1
|
Navaser M, Shokrollahi A, Zarghampour F, Saeidi F. Enhancing gel electromembrane extraction using glycine-doped agarose to mitigate electroendosmosis flow: application to tramadol extraction from biological specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2398-2408. [PMID: 40013410 DOI: 10.1039/d4ay01939c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study involves incorporating glycine into agarose to effectively eliminate electroendosmosis (EEO) effects in gel electromembrane extraction (G-EME) of tramadol (TMD) from biological samples. The development of a glycine-modified agarose membrane for EEO-free tramadol extraction represents a significant advancement in analytical chemistry with far-reaching societal implications. By eliminating the confounding effects of electroendosmosis and eschewing the use of harmful organic solvents typically employed in electromembrane procedures, this environmentally friendly method enhances the accuracy and precision of tramadol quantification in biological matrices. The operational procedure consists of the extraction tramadol, from 10 mL aqueous sample solution (pH 6.0), as the donor phase (DP), transferring it into membrane (pH 5.0); as the final step, it enters into an acceptor phase (AP, 700 μL, pH 4.0). The optimization of critical parameters, including the (w/v) percentage of agarose and glycine, the gel thickness, and the pH levels of the acceptor phase, gel, and donor phase, was conducted utilizing the one-factor-at-a-time methodology, while voltage, time, and stirring rate were optimized employing the design of experiment approach. Remarkably, under the optimized conditions, a satisfactory linear relationship was established within the range of 0.05-6 μg mL-1 (R2 = 0.9925), accompanied by a commendable limit of detection (LOD) amounting to 0.015 μg mL-1, with an extraction recovery rate of 94%. Finally, the proposed method was successfully applied to the determination of TMD in urine, plasma, and tablet samples.
Collapse
Affiliation(s)
- Mehdi Navaser
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran.
| | | | - Fereshteh Zarghampour
- Kohgiluyeh and Boyerahmad Standards Administration, Iranian National Standardization Organization (INSO), Yasouj, 75916-53631, Iran
| | - Fatemeh Saeidi
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran.
| |
Collapse
|
2
|
Barzegar F, Kamankesh M, Mohammadi A. An efficient microchip electromembrane extraction online with high-performance liquid chromatography for the measurement of nicotine in high consumption vegetables. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:409-418. [PMID: 39031170 DOI: 10.1002/pca.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Nicotine, a highly addictive substance, is naturally produced in the Solanaceae family of plants, particularly tobacco. The presence of nicotine in plant foods has adverse effects on the lungs, kidneys, heart, and reproductive system. OBJECTIVE A novel three-phase microchip flat electromembrane coupled with online high-performance liquid chromatography (HPLC) was developed to analyze nicotine in tomato, mushroom, eggplant, bell pepper, and red pepper. METHODS The microchip was connected to the HPLC in online mode. All effective variables were optimized to achieve the best extraction response. The use of electric potential and 2-nitrophenyl octyl ether -5% di(2-ethylhexyl) phosphate as a modified supported liquid membrane (SLM) increased the sensitivity and selectivity. RESULTS The optimal extraction voltage, extraction time, and ion balance were 40 V, 10 min and 0, respectively. The dynamic linear range was 0.5-1000 ng g-1. The obtained recovery, relative standard deviation, and enrichment factor were 98%, 7%, and 35, respectively. The limits of detection 0.4 ng g-1 and the limits of quantification were obtained 1.3 ng g-1. The highest (105.0 ng g-1) and lowest (3.4 ng g-1) concentrations of nicotine were obtained for eggplant and tomato, respectively. CONCLUSION Selective electromembrane extraction of nicotine from the donor phase to the acceptor phase was performed by optimizing the main variables influencing the method mechanism. The new channel design in this analytical system and online injection increased efficiency, stability, and repeatability. The results revealed that this method is capable for the efficient determination of trace amount of nicotine in edible vegetables.
