2024; 23:101710. [PMID: 39206450 PMCID: PMC11350464 DOI: 10.1016/j.fochx.2024.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Gelatin is a protein molecule that can be hydrolyzed from collagen, animal bones, skin and it easily soluble in water. Source animals for gelatin ingredients must be evaluated, as well as their halal status. The omics method towards gelatin authentication in food and pharmaceutical products has several advantages, including high sensitivity and reliable data. Omics investigation employs the process of breaking down substances into small particles, hence enhancing the ability to detect a greater number of compounds. Omics study has the capability to identify substances at the subclass level, which makes it highly suitable for gelatin authentication. Gelatin lipids, metabolites, proteins, and volatile chemicals can be utilized as references to authenticate gelatin. In adopting gelatin authentication, lipidomics, metabolomics, proteomics, and volatilomics must be combined with chemometrics for data interpretation. Chemometrics can convert omics analysis data into easily viewable data. Chemometric approaches capable of presenting omics analysis data for gelatin authentication include PCA, HCA, PLS-DA, PLSR, SIMCA, and FACS. Visually chemometrically explain the differences in gelatin from different animal sources. The combination of omics analysis and chemometrics is a very promising technology for gelatin authentication in food and pharmaceutical products.
Collapse
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
- Padjadjaran Halal Center, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Vevi Maritha
- Pharmacy Study Program, Faculty of Health and Science, Universitas PGRI, Madiun, Indonesia
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Asad Nawaz
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Tri Yuliana
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Havilah Jemima Dahlan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Elazmanawati Lembong
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Syamsul Huda
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| |
Collapse
|
8
|
Pan Y, Zhang X, Cong P, Li X, Liu L, Qiu J, Lin S, Jean Eric-Parfait Kouame K, Li J. Human milk fat substitutes rich in 1,3-dioleoyl-2-palmitoylglycerol and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol simultaneously: Preparation strategy and simulated infant in vitro digestion. Food Res Int 2024; 191:114736. [PMID: 39059926 DOI: 10.1016/j.foodres.2024.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
In this study, fractionated palm stearin, oleic acid, and linoleic acid were selected as the base materials to prepare human milk fat substitutes (HMFS) rich in OPO and OPL by enzymatic acidolysis combined with physical blending. Under optimum conditions, contents of OPO, OPL, and sn-2 palmitic acid in the OPO and OPL-rich triacylglycerols (TAGs) were higher than that in commercial OPO-rich TAGs, with values of 37.25%, 28.12%, and 79.44%, respectively. Physical blending the OPO and OPL-rich TAGs (47%), bovine milk fat (18%), sunflower oil (13%), coconut oil (13%), corn oil (8%), and palm oil (1%) can obtain HMFS with a fat composition that like HMF. The fatty acid, sn-2 saturated fatty acid, and TAG contents of HMFS were within the lower and upper limit of HMF. The lipolysis degree of infant formula (IF) with HMFS as fat source is 9.0% higher than that of commercial plant oil-based infant formula (PIF), and 3.4% lower than that of human milk. IF with HMFS as fat source released less saturated free fatty acids and more saturated monoacylglycerols during digestion than that of PIF, which would help improve the IF fat utilization by infants.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xueying Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Pinyao Cong
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Jiaxin Qiu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Shuang Lin
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd., Harbin 150010, China
| |
Collapse
|
9
|
Cabrera D, Fraser K, Roy NC. A metabolomics analysis of interspecies and seasonal trends in ruminant milk: The molecular difference between bovine, caprine, and ovine milk. J Dairy Sci 2024; 107:6511-6527. [PMID: 38788847 DOI: 10.3168/jds.2023-24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
Ruminant milk composition can be affected by many factors, primarily interspecies differences, but also environmental factors (e.g., season, feeding system, and feed composition). Pasture-based feeding systems are known to be influenced by seasonal effects on grass composition. Spring pasture is rich in protein and low in fiber compared with late-season pasture, potentially inducing variability in the composition of some milk metabolites across the season. This study aimed to investigate interspecies and seasonal differences in the milk metabolome across the 3 major commercial ruminant milk species from factories in New Zealand: bovine, caprine, and ovine milk. Samples of bovine (n = 41) and caprine (n = 44) raw milk were collected monthly for a period of 9 mo (August 2016-April 2017), and ovine milk samples (n = 20) were collected for a period of 5 mo (August 2016-January 2017). Milk samples were subjected to biphasic extraction, and untargeted metabolite profiling was performed using 2 separate liquid chromatography high-resolution mass spectrometry analytical methods (polar metabolites and lipids). Major differences in the milk metabolome were observed between the 3 ruminant species, with 414 of 587 (71%) polar metabolite features and 210 of 233 (87%) lipid features being significantly different between species. Significant seasonal trends were observed in the polar metabolite fraction for bovine, caprine, and ovine milk (17, 24, and 32 metabolites, respectively), suggesting that the polar metabolite relative intensities of ovine and caprine milk were more susceptible to changes within seasons than bovine milk. We found no significant seasonal difference for the triglycerides (TG) species measured in bovine milk, whereas 3 and 52 TG species changed in caprine and ovine milk, respectively, across the seasons. In addition, 4 phosphatidylcholines and 2 phosphatidylethanolamines varied in caprine milk within the season, and 8 diglycerides varied in ovine milk. The interspecies and seasonal metabolite differences reported here provide a knowledge base of components potentially linked to milk physiochemical properties, and potential health benefits of New Zealand pasture-fed dairy ingredients.
Collapse
Affiliation(s)
- Diana Cabrera
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand.
| | - Karl Fraser
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand; Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
10
|
Shi J, Liu Y, Xu YJ. MS based foodomics: An edge tool integrated metabolomics and proteomics for food science. Food Chem 2024; 446:138852. [PMID: 38428078 DOI: 10.1016/j.foodchem.2024.138852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Foodomics has become a popular methodology in food science studies. Mass spectrometry (MS) based metabolomics and proteomics analysis played indispensable roles in foodomics research. So far, several methodologies have been developed to detect the metabolites and proteins in diets and consumers, including sample preparation, MS data acquisition, annotation and interpretation. Moreover, multiomics analysis integrated metabolomics and proteomics have received considerable attentions in the field of food safety and nutrition, because of more comprehensive and deeply. In this context, we intended to review the emerging strategies and their applications in MS-based foodomics, as well as future challenges and trends. The principle and application of multiomics were also discussed, such as the optimization of data acquisition, development of analysis algorithm and exploration of systems biology.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Sun Y, Liu J, Pi X, Jiang S, Cheng J, Guo M. Comparison of lipidome profiles in human milk from Chinese Han and Korean ethnic groups based on high-throughput lipidomic techniques. J Dairy Sci 2024; 107:4205-4215. [PMID: 38428489 DOI: 10.3168/jds.2023-23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM. Twenty-eight differentially expressed lipids (DEL) were screened between the 2 milk groups; among these, 6 triacylglycerols (TG), 13 diacylglycerols (DG), 7 free fatty acids (FFA), and 1 monoglyceride (MG) were upregulated in KHM. Carnitine (CAR) was upregulated in HHM. Most DEL showed a single peak distribution in both groups. The correlations, related pathways and diseases of these DEL were further analyzed. The results demonstrated that DG, MG, and FFA showed highly positive correlations with each other (r > 0.8). The most enriched Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.jp/kegg/) and Human Metabolome Database (http://www.hmdb.ca) pathways were inositol phosphate metabolism, and α-linolenic acid and linolenic acid metabolism, respectively. Major depressive disorder-related FFA (20:5) and FFA (22:6) were more abundant in KHM, whereas HHM showed more obesity-related CAR. These data potentially provide lipidome information regarding human milk from different ethnicities in China.
