1
|
Zou P, Otero P, Mejuto JC, Simal-Gandara J, Xiao J, Cameselle C, Chen S, Lin S, Cao H. Exploring the mechanism of flavonoids modification by dimerization strategies and their potential to enhance biological activity. Food Chem 2025; 467:142266. [PMID: 39626556 DOI: 10.1016/j.foodchem.2024.142266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/14/2025]
Abstract
Flavonoid dimers are being focused due to their particular structure that links two units through CC or C-O-C bonds. This paper provides a comprehensive and systematic overview of the reaction mechanism of flavonoid dimerization and discusses their synthesis process and methods to devise an ideal preparation scheme of flavonoid dimers. Given the polyphenolic hydroxyl groups of dimerized flavonoids as well as their unique bridging molecular structures, we preliminarily explored the link between conformation and function, and discovered their several reinforced bioactivities compared to flavonoid monomers, such as hypolipidemic, antidiabetic, and neuroprotective activities as well as other potential. In contrast to monomer, luteolin dimer demonstrated the remarkably higher activity in inhibiting α-amylase, α-glucosidase and the growth of A. niger (IC50: 0.86 μM), which is even comparable to acarbose and amphotericin B. Therefore, dimerization strategy represents a promising method for structural modification of flavonoid to potential applications in food supplements or pharmaceuticals.
Collapse
Affiliation(s)
- Pengren Zou
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Paz Otero
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Juan C Mejuto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Carla Cameselle
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Shengxiong Chen
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Shiye Lin
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Hui Cao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| |
Collapse
|
2
|
Ang B, Yang T, Wang Z, Cheng Y, Chen Q, Wang Z, Zeng M, Chen J, He Z. In Vitro Comparative Analysis of the Effect and Structure-Based Influencing Factors of Flavonols on Lipid Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8237-8246. [PMID: 38530935 DOI: 10.1021/acs.jafc.4c02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Flavonols represented by quercetin have been widely reported to have biological activities of regulating lipid metabolism. However, the differences in flavonols with different structures in lipid-lowering activity and the influencing factors remain unclear. In this study, the stability, transmembrane uptake ratio, and lipid metabolism regulation activities of 12 flavonol compounds in the 3T3-L1 cell model were systematically compared. The results showed that kaempferide had the highest cellular uptake ratio and the most potent inhibitory effect on adipogenesis at a dosing concentration of 20 μM, followed by isorhamnetin and kaempferol. They inhibited TG accumulation by more than 65% and downregulated the expression of PPARγ and SREBP1c by more than 60%. The other four aglycones, including quercetin, did not exhibit significant activity due to the structural instability in the cell culture medium. Meanwhile, five quercetin glucosides were quite stable but showed a low uptake ratio that no obvious activity was observed. Correlation analysis also showed that for 11 compounds except galangin, the activity was positively correlated with the cellular uptake ratio (p < 0.05, r = 0.6349). These findings may provide a valuable idea and insight for exploring the structure-based activity of flavonoids at the cellular level.