Collapse
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Barzegar F, Nabizadeh S, Kamankesh M, Mohammadi A, Shariatifar N. Three liquid phase membrane extraction method based on the electro-migration assisted by high-performance liquid chromatography for the analysis of carcinogenic heterocyclic aromatic amines in steak samples. Food Chem 2024; 467:142037. [PMID: 39667300 DOI: 10.1016/j.foodchem.2024.142037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
A combination of microwave digestion and three-phase hollow fiber electromembrane extraction (HF-EME) with high-performance liquid chromatography (HPLC) was designed to determine carcinogenic heterocyclic aromatic amines (HAAs) in steak samples. The recorded fingers of merit (LOD: 1.4-1.6 ng/g, LOQ: 4.5-5.2 ng/g, RSD: 6.1-7.2 %, recovery: 91-95 % and EF: 107-112) underlines the adequacy of the proposed technique. The total of 2-amino-3-methylimidazo[4,5-f] quinoline (IQ), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-3,4 dimethylimidazo[4,5-f] quinoline (MeIQ) and 2-amino-1-methyl-6-phenylimidazo[4'5-b] pyridine (PhIP) in steak samples were 93.46 ± 4.93-174.52 ± 10.91 ng/g, 31.65 ± 1.87-877.97 ± 56.19 ng/g, 10.08 ± 1.01-535.73 ± 18.93 ng/g, and 62.56 ± 1.89-341.23 ± 41.45 ng/g, respectively. Lamb steak contain highest amount of MeIQx (877.97 ± 56.19 ng/g) and beef steak showed lowest concentration of MeIQ (10.08 ± 1.07 ng/g). In conclusion, several interesting features such as great recovery, suitable enrichment factor, very low sample amount and organic solvent requirement and short extraction time make this novel method appropriate for the analysis of the negligible levels of HAAs in complex food matrices.
Collapse
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Nabizadeh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran; School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Barzegar F, Nabizadeh S, Kamankesh M, Ghasemi JB, Mohammadi A. The selective extraction of dietary polyamines from chicken breast using the application of a lab-on-a-chip electromembrane and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2585-2596. [PMID: 38606467 DOI: 10.1039/d3ay02172f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Excessive dietary polyamines (PAs), including putrescine (PUT), spermine (SPM), and spermidine (SPD), have become a worldwide concern due to their carcinogenicity and reduced shelf life. A modern miniaturized on-chip electromembrane extraction (EME) has been applied to extract these compounds from chicken breast samples. This method is based fundamentally on ionic compounds' electrostatic attraction, diffusion, and solubility in the acceptor phase. The chemical structure of polyamines enables their efficient extraction using an electric driving force on a microchip device. HCl solution (0.1 mol L-1) was applied as an aqueous acceptor solvent. Dispersive liquid-liquid microextraction was performed after EME to facilitate joining three-phase EME to GC-MS and improve the merit figures. The total ranges of 3.77-7.89 μg g-1, 3.48-7.02 μg g-1, and 0.78-2.20 μg g-1 were acquired as PUT, SPM and SPD concentrations in chicken breast, respectively. The results demonstrate that the level of PAs in fresh chicken breast samples is not concerning, but it may reduce the quality of chicken meat over time. This novel analytical technique has several advantages: high recovery, substantial quickness, remarkable selectivity, and good enrichment factors. This emerging method could be generalized to other studies to analyze different foodstuffs.
Collapse
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Nabizadeh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marzieh Kamankesh
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Jahan B Ghasemi
- Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wang H, Chu X, Du P, He H, He F, Liu Y, Wang W, Ma Y, Wen L, Wang Y, Oz F, Abd El-Aty A. Unveiling heterocyclic aromatic amines (HAAs) in thermally processed meat products: Formation, toxicity, and strategies for reduction - A comprehensive review. Food Chem X 2023; 19:100833. [PMID: 37780237 PMCID: PMC10534170 DOI: 10.1016/j.fochx.2023.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
This comprehensive review focuses on heterocyclic aromatic amines (HAAs), a class of chemicals that commonly form during the cooking or processing of protein-rich foods. The International Agency for Research on Cancer (IARC) has categorized certain HAAs as probable human carcinogens, highlighting the significance of studying their formation and control in food safety research. The main objective of this review is to address the knowledge gaps regarding HAAs formation and propose approaches to reduce their potential toxicity during thermal processing. By summarizing the mechanisms involved in HAAs formation and inhibition, the review encompasses both conventional and recent detection methods. Furthermore, it explores the distribution of HAAs in thermally processed meats prepared through various cooking techniques and examines their relative toxicity. Additionally, considering that the Maillard reaction, responsible for HAAs formation, also contributes to the unique flavors and aromas of cooked meat products, this review investigates the potential effects of inhibiting HAAs formation on flavor substances. A thorough understanding of these complex interactions provides a foundation for developing targeted interventions to minimize the formation of HAAs and other harmful compounds during food processing.