Collapse
Affiliation(s)
- Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiafei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | | | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
12
|
Liu Q, Liu Y, Zhao J, Qiao W, Hou J, Wang Y, Zhang M, Jia G, Liu Y, Fan X, Li Z, Jia H, Zhao X, Chen L. Impact of manufacturing processes on glycerolipid and polar lipid composition and ultrastructure in infant formula. Food Chem 2024; 444:138623. [PMID: 38309081 DOI: 10.1016/j.foodchem.2024.138623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The introduction of exogenous lipids in the production of infant formula induces significant alterations in milk lipid composition, content, and membrane structure, thus affecting the lipid digestion, absorption, and utilization. This study meticulously tracks these changes throughout the manufacturing process. Pasteurization has a significant effect on phosphatidylcholine and sphingomyelin in the outer membrane, decreasing their relative contents to total polar lipids from 12.52% and 17.34% to 7.72% and 12.59%, respectively. Subsequent processes, including bactericidal-concentration and spray-drying, demonstrate the thermal stability of sphingomyelin and ceramides, while glycerolipids with arachidonic acid/docosahexaenoic acid and glycerophospholipids, particularly phosphatidylethanolamine, diminish significantly. Polar lipids addition and freeze-drying technology significantly enhance the polar lipid content and improve microscopic morphology of infant formula. These findings reveal the diverse effects of technological processes on glycerolipid and polar lipid compositions, concentration, and ultrastructure in infant formulas, thus offering crucial insights for optimizing lipid content and structure within infant formula.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ge Jia
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaofei Fan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ziqi Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Haidong Jia
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaojiang Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
13
|
Li Y, Guo H, Yang X, Yang X, Zhang H, Wang P, Song J, Wang L, Zhang W, Wen P. Pseudo-targeted lipidomics insights into lipid discrepancies between yak colostrum and mature milk based on UHPLC-Qtrap-MS. Food Chem 2024; 442:138462. [PMID: 38245985 DOI: 10.1016/j.foodchem.2024.138462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Yak milk is essential to maintain the normal physiological functions of herders in Tibetan areas of China. However, the lipid components of yak colostrum (YC) and mature milk (YM) have not been systematically studied. We employed a quantitative lipidomics to comprehensively describe the alterations in the milk lipid profile of lactating yaks. Herein, totally 851 lipids from 28 lipid subclasses in YC and YM were identified and screened for 43 significantly different lipids (SDLs; variable importance in projection > 1, fold change < 0.5 or > 2 with P < 0.05), with cholesterol ester (CE, 16:0) and triacylglycerol (TAG, 54:6 (20:5), 50:1 (16:0), 56:6 (20:5)) were the potential lipid biomarkers. Fourteen SDLs were modulated downwards, and 29 SDLs were modulated upwards in YM. Moreover, by analyzing lipid metabolic pathways in these SDLs, glycerophospholipid metabolism was the most critical. Our results furnish integral lipid details for evaluating yak milk's nutritional quality.
Collapse
Affiliation(s)
- Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Yang
- Gansu Institute of Business and Technology, Lanzhou 730010, China
| | - Hao Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Juan Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Longlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
14
|
Liao G, Wang T, Li X, Gu J, Jia Q, Wang Z, Li H, Qian Y, Qiu J. Comparison of the Lipid Composition of Milk Fat Globules in Goat ( Capra hircus) Milk during Different Lactations and Human Milk. Foods 2024; 13:1618. [PMID: 38890847 PMCID: PMC11171730 DOI: 10.3390/foods13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Goat milk is considered the optimal substitute for human milk and is characterized by variations in the lipid composition of its fat globules across lactation phases. Therefore, the objective of this study was to thoroughly analyze the differences between goat milk during different lactations and human milk, aiming to offer scientific guidance for the production of functional dairy products. Compared with transitional and mature milk, the findings indicated that the total membrane protein content in goat colostrum exhibited greater similarity to that found in human milk. Additionally, goat milk exhibited higher milk fat globule size, as well as a higher total lipid and protein content than human milk. A total of 1461 lipid molecules across 61 subclasses were identified in goat milk and human milk. The contents of glycerides and glycerophospholipids were higher in goat colostrum, whereas sphingolipids and fatty acids were more abundant in human milk. Meanwhile, the compositions of lipid subclasses were inconsistent. There were 584 differentially expressed lipids identified between human and goat milk, including 47 subclasses that were primarily involved in the metabolism of glycerophospholipids, sphingolipids, and triglycerides. In summary, for both the membrane protein and the lipid composition, there were differences between the milk of different goat lactations and human milk.