Collapse
Affiliation(s)
- Beijun Ang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yong Cheng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Zhang H, Lin S, Xie R, Zhong W, Wang H, Farag MA, Hussain H, Arroo RRJ, Chen X, Xiao J. Thermal degradation of (2R, 3R)-dihydromyricetin in neutral aqueous solution at 100 ℃. Food Chem 2024; 435:137560. [PMID: 37793280 DOI: 10.1016/j.foodchem.2023.137560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
In the field of thermal degradation of flavonoids, current studies mainly focused on flavonols. However, the thermal degradation of dihydroflavonols in aqueous solution has received limited attention compared to flavonols. The single C2-C3 bonds of dihydroflavonols, which differs from the C2-C3 double bond in flavonols, may cause different degradation mechanisms. Dihydromyricetin (DMY) is a typical dihydroflavonol with six hydroxyl groups, and possesses various health effects. We explored the thermal degradation of DMY in neutral aqueous solution (pH 7) at 100 ℃. Ultra-performance liquid chromatography combined with photodiode array and electrospray ionization quadrupole-time-of-flight tandem mass spectrometric detection (UPLC-PDA-ESI-QTOF-MS/MS) provided suitable platform for exploring DMY degradation pathways, and negative ion mode was applied. Thermal treatment led to a decline in DMY level with time, accompanied by the appearance of various degradation products of DMY. Degradation mechanisms of DMY included isomerization, oxidation, hydroxylation, dimerization and ring cleavage. The pyrogallol-type ring B of DMY might be initially oxidized into ortho-quinone, which could further attack another DMY to form dimers. In addition, hydroxylation is likely to occur at C-2, C-3 of DMY or DMY dimers, which then further yields ring-cleavage products via breakage of the O1-C2 bond, C2-C3 bond, or C3-C4 bond. The 3-hydroxy-5-(3,3,5,7-tetrahydroxy-4-oxochroman-2-yl) cyclohexa-3,5-diene-1, 2-dione (m/z 333.0244) and unknown compound m/z 435.0925 were annotated as key intermediates in DMY degradation. Four phenolic acids, including 3,4,5-trihydroxybenzoic acid (m/z 169.0136, RT 1.4 min), 2,4,6-trihydroxyphenylglyoxylic acid (m/z 197.0084, RT 1.7 min), 2-oxo-2-(2,4,6-trihydroxyphenyl) acetaldehyde (m/z 181.0132, RT 2.4 min), and 2,4,6-trihydroxybenzoic acid (m/z 169.0139, RT 2.5 min) were identified as the major end products of DMY degradation. In addition, 5-((3,5dihydroxyphenoxy) methyl)-3-hydroxycyclohexa-3,5-diene-1,2-dione (m/z 261.0399, RT 11.7 min) and unidentified compound with m/z 329.0507 (RT 1.0 min) were also suggested to be end products of DMY degradation. These results provide novel insights on DMY stability and degradation products. Moreover, the heat treatment of DMY aqueous solution was found to gradually reduce the antioxidant activities of DMY, and even destroy the beneficial effect of DMY on the gut microbiota composition.
Collapse
Affiliation(s)
- Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macau.
| | - Shiye Lin
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Ruiwei Xie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Weizhi Zhong
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| | - Randolph R J Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, United Kingdom.
| | - Xiaojia Chen
- Institute of Chinese Medical Sciences, University of Macau, Macau.
| | - Jianbo Xiao
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| |
Collapse
|
4
|
Laitila JE, Tähtinen PT, Karonen M, Salminen JP. Red Wine Inspired Chemistry: Hemisynthesis of Procyanidin Analogs and Determination of Their Protein Precipitation Capacity, Octanol-Water Partition, and Stability in Phosphate-Buffered Saline. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19832-19844. [PMID: 38048420 PMCID: PMC10722540 DOI: 10.1021/acs.jafc.3c06467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Ten dimeric procyanidin (PC) analogs were hemisynthesized from catechin or epicatechin and from five different aldehydes using the same mechanism that produces the important acetaldehyde-mediated adducts of proanthocyanidins (PAs) and anthocyanins in red wine. Protein precipitation capacity (PPC), octanol-water partition coefficient (log P) and stability of the PC analogs were determined. The emphasis was on the PPC because it has been shown to correlate with anthelmintic activity against gastrointestinal nematodes in ruminants and with other beneficial bioactivities in animals, as well. The PPC of PC analogs was greatly improved compared to natural PC dimers, but the capacity was not as great as that of a PC trimer or epigallocatechin gallate. The log P of PC analogs varied from hydrophobic to hydrophilic depending on the intramolecular linkage. Great variation was observed in stabilities of PC analogs in phosphate buffered saline, and the mixtures of degradation products were characterized using high-resolution mass spectrometry.