Collapse
Affiliation(s)
- Haijie Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaoran Chu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Feng He
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Lei Wen
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yuanshang Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
6
|
Skaalvik TG, Zhou C, Øiestad EL, Hegstad S, Trones R, Pedersen-Bjergaard S. Conductive vial electromembrane extraction of opioids from oral fluid. Anal Bioanal Chem 2023; 415:5323-5335. [PMID: 37386201 PMCID: PMC10444644 DOI: 10.1007/s00216-023-04807-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
The use of oral fluid as sample matrix has gained significance in the analysis of drugs of abuse due to its non-invasive nature. In this study, the 13 opioids morphine, oxycodone, codeine, O-desmethyl tramadol, ethylmorphine, tramadol, pethidine, ketobemidone, buprenorphine, fentanyl, cyclopropylfentanyl, etonitazepyne, and methadone were extracted from oral fluid using electromembrane extraction based on conductive vials prior to analysis with ultra-high performance liquid chromatography-tandem mass spectrometry. Oral fluid was collected using Quantisal collection kits. By applying voltage, target analytes were extracted from oral fluid samples diluted with 0.1% formic acid, across a liquid membrane and into a 300 μL 0.1% (v/v) formic acid solution. The liquid membrane comprised 8 μL membrane solvent immobilized in the pores of a flat porous polypropylene membrane. The membrane solvent was a mixture of 6-methylcoumarin, thymol, and 2-nitrophenyloctyl ether. The composition of the membrane solvent was found to be the most important parameter to achieve simultaneous extraction of all target opioids, which had predicted log P values in the range from 0.7 to 5.0. The method was validated in accordance to the guidelines by the European Medical Agency with satisfactory results. Intra- and inter-day precision and bias were within guideline limits of ± 15% for 12 of 13 compounds. Extraction recoveries ranged from 39 to 104% (CV ≤ 23%). Internal standard normalized matrix effects were in the range from 88 to 103% (CV ≤ 5%). Quantitative results of authentic oral fluid samples were in accordance with a routine screening method, and external quality control samples for both hydrophilic and lipophilic compounds were within acceptable limits.
Collapse
Affiliation(s)
- Tonje Gottenberg Skaalvik
- Department of Clinical Pharmacology, St. Olav University Hospital, Professor Brochs Gate 6, 7030, Trondheim, Norway
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Chen Zhou
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Elisabeth Leere Øiestad
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4459 Nydalen, 0424, Oslo, Norway
| | - Solfrid Hegstad
- Department of Clinical Pharmacology, St. Olav University Hospital, Professor Brochs Gate 6, 7030, Trondheim, Norway
| | - Roger Trones
- Extraction Technologies Norway, Verkstedveien 29, 1424, Ski, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway.