Collapse
Affiliation(s)
- Guangqin Liao
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Tiancai Wang
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Xiabing Li
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Jingyi Gu
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Qi Jia
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Zishuang Wang
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Houru Li
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610065, China
| | - Yongzhong Qian
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Jing Qiu
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| |
Collapse
|
15
|
Ni X, Zhang Z, Deng Z, Li J. Optimizing ARA and DHA in infant formula: A systematic review of global trends, regional disparities, and considerations for precision nutrition. Food Res Int 2024; 182:114049. [PMID: 38519198 DOI: 10.1016/j.foodres.2024.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/24/2024]
Abstract
In the context of precision nutrition, the addition of ARA and DHA in infant formula needs to consider more factors. This study conducted a comprehensive literature review, including 112 relevant Chinese and English articles, to summarize and analyze the global levels of ARA, DHA, and the ARA/DHA ratio in breast milk. The data were correlated with local aquatic products intake and children's IQ. The results indicated that the average level of DHA in breast milk across regions is lower than that of ARA. Variations in DHA content were identified as a primary factor influencing ARA/DHA ratio fluctuations. Breast milk ARA and DHA levels decrease with prolonged lactation periods but increase over the past 22 years. Correlation analysis revealed a significant positive relationship between aquatic products intake and breast milk DHA levels (r = 0.64, p < 0.05). Breast milk DHA levels also showed a significant positive correlation with children's IQ (r = 0.67, p < 0.01). Stable breast milk ARA content did not exhibit significant correlations with aquatic products intake or children's IQ (r = 0, p > 0.05). Among 22 infant formula products available in China, only 5 had ARA levels within the range of breast milk. Most formula products had higher ARA levels than DHA, resulting in ARA/DHA ratios generally exceeding 1. The temporal and spatial variability in breast milk ARA and DHA levels may lead to diverse health outcomes in infants. Therefore, the addition of ARA and DHA in infant formula should consider this variability, including the molecular forms and positional isomerism of the added ARA and DHA. Additionally, considering the impact of different cognitive development tests and infant's gene expression on formula assessment results, there is a need to establish a more comprehensive infant health assessment system to guide the addition of ARA and DHA in formula.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
16
|
Gu JY, Li XB, Liao GQ, Wang TC, Wang ZS, Jia Q, Qian YZ, Zhang XL, Qiu J. Comprehensive analysis of phospholipid in milk and their biological roles as nutrients and biomarkers. Crit Rev Food Sci Nutr 2024; 65:2261-2280. [PMID: 38556904 DOI: 10.1080/10408398.2024.2330696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Phospholipids (PL) have garnered significant attention due to their physiological activities. Milk and other dairy products are important dietary sources for humans and have been extensively used to analyze the presence of PL by various analytical techniques. In this paper, the analysis techniques of PL were reviewed with the eight trigrams of phospholipidomics and a comprehensive fingerprint of 1295 PLs covering 8 subclasses in milk and other dairy products, especially. Technology is the primary productive force. Based on phospholipidomics technology, we further review the relationship between the composition of PL and factors that may be involved in processing and experimental operation, and emphasized the significance of the biological role played by PL in dietary supplements and biomarkers (production, processing and clinical research), and providing the future research directions.
Collapse
Affiliation(s)
- Jing-Yi Gu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xia-Bing Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tian-Cai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zi-Shuang Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xing-Lian Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
17
|
Lei J, He Y, Zhu S, Shi J, Tan CP, Liu Y, Xu YJ. SpecLipIDA: a pseudotargeted lipidomics approach for polyunsaturated fatty acids in milk. Analyst 2024; 149:751-760. [PMID: 38194259 DOI: 10.1039/d3an01536j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in the nutritional value of milk lipids. However, a comprehensive analysis of PUFAs and their esters in milk is still scarce. In this study, we developed a novel pseudotargeted lipidomics approach, named SpecLipIDA, for determining PUFA lipids in milk. Triglycerides (TGs) and phospholipids (PLs) were separated using NH2 cartridges, and mass spectrometry data in the information-dependent acquisition (IDA) mode were preprocessed by MS-DIAL, leading to improved identification in subsequent targeted analysis. The target matching algorithm, based on specific lipid cleavage patterns, demonstrated enhanced identification of PUFA lipids compared to the lipid annotations provided by MS-DIAL and GNPS. The approach was applied to identify PUFA lipids in various milk samples, resulting in the detection of a total of 115 PUFA lipids. The results revealed distinct differences in PUFA lipids among different samples, with 44 PUFA lipids significantly contributing to these differences. Our study indicated that SpecLipIDA is an efficient method for rapidly and specifically screening PUFA lipids.
Collapse
Affiliation(s)
- Jingnan Lei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Yuan He
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Shuang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Jiachen Shi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
18
|
Cao Z, Xu M, Qi S, Xu X, Liu W, Liu L, Bao Q, Zhang Y, Xu Q, Zhao W, Chen G. Lipidomics reveals lipid changes in the intramuscular fat of geese at different growth stages. Poult Sci 2024; 103:103172. [PMID: 37984003 PMCID: PMC10694593 DOI: 10.1016/j.psj.2023.103172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023] Open
Abstract
The quality (color, tenderness, juiciness, protein content, and fat content) of poultry meat is closely linked to age, with older birds typically exhibiting increased intramuscular fat (IMF) deposition. However, specific lipid metabolic pathways involved in IMF deposition remain unknown. To elucidate the mechanisms underlying lipid changes, we conducted a study using meat geese at 2 distinct growth stages (70 and 300 d). Our findings regarding the approximate composition of the meat revealed that as the geese aged 300 d, their meat acquired a chewier texture and displayed higher levels of IMF. Liquid chromatography-mass spectrometry (LC-MS) was employed for lipid profiling of the IMF. Using a lipid database, we identified 849 lipids in the pectoralis muscle of geese. Principal component analysis and orthogonal partial least squares discriminant analysis were used to distinguish between the 2 age groups and identify differential lipid metabolites. As expected, we observed significant changes in 107 lipids, including triglycerides, diglycerides, phosphatidylethanolamine, alkyl-glycerophosphoethanolamine, alkenyl-glycerophosphoethanolamine, phosphatidylcholine, phosphatidylinositol, lysophosphatidylserine, ceramide-AP, ceramide-AS, free fatty acids, cholesterol lipids, and N-acyl-lysophosphatidylethanolamine. Among these, the glyceride molecules exhibited the most pronounced changes and played a pivotal role in IMF deposition. Additionally, increased concentration of phospholipid molecules was observed in breast muscle at 70 d. Unsaturated fatty acids attached to lipid side chain sites enrich the nutritional value of goose meat. Notably, C16:0 and C18:0 were particularly abundant in the 70-day-old goose meat. Pathway analysis demonstrated that glycerophospholipid and glyceride metabolism were the pathways most significantly associated with lipid changes during goose growth, underscoring their crucial role in lipid metabolism in goose meat. In conclusion, this work provides an up-to-date study on the lipid composition and metabolic pathways of goose meat and may provide a theoretical basis for elucidating the nutritional value of goose meat at different growth stages.
Collapse
Affiliation(s)
- Zhi Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Maodou Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shangzong Qi
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinlei Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Linyu Liu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Bao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|
19
|
Wu Y, Sun Y, Chen R, Qiao Y, Zhang Q, Li Q, Wang X, Pan Y, Li S, Wang Z. Analysis for lipid nutrient differences in the milk of 13 species from a quantitative non-targeted lipidomics perspective. Food Chem X 2023; 20:101024. [PMID: 38144754 PMCID: PMC10740049 DOI: 10.1016/j.fochx.2023.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Lipids are essential organic components in milk and have been associated with various health benefits for newborns. However, a comprehensive analysis of lipid profiles across multiple species and levels has been lacking. In this study, we employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to accurately determine the absolute content of lipid molecules. It revealed that ruminants exhibit a higher concentration of short-chain fatty acids compared to non-ruminants. Additionally, we identified ALC (camel), MGH (horse), and DZD (donkey) as species that display similarities to components found in human milk fat. Remarkably, it reveals that porcine milk fat is characterized by long chain lengths, low saturation, and a high proportion of essential fatty acids. PS (22:5_18:2) could potentially serve as a biomarker in porcine milk. These unique characteristics present potential opportunities for the utilization of porcine milk. Overall, our findings provide valuable insights into the lipidomics profiles of milk from different species.