Collapse
Affiliation(s)
| | | | - Maarit Karonen
- Department
of Chemistry, University of Turku, Turku, FI-20014, Finland
| | | |
Collapse
|
5
|
Lin S, Xiao J. Impact of thermal processing on dietary flavonoids. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:1-34. [PMID: 38460996 DOI: 10.1016/bs.afnr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Flavonoids are a class of polyphenols which are widely distributed in natural products and foods. They have diverse bioactivities, including anti-inflammatory, anti-aging, and antioxidant activities. Generally, the foods rich in flavonoids are usually consumed after thermal processing. However, thermal stability of flavonoids is usually low, and thermal processing could cause either positive or negative influences on their stability and bioactivities. In this review, the effects of thermal processing on thermal stability and bioactivity of dietary flavonoids from different food sources are summarized. Then, strategies to improve thermal stability of dietary flavonoids are discussed and the effect of some promising thermal technologies are also preliminary clarified. The promising thermal technologies may be alternative to conventional thermal processing technologies.
Collapse
Affiliation(s)
- Shiye Lin
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, Spain
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, Spain.
| |
Collapse
|
6
|
Zhang H, Wang M, Xiao J. Stability of polyphenols in food processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:1-45. [PMID: 36064291 DOI: 10.1016/bs.afnr.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, polyphenols have attracted considerable attention due to their diverse potential health-beneficial effects on humans. Polyphenols are widely distributed in natural plants, and therefore play an important role in human food. Thermal processing, irradiation, fermentation, high pressure, microwave, and drying are several popular food processing methods. However, polyphenols are instable in food processing, which easily degrade and react with other components because of their polyhydroxy characteristic. Traditional and advanced technologies have been used to characterize the stability of polyphenols. The main influence factors of stability of polyphenols such as pH, temperature, light, oxygen, enzymes, metal ions, as well as macromolecules, are summarized. Besides, thermal processing greatly promoted the degradation of polyphenols. Thermal degradation mechanisms and products of some polyphenols, such as quercetin and rutin, have been intensively demonstrated. Nevertheless, the structural changes of polyphenols caused by food processing, may lead to different bioactivities from the obtained results based on unprocessed polyphenols. Therefore, to maximize the beneficial effects of polyphenols ingested by human from processed food, the stability of polyphenols in food processing must be thoroughly investigated to assess their real bioactivities. In addition, some available technologies for improving the stability of polyphenols in food processing have been proposed.
Collapse
Affiliation(s)
- Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Minglong Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain.
| |
Collapse
|
7
|
Zhang HL, Wang ML, Yi LZ, Högger P, Arroo R, Bajpai VK, Prieto MA, Chen XJ, Simal-Gandara J, Cao H. Stability profiling and degradation products of dihydromyricetin in Dulbecco's modified eagle's medium. Food Chem 2022; 378:132033. [PMID: 35033717 DOI: 10.1016/j.foodchem.2021.132033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Abstract
Dihydromyricetin has shown many bioactivities in cell level. However, dihydromyricetin was found to be highly instable in cell culture medium DMEM. Here, the underlying degradation mechanism was investigated via UPLC-MS/MS analysis. Dihydromyricetin was mainly converted into its dimers and oxidized products. At lower temperature, dihydromyricetin in DMEM showed higher stability. Vitamin C increased the stability of dihydromyricetin in DMEM probably due to its high antioxidant potential.
Collapse
Affiliation(s)
- H L Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - M L Wang
- Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - L Z Yi
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - P Högger
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, 97074 Würzburg, Germany.
| | - R Arroo
- De Montfort University - Leicester School of Pharmacy, The Gateway, Leicester LE1 9BH, UK.
| | - V K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - M A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - X J Chen
- Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - J Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - H Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
8
|
Affiliation(s)
- Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
9
|
Miao L, Zhang H, Yang L, Chen L, Xie Y, Xiao J. Flavonoids. ANTIOXIDANTS EFFECTS IN HEALTH 2022:353-374. [DOI: 10.1016/b978-0-12-819096-8.00048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhang H, Caprioli G, Hussain H, Khoi Le NP, Farag MA, Xiao J. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. EFOOD 2021. [DOI: 10.53365/efood.k/143518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.