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Schüller M, McQuade TAP, Bergh MSS, Pedersen-Bjergaard S, Øiestad EL. Determination of tryptamine analogs in whole blood by 96-well electromembrane extraction and UHPLC-MS/MS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2022.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Kamankesh M, Barzegar F, Shariatifar N, Mohammadi A. The Measurement of Hazardous Biogenic Amines in Non-Alcoholic Beers: Efficient and Applicable Miniaturized Electro-Membrane Extraction Joined to Gas Chromatography-Mass Spectrometry. Foods 2023; 12:foods12061141. [PMID: 36981068 PMCID: PMC10048709 DOI: 10.3390/foods12061141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
The determination of biogenic amines (BAs) as serious food contaminants and chemical indicators of unwanted microbial contamination or deficient processing conditions in non-alcoholic beers is of great interest for the beverage industries. In the present investigation, the combination of hollow fiber-electro-membrane extraction (HF-EME) and dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC/MS) was applied for the analysis of histamine, putrescine, tyramine, cadaverine in non-alcoholic beers. EME is fundamentally based on the electrostatic attraction, diffusion and solvability of analytes in a selected acceptor phase. This membrane-based extraction technique promoted selectivity and the enrichment factor. The DLLME process reduced the volumes of organic solvents and make the coupling of HF-EME to the CG/MS conceivable. The leading variables, which have a great effect on extraction recovery, were optimized. The relative standard deviation was achieved between 4.9 and 7.0%. The recoveries were between 94% and 98%. The limit of detection and limit of quantification were found to be 0.92-0.98 ng mL-1 and 3.03-3.23 ng mL-1, respectively. The enrichment factor was calculated in the range 36-41. The achievements revealed that putrescine and tyramine, with concentrations of 3.87 and 2.33 µg g-1, were at the highest concentration in non-alcoholic beers. This offered method with great benefits could help beverage industries to monitor the concentration of BAs in beers and control them.
Collapse
Affiliation(s)
- Marzieh Kamankesh
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- School of Pharmacy, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran 14176-13151, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
9
|
Martins RO, de Araújo GL, Simas RC, Chaves AR. ELECTROMEMBRANE EXTRACTION (EME): FUNDAMENTALS AND APPLICATIONS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
10
|
Gel electro-membrane extraction: An overview on recent strategies for extraction efficiency enhancement. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Rahbarian H, Nojavan S, Maghsoudi M, Tabani H. In-tube gel electromembrane extraction: A green strategy for the extraction of narcotic drugs from biological samples. J Chromatogr A 2023; 1688:463714. [PMID: 36565655 DOI: 10.1016/j.chroma.2022.463714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The development of green and miniature extraction methods is always a major and controversial challenge in the field of sample preparation. In this work, in-tube gel electromembrane extraction (IT-G-EME) was developed as a miniaturized extraction device for the extraction of six narcotic drugs (codeine, oxycodone, hydrocodone, tramadol, thebaine, and noscapine) from biological samples. A transparent capillary tube (∼6 cm) was used as a microextraction unit. The middle part of the tube was filled with a narrow plug (∼3 mm) of the agarose gel (3.0% w/v) as a membrane and the other sides were filled with aqueous extractant solution (pH 2.0, 20 µL) and sample solution (pH 5.0, 200 µL). By applying electrical potential (400 V), the target drugs with positive charge were migrated from sample solution toward the extractant solution through gel membrane during short extraction time (5 min). Then, the enriched analytes in extractant solution was analyzed by HPLC-UV. Under the optimized conditions, the calibration curves were linear within the permissible range of 10.0-1500 ng/mL (r2 ≥ 0.991). Limits of detection and extraction recoveries were in the range of 3.0-4.5 ng/mL and 61.9-86.9%, respectively. On the basis of four replications, the repeatability of the method was also evaluated in terms of intra- and inter-day RSDs (%), which did not exceed from 6.6 and 7.9%, respectively in aqueous media. The figures of merit were also assessed in biological samples. Eventually, the developed method was profitably used for simultaneous determination of narcotic drugs in the real urine and plasma samples.