Collapse
Affiliation(s)
| | | | | | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Pan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
20
|
Stemler CD, Geisslitz S, Cutignano A, Scherf KA. Lipidomic insights into the reaction of baking lipases in cakes. Front Nutr 2023; 10:1290502. [PMID: 38192645 PMCID: PMC10773883 DOI: 10.3389/fnut.2023.1290502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Lipases are promising improvers of cake batter and baking properties. Their suitability for use in various cake formulations cannot be predicted yet, because the reactions that lead to macroscopic effects need to be unravelled. Therefore, the lipidome of three different cake recipes with and without lipase treatment was assessed by ultra high performance liquid chromatography-mass spectrometry before and after baking. By comparing the reaction patterns of seven different lipases in the recipes with known effects on texture, we show that lipase substrate specificity impacts baking quality. Key reactions for the recipes were identified with the help of principal component analysis. In the eggless basic cake, glyceroglycolipids are causal for baking improvement. In pound cake, lysoglycerophospholipids were linked to textural effects. Lipase substrate specificity was shown to be dependent on the recipe. Further research is needed to understand how recipes can be adjusted to achieve optimal lipase substrate specificity for desirable batter and baking properties.
Collapse
Affiliation(s)
- Charlotte Dorothea Stemler
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sabrina Geisslitz
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Adele Cutignano
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (Napoli), Italy
| | - Katharina Anne Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
21
|
Liu B, Liang YH, He YZ, Ye W, Deng ZY, Li J, Guo S. Differences in fat digestion from milk of different Species: In vitro gastrointestinal digestion model for infants. Food Res Int 2023; 174:113571. [PMID: 37986442 DOI: 10.1016/j.foodres.2023.113571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
The differences in the milk fat digestion from goat milk (GM), camel milk (CM), bovine milk (BM), sheep milk (SM), mare milk (MM) and human milk (HM) using an in vitro gastrointestinal digestion model for simulated infants were investigated. The particle size distributions in goat and mare milk were similar to that of HM after digestion in the small intestine. During in vitro digestion, the zeta-potential change of MM was more consistent with that of HM. After 60 min of gastric digestion, the lipolysis degree (LD) of different milks were<2%, of which the highest LD was MM (1.84%), followed by HM (1.45%). At the end of intestinal digestion, the LD of HM was the highest, reaching 88.47%, and the LD of SM was similar to that of HM, reaching 83.92%, followed by GM (57.00%), BM (40.98%) and MM (39.37%), respectively, the LD of CM was only 29.99%, which was much lower than HM. The results of the glyceride composition hierarchical clustering analysis revealed that MM and HM were clustered into one category at the end of gastric and intestinal digestion. This study provides a scientific basis for the development of lipid ingredients in infant formula.
Collapse
Affiliation(s)
- Biao Liu
- College of Food Science and Nutritional Engineering, China agricultural University, 100083 Beijing, PR China
| | - Ye-Hui Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China
| | - Yang-Zheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China
| | - Wenhui Ye
- Inner Mongolia Yili Industrial Group Co., ltd, 010110 Hohhot, PR China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China.
| | - Shuntang Guo
- College of Food Science and Nutritional Engineering, China agricultural University, 100083 Beijing, PR China.
| |
Collapse
|
22
|
Wang K, Xin Z, Chen Z, Li H, Wang D, Yuan Y. Progress of Conjugated Linoleic Acid on Milk Fat Metabolism in Ruminants and Humans. Animals (Basel) 2023; 13:3429. [PMID: 37958184 PMCID: PMC10647460 DOI: 10.3390/ani13213429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
As a valuable nutrient in milk, fat accounts for a significant proportion of the energy requirements of ruminants and is largely responsible for determining milk quality. Fatty acids (FAs) are a pivotal component of milk fat. Conjugated linoleic acid (CLA) is one of the naturally occurring FAs prevalent in ruminant dairy products and meat. Increasing attention has been given to CLA because of its anti-cancer, anti-inflammatory, immune regulation, and lipid metabolism regulation properties, and these benefits potentially contribute to the growth and health of infants. In breast milk, CLA is present in trace amounts, mainly in the form of cis-9, trans-11 CLA. Notably, cis-9, trans-11 CLA improves the milk fat rate while trans-10, cis-12 CLA inhibits it. Apart from having multiple physiological functions, CLA is also a pivotal factor in determining the milk quality of ruminants, especially milk fat rate. In response to growing interest in green and healthy functional foods, more and more researchers are exploring the potential of CLA to improve the production performance of animals and the nutritional value of livestock products. Taken together, it is novel and worthwhile to investigate how CLA regulates milk fat synthesis. It is the purpose of this review to clarify the necessity for studying CLA in ruminant milk fat and breast milk fat.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Zimeng Xin
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Huanan Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Diming Wang
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
| | - Yuan Yuan
- School of Nursing, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Liu Q, Qiao W, Liu Y, Liu Y, Zhao J, Fan X, Li Z, Hou J, Liu Y, Chen J, Yang K, Yu X, Lin L, Jin Y, Chen L. Effects of lipids from multiple sources on glyceride composition, concentration, and structure of infant formulas benchmarked to human milk. Heliyon 2023; 9:e21611. [PMID: 38027638 PMCID: PMC10654232 DOI: 10.1016/j.heliyon.2023.e21611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The important parameters affecting the nutritional properties of lipids were analyzed and compared between human milk (HM), infant formulas (IFs), mammalian milk, and substitute fat, including molecular species, fatty acid composition, glyceride content, and important structural triacylglycerols (TAGs). The molecular species of triacylglycerols with functional fatty acids were significantly different between HM and IFs, and their contents in HM were significantly higher than those in IFs. Accordingly, the evaluation scores of fatty acid composition and glyceride content in IFs were less than 50 compared to HM. Although the introduction of vegetable oils effectively improved the unsaturation of IF lipid, the excessive addition of TAGs rich in oleic and linoleic acid resulted in an imbalance of TAG composition and structure. Only 36.84 % of IFs were supplemented with structured lipids, but those still lacked sn-2 palmitate TAGs. The adoption of multiple lipids and novel processing technologies is required for novel IFs to match the composition, content, positional structure and spherical membrane structure of HM as closely as possible.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaofei Fan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ziqi Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Jingyao Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Li Lin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yue Jin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| |
Collapse
|
24
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
25
|
Blasi F, Maria Pellegrino R, Br Alabed H, Ianni F, Emiliani C, Cossignani L. Lipidomics of coconut, almond and soybean milks - Comprehensive characterization of triacylglycerol class and comparison with bovine milk. Food Res Int 2023; 172:113147. [PMID: 37689910 DOI: 10.1016/j.foodres.2023.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 09/11/2023]
Abstract
Nowadays, plant-based milk consumption, as part of a healthy diet, is continuously increasing. In this paper, for the first time a lipidomic analysis on molecular species of triacylglycerol (TG) fraction of plant-based beverages (almond, soy, coconut) was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 557 TG molecular species was measured, showing significantly different profiles between milk alternatives, compared with bovine milk. The most abundant TG molecular species were TG 18:1_18:1_18:1 and 18:1_18:1_18:2 for almond, TG 18:2_18:2_18:2 and 16:0_18:2_18:2 for soy, TG 12:0_10:0_12:0 and 12:0_12:0_14:0 for coconut. Unconventional fatty acids were detected in almond and soy. The main TG with ethereal linkage were TG-O 56:2, TG-O 56:4, and TG-O 56:5, while the main oxygenated TG was TG 54:5;1O. A total of 30 molecular species were identified as biomarkers for milk differentiation by principal component analysis, providing an interesting support for milk authentication and detection of adulteration on a larger sampling.
Collapse
Affiliation(s)
- Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Husam Br Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
26
|
Wang S, Song Y, He R, Du G, Zhang L, Zhang B, Zhang J, Zhao L, Zhang J, Ge W. A new insight into the polar lipid composition in mature breast milk and ewe milk with comparative lipidomics analysis. Food Res Int 2023; 170:112977. [PMID: 37316057 DOI: 10.1016/j.foodres.2023.112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Polar lipids play essential biological functions in energy storage, both as structural components of cell membranes and as signaling molecules. In this study, a comprehensive UHPLC-QTRAP-MS-based lipidomic analysis of mature breast milk (BM) and ewe milk (EM) was conducted. Through the analysis, a total of 362 polar lipid species from 14 subclasses were characterized, including 60 phosphatidylethanolamines (PEs), 59 phosphatidylcholines (PCs), 38 phosphatidylinositols (PIs), 35 sphingomyelins (SMs), and 34 ceramides (Cers). Of these, 139 lipid molecules were screened as significantly differentially expressed polar lipids (SDPLs) between the two kinds of milk based on the following criteria: a variable importance in projection (VIP) value > 1.0, a false discovery rate-adjusted P-value < 0.0001, and a fold change (FC) of either > 2.0 or < 0.5; these included 111 upregulated and 28 downregulated SDPLs in EM compared to BM. Among these SDPLs, the content of PE (16:1_18:0) was found to be significantly higher in EM compared to BM (FC = 69.5853, P < 0.0001). Moreover, sphingolipid metabolism and glycerophospholipid metabolism were determined to be vital metabolic pathways. This was derived from the finding that PE, PC, SM, and PI were key lipid metabolites in the two kinds of milk that were related to these two metabolic pathways. This study provides new insights into the characterization of SDPLs in mammalian milk, and also provides a theoretical basis for optimizing infant formula.
Collapse
Affiliation(s)
- Shuangshuang Wang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Guanli Du
- Shaanxi Qinlong Dairy Industry Co. Ltd., Xi'an 710000, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bangjun Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Jiaying Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Lili Zhao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
27
|
Ren W, Sun M, Shi X, Wang T, Wang Y, Wang C, Li M. Progress of Mass Spectrometry-Based Lipidomics in the Dairy Field. Foods 2023; 12:foods12112098. [PMID: 37297344 DOI: 10.3390/foods12112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Lipids play important biological roles, such as providing essential fatty acids and signaling. The wide variety and structural diversity of lipids, and the limited technical means to study them, have seriously hampered the resolution of the mechanisms of action of lipids. With advances in mass spectrometry (MS) and bioinformatic technologies, large amounts of lipids have been detected and analyzed quickly using MS-based lipidomic techniques. Milk lipids, as complex structural metabolites, play a crucial role in human health. In this review, the lipidomic techniques and their applications to dairy products, including compositional analysis, quality identification, authenticity identification, and origin identification, are discussed, with the aim of providing technical support for the development of dairy products.
Collapse
Affiliation(s)
- Wei Ren
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengqi Sun
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xiaoyuan Shi
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Tianqi Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yonghui Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengmeng Li
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
28
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat. Int J Mol Sci 2023; 24:ijms24087381. [PMID: 37108542 PMCID: PMC10138426 DOI: 10.3390/ijms24087381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Fat deposition is very important to the growth and reproduction of yaks. In this study, the effect of the feeding system on fat deposition in yaks was explored by transcriptomics and lipidomics. The thickness of the subcutaneous fat in yaks under stall (SF) and graze feeding (GF) was evaluated. The transcriptomes and lipidomes of the subcutaneous fat in yaks under different feeding systems were detected by RNA-sequencing (RNA-Seq) and non-targeted lipidomics based on ultrahigh-phase liquid chromatography tandem mass spectrometry (UHPLC-MS), respectively. The differences in lipid metabolism were explored, and the function of differentially expressed genes (DEGs) was evaluated by gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) analysis. Compared with GF yaks, SF yaks possessed stronger fat deposition capacity. The abundance of 12 triglycerides (TGs), 3 phosphatidylethanolamines (PEs), 3 diglycerides (DGs), 2 sphingomyelins (SMs) and 1 phosphatidylcholine (PC) in the subcutaneous fat of SF and GF yaks was significantly different. Under the mediation of the cGMP-PKG signaling pathway, the blood volume of SF and GF yaks may be different, which resulted in the different concentrations of precursors for fat deposition, including non-esterified fatty acid (NEFA), glucose (GLU), TG and cholesterol (CH). The metabolism of C16:0, C16:1, C17:0, C18:0, C18:1, C18:2 and C18:3 in yak subcutaneous fat was mainly realized under the regulation of the INSIG1, ACACA, FASN, ELOVL6 and SCD genes, and TG synthesis was regulated by the AGPAT2 and DGAT2 genes. This study will provide a theoretical basis for yak genetic breeding and healthy feeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| |
Collapse
|
29
|
Wu D, Zhang L, Tan CP, Zheng Z, Liu Y. Comparative Lipidomic Analysis Reveals the Lactational Changes in the Lipid Profiles of Chinese Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5403-5416. [PMID: 36951298 DOI: 10.1021/acs.jafc.2c08857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human milk (HM) lipid plays a crucial role in infant development, whereas its complex lipid profiles and its dynamic changes during prolonged lactation have not been investigated yet. Comparative lipidomic analyses were employed in investigating the lipid profiles of breast milk covering all lactation stages herein. Results revealed significant differences between colostrum and the remaining lactations. A total of 237 species of glycerolipids (GLs) and 231 phospholipids (PLs) were identified. Colostrum had the most abundant lipid species and was enriched with triacylglycerols (TGs) with a high molecular weight. TG(17:1/18:1/24:1), TG(24:1/24:1/26:1), TG(24:0/24:1/26:1), and SM(d20:1/14:1) were characteristic lipids of colostrum. Differential lipid species which were responsible for distinguishing the adjacent lactations were also indicated. Our findings can help deepen the overall understanding of HM lipid profiles and its dynamic changes, which will facilitate the development of infant formulas suitable for Chinese babies in diverse age groups.