Collapse
Affiliation(s)
- Hanieh Rahbarian
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Majid Maghsoudi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran
| | - Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
12
|
Qu C, Li Y, Du S, Geng Y, Su M, Liu H. Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Res Int 2022; 161:111805. [DOI: 10.1016/j.foodres.2022.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
|
13
|
Study of meat content and frying process on the formation of polar heterocyclic aromatic amines in heated sausage samples: Optimization and method validation of three‐phase
EME
coupled with
RP‐HPLC. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Eie LV, Pedersen-Bjergaard S, Hansen FA. Electromembrane extraction of polar substances - Status and perspectives. J Pharm Biomed Anal 2022; 207:114407. [PMID: 34634529 DOI: 10.1016/j.jpba.2021.114407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
In this article, the scientific literature on electromembrane extraction (EME) of polar substances (log P < 2) is reviewed. EME is an extraction technique based on electrokinetic migration of analyte ions from an aqueous sample, across an organic supported liquid membrane (SLM), and into an aqueous acceptor solution. Because extraction is based on voltage-assisted partitioning, EME is fundamentally suitable for extraction of polar and ionizable substances that are challenging in many other extraction techniques. The article provides an exhaustive overview of papers on EME of polar substances. From this, different strategies to improve the mass transfer of polar substances are reviewed and critically discussed. These strategies include different SLM chemistries, modification of supporting membranes, sorbent additives, aqueous solution chemistry, and voltage/current related strategies. Finally, the future applicability of EME for polar substances is discussed. We expect EME in the coming years to be developed towards both very selective targeted analysis, as well as untargeted analysis of polar substances in biomedical applications such as metabolomics and peptidomics.
Collapse
Affiliation(s)
- Linda Vårdal Eie
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
15
|
Tajdar-oranj B, Kamankesh M, Mohammadi A. Application of novel and efficient hollow fiber electro-membrane extraction assisted by microwave extraction and high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Alidoust M, Baharfar M, Manouchehri M, Yamini Y, Tajik M, Seidi S. Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Hansen FA, Petersen NJ, Kutter JP, Pedersen-Bjergaard S. Electromembrane extraction in microfluidic formats. J Sep Sci 2021; 45:246-257. [PMID: 34562339 DOI: 10.1002/jssc.202100603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96-well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli- and microfluidic formats. These are much more early-stage activities, but applications among others related to organ-on-chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli- and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research.
Collapse
Affiliation(s)
| | - Nickolaj Jacob Petersen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Bavlovič Piskáčková H, Kollárová-Brázdová P, Kučera R, Macháček M, Pedersen-Bjergaard S, Štěrbová-Kovaříková P. The electromembrane extraction of pharmaceutical compounds from animal tissues. Anal Chim Acta 2021; 1177:338742. [PMID: 34482886 DOI: 10.1016/j.aca.2021.338742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
The reliable analysis of various compounds from tissue requires a tedious sample preparation. The sample pretreatment usually involves proper homogenization that facilitates extraction of target analytes, followed by an appropriate sample clean-up preventing matrix effects. Electromembrane extraction (EME) seems to have a significant potential to streamline the whole procedure. In this study, the applicability of EME for direct isolation of analytes from animal tissues was investigated for the first time. Extraction conditions were systematically optimized to isolate model analytes (daunorubicin and its metabolite daunorubicinol) from various tissues (myocardium, skeletal muscle and liver) coming from a pharmacokinetic study in rabbits. The relative recoveries of daunorubicin and its metabolite in all tissues, determined by the UHPLC-MS/MS method, were higher than 66 and 75%, respectively. Considerably low matrix effects (0 ± 8% with CV lower than 6%) and negligible content of phospholipids detected in EME extracts demonstrate the exceptional effectiveness of this microextraction approach in purification of tissue samples. The difference in the concentrations of the analytes determined after EME and reference liquid-liquid extraction of real tissue samples was lower than 12%, which further emphasized the trustworthiness of EME. Moreover, the considerable time reduction needed for sample treatment in case of EME must be emphasized. This study proved that EME is a simple, effective and reliable microextraction technique capable of direct extraction of the analytes from pulverized tissues without the need for an additional homogenization or purification step.
Collapse
Affiliation(s)
- Hana Bavlovič Piskáčková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Kollárová-Brázdová
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Kučera
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Miloslav Macháček
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316, Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
19
|
Omidi N, Barzegar F, Abedi AS, Kamankesh M, Ghanati K, Mohammadi A. Response Surface Methodology of Quantitative of Heterocyclic Aromatic Amines in Fried Fish Using Efficient Microextraction Method Coupled with High-Performance Liquid Chromatography: Central Composite Design. J Chromatogr Sci 2021; 59:473-481. [PMID: 33529315 DOI: 10.1093/chromsci/bmaa137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 11/14/2022]
Abstract
Meat and meat products are indispensable part of our diet. Heat processing of these tasty foods such as fried fish causes to form heterocyclic aromatic amines (HAAs). The sources of heating have directly affected on the level and type of HAAs. In this research, 2-amino-1-methyl-6-phenylimidazo [4'5-b] pyridine (PhIP), 2-amino-3-methylimidazo [4,5-f]quinolone (IQ), 2-amino-3,4-dimethylimidazo [4,5-f] quinoline (MeIQ) and 2-amino-3,4-dimethylimidazo [4,5-f] quinoxaline (MeIQx) were determined using an efficient analytical methodology coupled with high-performance liquid chromatography. The effective parameters were optimized by central composite design. The results of this survey demonstrated that rang of relative standard deviation were between 4.5 and 8.2, extraction recoveries were obtained 86-97% and limits of detection were between 0.40 and 0.63 for 4 HAAs. The amounts of HAAs found in 20 different fried fish samples were between 0 and 4.8 ng g-1. PhIP with 1.57 ng g-1 and MeIQ with 2.08 ng g-1 have the lowest and highest average level of HAAs, respectively.
Collapse
Affiliation(s)
- Narges Omidi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Barzegar
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdol-Samad Abedi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kiandokht Ghanati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Santigosa E, Pedersen-Bjergaard S, Muñoz M, Ramos-Payán M. Green microfluidic liquid-phase microextraction of polar and non-polar acids from urine. Anal Bioanal Chem 2021; 413:3717-3723. [PMID: 33884461 DOI: 10.1007/s00216-021-03320-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/10/2023]
Abstract
In this work, hippuric acid (log P = 0.5), anthranilic acid (log P = 1.3), ketoprofen (log P = 3.6), and naproxen (log P = 3.0) were simultaneously extracted by a green microfluidic device based on the principles of liquid-phase microextraction (LPME). Different deep eutectic solvents (DESs) were investigated as supported liquid membrane (SLM), and a mixture of camphor and menthol as eutectic solvents in the molar ratio 1:1 was found to be highly efficient for the simultaneous extraction of non-polar and polar acidic drugs. LPME was conducted for 6 min per sample. Urine sample was delivered to the system at 1 μL min-1, and target analytes were extracted exhaustively (75-100% recovery) across the DES SLM, and into pure aqueous phosphate buffer pH 11.0 delivered as acceptor at 1 μL min-1. The acceptor was analyzed with liquid chromatography-UV detection. Interestingly, the DES enabled extraction of both the polar and non-polar model analytes at the same time; all chemicals were green and non-hazardous, and the chemical waste was less than 1 mg per sample.
Collapse
Affiliation(s)
- Elia Santigosa
- Department of Analytical Chemistry, Universitat Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | | | - María Muñoz
- Department of Analytical Chemistry, Universitat Autónoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012, Seville, Spain.
| |
Collapse
|
21
|
Sheng W, Zhang B, Zhao Q, Wang S, Zhang Y. Preparation of a Broad-Spectrum Heterocyclic Aromatic Amines (HAAs) Antibody and Its Application in Detection of Eight HAAs in Heat Processed Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15501-15508. [PMID: 33326242 DOI: 10.1021/acs.jafc.0c05480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potential human mutagens and carcinogens mainly generated in heat-treated meat. In this work, a broad-spectrum HAAs antibody was prepared and used to develop an indirect competitive ELISA (ic-ELISA) for simultaneous determination of eight HAAs, including 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f] quinoline (MeIQ), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx), 2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline (4,7,8-TriMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in grilled and fried meat samples. The limit of detection (LOD, calculated as IC10) and 50% inhibition concentration (IC50) of ic-ELISA were 5.29 μg/L and 99.08 μg/L, respectively. The detection results of this ic-ELISA were in good agreement with the detection results of UPLC-MS/MS in real samples, which indicated that this ic-ELISA can be applied to detect the total content of eight HAAs in heat processed meat. Use of a broad-spectrum antibody is an efficient strategy in developing immunoassay for simultaneous measuring food risk factors with similar structure.