Collapse
Affiliation(s)
- Danjie Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
30
|
Li Z, Wang X, Deng X, Song J, Yang T, Liao Y, Gong G, Huang L, Lu Y, Wang Z. High-sensitivity qualitative and quantitative analysis of human, bovine and goat milk glycosphingolipids using HILIC-MS/MS with internal standards. Carbohydr Polym 2023; 312:120795. [PMID: 37059535 DOI: 10.1016/j.carbpol.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.
Collapse
|
31
|
Yu X, Zhou W, Jia Z, Liu L, Li X, Zhang X, Cheng J, Ma C, Sun L, Jiao Y. Interfacial composition in infant formulas powder modulate lipid digestion in simulated in-vitro infant gastrointestinal digestion. Food Res Int 2023; 165:112553. [PMID: 36869459 DOI: 10.1016/j.foodres.2023.112553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The interface structure and composition of fat globules are very important for the digestion and metabolism of fat and growth in infants. Interface composition of fat globules in infant formula (IF) supplemented with milk fat globule membranes (MFGM) and lecithin in different ways were analyzed and their effects on fat digestion properties were evaluated. The results showed that the distribution of phospholipids at the interface and structural of Concept IF1 and Concept IF2 that were more similar to those of human milk (HM) than that of conventionally processed IF3. Concept IF2 and IF3 supplemented with lecithin had larger initial particle size and more sphingomyelin (SM) (23.12 ± 0.26 %, 26.94 ± 0.34 %) than Concept IF1, and Concept IF2 had the smallest proportion of casein in the interfacial. Due to its interface composition, Concept IF2 had the highest degree of lipolysis (85.07 ± 0.76 %), the phospholipid ring structure can always be observed during gastric digestion, and a final fatty acid composition released that was more similar to HM. Concept IF1 and IF3 were different from HM and Concept IF2 in terms of structure and lipolysis rate, although superior to commercial IF4. These indicate that changes in the interfacial composition and structure of fat globules improve the digestive properties of fats in IF. Overall, the results reported herein are useful in designing new milk formulas that better simulate HM.
Collapse
Affiliation(s)
- Xiaoxue Yu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Wenli Zhou
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Zhibing Jia
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Jinju Cheng
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lina Sun
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yang Jiao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
32
|
Liu Z, Rochfort S. Lipidomics in milk: recent advances and developments. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
33
|
Wu D, Zhang L, Zhang Y, Shi J, Tan CP, Zheng Z, Liu Y. Lipid Profiles of Human Milk and Infant Formulas: A Comparative Lipidomics Study. Foods 2023; 12:foods12030600. [PMID: 36766129 PMCID: PMC9914114 DOI: 10.3390/foods12030600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Infant formulas (IFs) are prevalent alternatives for human milk (HM), although their comparative lipid profiles have not been fully investigated. We adopted lipidomics to analyze and compare in-depth the lipid patterns of HM and IFs. The results indicated that the distribution of fatty acids (FAs) and the structure of triacylglycerols varied substantially in the analyzed samples. A total number of 425 species were identified during the analysis. HM was abundant in triacylglycerols that contained unsaturated and long-chain FAs (>C13), while triacylglycerols in IFs were mainly comprised of saturated and medium-chain FAs (C8-C13). Higher levels of sphingomyelin were observed in HM. Furthermore, HM and IF1 contained 67 significantly differential lipids (SDLs), and 73 were identified between HM and IF2. These SDLs were closely associated with nine metabolic pathways, of which the most significant was the glycerophospholipid metabolism. The results shed light on the differences between the lipid profiles of human and infant formula milks, and provide support for designing Chinese infant formula.
Collapse
Affiliation(s)
- Danjie Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi 214023, China
- Correspondence: (L.Z.); (Y.L.)
| | - Yan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (L.Z.); (Y.L.)
| |
Collapse
|
34
|
Goat milk as a natural source of bioactive compounds and strategies to enhance the amount of these beneficial components. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Liu Y, Qiao W, Liu Y, Zhao J, Liu Q, Yang K, Zhang M, Wang Y, Liu Y, Chen L. Quantification of phospholipids and glycerides in human milk using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. Front Chem 2023; 10:1101557. [PMID: 36700070 PMCID: PMC9868747 DOI: 10.3389/fchem.2022.1101557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Human milk lipids, which are an important source of energy and affect growth and development of infants, require a comprehensive method for its qualitative and quantitative analysis. This work describes a method for the analysis of phospholipids, glycerides, free fatty acids and gangliosides in human milk by ultra-performance liquid chromatography using a C18 column with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). The lipids were extracted by liquid-liquid extraction and phospholipids were separated by solid phase extraction (SPE). The chromatographic columns with two different specifications (4.6 mm × 150 mm, and 3 mm × 50 mm) were used to detect phospholipids and glycerides in human milk, respectively. The sphingolipids and glycerides were analyzed in positive ion mode, and the glycerophospholipids and free fatty acids were analyzed in negative ion mode. Both internal and external standards were used for absolute quantification in this experiment. 483 species of lipids, including phospholipids, glycerides, free fatty acids and gangliosides, in human milk were analyzed using UPLC-Q-TOF-MS with high sensitivity and good linearity, with coefficient of correlation above 0.99, the relative standard deviation of accuracy and precision less than 10%. The results in a large number of human milk samples showed that this method was suitable for qualitative and quantitative analysis of lipids in human milk, even for other mammalian milk and infant formulae.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China,*Correspondence: Lijun Chen,
| |
Collapse
|
36
|
Profiling of phospholipid classes and molecular species in human milk, bovine milk, and goat milk by UHPLC-Q-TOF-MS. Food Res Int 2022; 161:111872. [DOI: 10.1016/j.foodres.2022.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
37
|
Effect of Lipids in Yak Muscle under Different Feeding Systems on Meat Quality Based on Untargeted Lipidomics. Animals (Basel) 2022; 12:ani12202814. [PMID: 36290199 PMCID: PMC9597711 DOI: 10.3390/ani12202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary With the development of living standards, consumers are paying more and more attention to meat quality and flavor. When consumers choose meat, they directly pay attention to meat quality and flavor, so the meat quality and flavor directly decide meat price and sales volume. Better meat quality and flavor are the crucial factors that increase the additional value of meat. Because of its special nutritional value and taste, yak meat is popular with consumers. The intramuscular lipids can greatly affect the meat quality and flavor, but there is no report on the effect of lipids in yak muscle on the meat quality and flavor. In this study, we studied the characterization of lipids in yak muscle under different feeding systems and further explored the key lipids affecting yak meat quality and flavor. This study can provide new insight into the improvement of yak meat quality and flavor. Abstract The effect of lipids on yak meat quality and volatile flavor compounds in yak meat under graze feeding (GF) and stall feeding (SF) was explored using untargeted lipidomics based on liquid chromatography–mass spectrometry (LC-MS) in this study. First, the volatile flavor compounds in longissimus dorsi (LD) of SF and GF yaks were detected by gas chromatography–mass spectrometry (GC-MS). In total 49 and 39 volatile flavor substances were detected in the LD of GF and SF yaks, respectively. The contents of pelargonic aldehyde, 3-hydroxy-2-butanone and 1-octen-3-ol in the LD of both GF and SF yaks were the highest among all detected volatile flavor compounds, and the leading volatile flavor substances in yak LD were aldehydes, alcohols and ketones. In total, 596 lipids were simultaneously identified in the LD of SF and GF yaks, and the leading lipids in the LD of both GF and SF yaks were sphingolipids (SPs), glycerolipids (GLs) and glycerophospholipids (GPs). Seventy-five significantly different lipids (SDLs) between GF and SF yaks were identified in the LD. The high content of TG(16:1/18:1/18:1), TG(16:0/17:1/18:1) and TG(16:0/16:1/18:1), PE(18:0/22:4) and PC(18:2/18:0) can improve the a* (redness) and tenderness of yak muscle. The changes in volatile flavor compounds in yak muscle were mainly caused by TG(18:1/18:1/18:2), TG(18:0/18:1/18:1), TG(16:0/17:1/18:1), TG(16:0/16:1/18:1), PC(18:2/18:0), TG(16:1/18:1/18:1), PI(18:0/20:4), TG(16:1/16:1-/18:1) and TG(17:0/18:1/18:1). The above results provide a theoretical basis for improving yak meat quality from the perspective of intramuscular lipids.
Collapse
|
38
|
Gao W, Yin Q, Wang X, Teng X, Jin R, Liu N, Ren H. UHPLC-Q-Exactive Orbitrap mass spectrometry reveals the lipidomics of bovine milk and yogurt. Food Chem 2022; 392:133267. [DOI: 10.1016/j.foodchem.2022.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/04/2022]
|
39
|
Jia W, Du A, Fan Z, Shi L. Novel top-down high-resolution mass spectrometry-based metabolomics and lipidomics reveal molecular change mechanism in A2 milk after CSN2 gene mutation. Food Chem 2022; 391:133270. [DOI: 10.1016/j.foodchem.2022.133270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/18/2022]
|
40
|
Yu X, Zhao Y, Sun M, Liu L, Li X, Zhang X, Sun Y, Bora AFM, Li C, Leng Y, Jiang S. Effects of egg yolk lecithin/milk fat globule membrane material ratio on the structure and stability of oil-in-water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Zhong H, Zhang J, Xia J, Zhu Y, Chen C, Shan C, Cui X. Influence of gestational diabetes mellitus on lipid signatures in breast milk and association with fetal physical development. Front Nutr 2022; 9:924301. [PMID: 36034909 PMCID: PMC9402091 DOI: 10.3389/fnut.2022.924301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Gestational diabetes mellitus (GDM) commonly leads to adverse pregnancy outcomes and long-term metabolic complications in offspring. Breastfeeding has been shown to rewrite the fetal "metabolic programming" resulting from maternal diabetes and finally lead to a lower risk of future metabolic disease. Lipids in breast milk act like hormones to promote infant growth and development, but there is minimal information invested thus far in constitution changes of lipids in breast milk, especially in the context of GDM. In the present study, we performed a lipidomics analysis to compare the lipid composition in breast milk collected from women with or without GDM. We further revealed the correlations of dysregulated lipids in breast milk with maternal glucose and infant physical development. A total of 833 lipid species from 15 classes were identified, 60 of which were found to be significantly altered in response to the high glucose, suggesting a remarkable lipid profiling change in breast milk induced by GDM. Our results showed significant associations between dysregulated lipids (e.g., neutral lipids, phospholipids, sphingolipids) and maternal glucose. Furthermore, correction analysis demonstrated that GDM related lipids were also associated with indicators of infant physical development, including body weight, length, and head circumference. These findings may help to understand the protective effects of breastfeeding especially during GDM pregnancy.
Collapse
Affiliation(s)
- Hong Zhong
- School of Nursing, Nanjing Medical University, Nanjing, China
- Nanjing Maternal and Child Health Institute, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiahua Zhang
- School of Nursing, Nanjing Medical University, Nanjing, China
- Nanjing Maternal and Child Health Institute, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiaai Xia
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuting Zhu
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chen Chen
- Nanjing Maternal and Child Health Institute, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chunjian Shan
- School of Nursing, Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Institute, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
42
|
Sun Y, Ma S, Liu Y, Jia Z, Li X, Liu L, Ma Q, Jean Eric-parfait Kouame K, Li C, Leng Y, Jiang S. Changes in interfacial composition and structure of milk fat globules are crucial regulating lipid digestion in simulated in-vitro infant gastrointestinal digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Zhao L, Zhang J, Ge W, Wang J. Comparative Lipidomics Analysis of Human and Ruminant Milk Reveals Variation in Composition and Structural Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8994-9006. [PMID: 35849131 DOI: 10.1021/acs.jafc.2c02122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, the different lipidomes between human milk and ruminant milk were compared. The 471, 376, 467, and 87 differential lipids were identified in human versus cow, goat, sheep, and camel groups, respectively. According to multivariate statistical analysis, lipids in human and camel milk were closer but differed from other milk. The distributions of long-chain and polyunsaturated fatty acids of triglycerides (TGs), the proportions of functional TGs (OPO, OPL, and PPO), and many kinds of phospholipids (PLs) (PS, PI, GD, GM3, and Cer) in human milk were similar to those in camel milk. The similar structure of TGs and proportion of PLs in human milk to camel milk might contribute to their similar digestion and bioactivity properties. Camel milk could be considered as a new resource of lipid base for infant formula. Minor PLs should also be considered for designing formula. Our results provide a new sight for humanized lipids in infant formula.