Collapse
Affiliation(s)
- Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Biao Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiuxia Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Ko CH, Liu CC, Chen KH, Sheu F, Fu LM, Chen SJ. Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chem 2020; 345:128773. [PMID: 33302108 DOI: 10.1016/j.foodchem.2020.128773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Sodium benzoate (SBA) is a widely-used additive for preventing food spoilage and deterioration and extending the shelf life. However, the concentration of SBA must be controlled under safe regulations to avoid damaging human health. Accordingly, this study proposes a microfluidic colorimetric analysis (MCA) system composing of a wax-printed paper-microchip and a self-made smart analysis equipment for the concentration detection of SBA in common foods and beverages. In the presented method, the distilled SBA sample is mixed with NaOH to obtain a nitro compound and the compound is then dripped onto the reaction area of the paper-microchip, which is embedded with two layers of reagents (namely acetophenone and acetone). The paper-microchip is heated at 120 °C for 20 min to cause a colorimetric reaction and the reaction image is then obtained through a CMOS (complementary metal oxide semiconductor) device and transmitted to a cell-phone over a WiFi connection. Finally, use the self-developed RGB analysis software installed on the cell-phone to obtain the SBA concentration. A calibration curve is constructed using SBA samples with known concentrations ranging from 50 ppm (0.35 mM) to 5000 ppm (35 mM). It is shown that the R + G + B value (Y) of the reaction image and SBA concentration (X) are related via Y = -0.034 X +737.40, with a determination coefficient of R2 = 0.9970. By measuring the SBA concentration of 15 commercially available food and beverage products, the actual feasibility of the current MCA system can be demonstrated. The results show that the difference from the measurement results obtained using the macroscale HPLC method does not exceed 6.0%. Overall, the current system provides a reliable and low-cost technique for quantifying the SBA concentration in food and drink products.
Collapse
Affiliation(s)
- Chien-Hsuan Ko
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chan-Chiung Liu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuan-Hong Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Fuu Sheu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
23
|
Investigation of Composition, Temperature, and Heating Time in the Formation of Acrylamide in Snack: Central Composite Design Optimization and Microextraction Coupled with Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01849-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Zamora R, Lavado-Tena CM, Hidalgo FJ. Reactive carbonyls and the formation of the heterocyclic aromatic amine 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ). Food Chem 2020; 324:126898. [DOI: 10.1016/j.foodchem.2020.126898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
|
25
|
Impact of ion balance in electromembrane extraction. Anal Chim Acta 2020; 1124:129-136. [PMID: 32534665 DOI: 10.1016/j.aca.2020.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
Electromembrane extraction (EME) involves transfer of analyte ions from aqueous sample, through a supported liquid membrane (SLM), and into an aqueous acceptor solution under the influence of an external electrical field. In addition to target analyte ions, the sample also contains matrix ions, and both the sample and acceptor contains background buffer ions to control pH. The ratio between the total amount of ions in sample and acceptor defines the ion balance (χ). Previous publications have discussed the impact of ion balance, but conclusions are contradictory. Therefore, the current paper investigated the ion balance in more detail. From a theoretical point of view, low χ-values favor EME; buffer anions at high concentration in the acceptor migrate into the SLM, while target cations enters the SLM from the sample to maintain electroneutrality. A large number of experiments was performed in this paper to investigate the practical impact of ion balance. Twelve basic drugs were used as model analytes (0.0 < log P < 5.0), and 2-nitrophenyl octyl ether (NPOE) and NPOE + 5% di(2-ethylhexyl) phosphate (DEHP) were used as SLM. With formate buffer pH 3.75 as sample and acceptor, the impact of χ in the range 0.01-10 was studied without bias from differences in pH. Here model analytes were unaffected by ion balance. Buffers containing propionic, butyric, and valeric acid were also tested. These buffer ions migrated more into the SLM, and affected recoveries in several cases. However, this was due to ion pairing rather than effects of ion balance. Similar behaviors from sodium chloride and urine samples were observed with different χ-values. Thus, in the systems tested, almost no impact of ion balance was found, and this was attributed to very low partition of background buffer and matrix ions into the SLM. On the other hand, extractions were in several cases influenced by ion pairing phenomena.
Collapse
|