Collapse
Affiliation(s)
- Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jinxuan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
44
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
45
|
Chen X, Peng X, Sun X, Pan L, Shi J, Gao Y, Lei Y, Jiang F, Li R, Liu Y, Xu YJ. Development and Application of Feature-Based Molecular Networking for Phospholipidomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7815-7825. [PMID: 35709392 DOI: 10.1021/acs.jafc.2c01770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phospholipids are small but critical lipids in milk. Conventional lipidomics is a powerful method for the analysis of lipids in milk. Although the number of lipidomics software has drastically increased over the past five years, reducing false positives and obtaining structurally accurate annotations of phospholipids remain a significant challenge. In this study, we developed a rapid and accurate method for measuring a wide spectrum of phospholipids in milk. The developed approach that employed information-dependent acquisition (IDA) mode and feature-based molecular networking has exhibited better performance on data processing and lipid annotation when compared with sequential window acquisition of all theoretical mass spectra (SWATH) and MS-DIAL. This validated method was further evaluated using three kinds of sheep milk. A total of 150 phospholipids were identified, including rarely reported phospholipids containing ethers or vinyl ethers. The result indicated that phospholipids could be used as potential markers to distinguish sheep milk from different varieties and origins. The experimental and computational methods provide a rapid and reliable method for the investigation of phospholipids in milk.
Collapse
Affiliation(s)
- Xiaoying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Co., Ltd., Changsha 410200, Hunan, People's Republic of China
| | - Xian Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Lina Pan
- Ausnutria Dairy (China) Co., Ltd., Changsha 410200, Hunan, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yu Gao
- Ausnutria Dairy (China) Co., Ltd., Changsha 410200, Hunan, People's Republic of China
| | - Yuanluo Lei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Fan Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
46
|
Changes in the lipidome of water buffalo milk during intramammary infection by non-aureus Staphylococci. Sci Rep 2022; 12:9665. [PMID: 35690599 PMCID: PMC9188581 DOI: 10.1038/s41598-022-13400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to determine the lipidome of water buffalo milk with intramammary infection (IMI) by non-aureus staphylococci (NAS), also defined as coagulase-negative staphylococci, using an untargeted lipidomic approach. Non-aureus Staphylococci are the most frequently isolated pathogens from dairy water buffalo milk during mastitis. A total of 17 milk samples from quarters affected by NAS-IMI were collected, and the lipidome was determined by liquid chromatography-quadrupole time-of-flight mass spectrometry. The results were compared with the lipidome determined on samples collected from 16 healthy quarters. The study identified 1934 different lipids, which were classified into 15 classes. The abundance of 72 lipids changed in NAS-IMI milk compared to healthy quarters. Significant changes occurred primarily in the class of free fatty acids. The results of this study provided first-time insight into the lipidome of dairy water buffalo milk. Moreover, the present findings provide evidence that NAS-IMI induces changes in water buffalo milk's lipidome.
Collapse
|
47
|
Advancement of omics techniques for chemical profile analysis and authentication of milk. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Yao W, Luo J, Tian H, Niu H, An X, Wang X, Zang S. Malonyl/Acetyltransferase (MAT) Knockout Decreases Triacylglycerol and Medium-Chain Fatty Acid Contents in Goat Mammary Epithelial Cells. Foods 2022; 11:foods11091291. [PMID: 35564013 PMCID: PMC9104349 DOI: 10.3390/foods11091291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Malonyl/acetyltransferase (MAT) is a crucial functional domain of fatty acid synthase (FASN), which plays a vital role in the de novo synthesis of fatty acids in vivo. Milk fatty acids are secreted by mammary epithelial cells. Mammary epithelial cells are the units of mammary gland development and function, and it is a common model for the study of mammary gland tissue development and lactation. This study aimed to investigate the effects of MAT deletion on the synthesis of triacylglycerol and medium-chain fatty acids. The MAT domain was knocked out by CRISPR/Cas9 in the goat mammary epithelial cells (GMECs), and in MAT knockout GMECs, the mRNA level of FASN was decreased by approximately 91.19% and the protein level decreased by 51.83%. The results showed that MAT deletion downregulated the contents of triacylglycerol and medium-chain fatty acids (p < 0.05) and increased the content of acetyl-Coenzyme A (acetyl-CoA) (p < 0.001). Explicit deletion of MAT resulted in significant drop of FASN, which resulted in downregulation of LPL, GPAM, DGAT2, PLIN2, XDH, ATGL, LXRα, and PPARγ genes in GMECs (p < 0.05). Meanwhile, mRNA expression levels of ACC, FASN, DGAT2, SREBP1, and LXRα decreased following treatment with acetyl-CoA (p < 0.05). Our data reveals that FASN plays critical roles in the synthesis of medium-chain fatty acids and triacylglycerol in GMECs.
Collapse
|
49
|
Sun X, Shi J, Li R, Chen X, Zhang S, Xu YJ, Liu Y. SWATH-MS2&1: Development and Validation of a Pseudotargeted Lipidomics Method for the Analysis of Glycerol Esters in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3331-3343. [PMID: 35230101 DOI: 10.1021/acs.jafc.1c06446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycerol ester (GE) is a kind of important lipid in milk, which varies greatly depending on many factors. In this study, a novel pseudotargeted lipidomics strategy, named SWATH-MS2&1, was developed for the detection of GEs in milk and the Folch method was selected for the sample preparation. The developed method exhibited a competitive alternative to the acknowledged pseudotargeted strategy, including wider coverage (12 more GEs detected), higher repeatability (12 more GEs, whose coefficient of variation < 0.3), better linearity (5 more GEs, whose R2 > 0.8), and similar sensitivity (only 2 GEs less than P-MRM after dilution). SWATH-MS2&1 was applied in the investigation of GEs from different milk samples. The orthogonal partial least-squares difference analysis of 219 GEs identified from SWATH-MS2&1 showed satisfying differentiation of different milk samples, and 76 GEs were screened out as potential markers. Our findings demonstrated that SWATH-MS2&1 could offer an accurate method to measure a wide spectrum of GEs in milk.
Collapse
Affiliation(s)
- Xian Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xiaoying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shuang Zhang
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
50
|
Pan Y, Liu L, Tian S, Li X, Hussain M, Li C, Zhang L, Zhang Q, Leng Y, Jiang S, Liang S. Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|