Collapse
|
11
|
Tosif MM, Najda A, Bains A, Krishna TC, Chawla P, Dyduch-Siemińska M, Klepacka J, Kaushik R. A Comprehensive Review on the Interaction of Milk Protein Concentrates with Plant-Based Polyphenolics. Int J Mol Sci 2021; 22:ijms222413548. [PMID: 34948345 PMCID: PMC8709213 DOI: 10.3390/ijms222413548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Functional properties and biological activities of plant-derived polyphenolic compounds have gained great interest due to their epidemiologically proven health benefits and diverse industrial applications in the food and pharmaceutical industry. Moreover, the food processing conditions and certain chemical reactions such as pigmentation, acylation, hydroxylation, and glycosylation can also cause alteration in the stability, antioxidant activity, and structural characteristics of the polyphenolic compounds. Since the (poly)phenols are highly reactive, to overcome these problems, the formulation of a complex of polyphenolic compounds with natural biopolymers is an effective approach. Besides, to increase the bioavailability and bioaccessibility of polyphenolic compounds, milk proteins such as whey protein concentrate, sodium caseinate, and milk protein concentrate act as natural vehicles, due to their specific structural and functional properties with high nutritional value. Therefore, milk proteins are suitable for the delivery of polyphenols to parts of the gastrointestinal tract. Therefore, this review reports on types of (poly)phenols, methods for the analysis of binding interactions between (poly)phenols-milk proteins, and structural changes that occur during the interaction.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (M.M.T.); (T.C.K.)
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, India;
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (M.M.T.); (T.C.K.)
- Correspondence: (A.N.); (P.C.)
| | - Magdalena Dyduch-Siemińska
- Faculty of Agrobioengineering, Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India;
| |
Collapse
|
12
|
Experimental studies and computational modeling on cytochrome c reduction by quercetin: The role of oxidability and binding affinity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Mizokami T, Akiyama M, Ikeda Y. Kaempferol as a phytochemical increases ATP content in C2C12 myotubes under hypoxic conditions. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
14
|
Stability and antioxidant capacity of epigallocatechin gallate in Dulbecco's modified eagle medium. Food Chem 2021; 366:130521. [PMID: 34314931 DOI: 10.1016/j.foodchem.2021.130521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Though the instability of polyphenols in cell culture experiment has been investigated previously, the underlying mechanism is not completely clear yet. Therefore, in this study, the stability of epigallocatechin gallate (EGCG) in cell culture medium DMEM was investigated at 4 °C and 37 °C via UPLC-MS-MS analysis followed by determination of the antioxidant capacity of EGCG. EGCG was instable in DMEM and formed various degradation products derived from its dimer with increasing incubation time with many isomers being formed at both temperatures. The dimer products were more stable at 4 °C than at 37 °C. The structure and formation mechanism of five products were analyzed with four unidentified. Ascorbic acid significantly improved the stability of EGCG by protecting EGCG from auto-oxidation in DMEM, particularly at 4 °C. The antioxidative activity of EGCG in DMEM was determined by DPPH, ABTS and FRAP assay. The antioxidative properties of EGCG continuously decreased over 8 h in DMEM, which was consistent with its course of degradation.
Collapse
|
15
|
Xiao Z, He L, Hou X, Wei J, Ma X, Gao Z, Yuan Y, Xiao J, Li P, Yue T. Relationships between Structure and Antioxidant Capacity and Activity of Glycosylated Flavonols. Foods 2021; 10:849. [PMID: 33919682 PMCID: PMC8070355 DOI: 10.3390/foods10040849] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
The antioxidant capacity (AC) and antioxidant activity (AA) of three flavonols (FLV), aglycones and their glycosylated derivatives were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays in various solvents. Findings confirmed that the glycosylation at the 3-position (3-glycosylation) always decreased the AC under most conditions due to substitution of the 3-position hydroxyl group and glycoside disruption in the molecular planarity. The 7-glycosylated derivatives did not have the above effects, thus generally exhibited ACs similar to their aglycones. Glycosylation decreased the AA of kaempferol and isorhamnetin for both assays in methanol, 3-glycosylation inhibited quercetin AA in the ABTS assay. In the DPPH assay, the AA of 3-glycosylated quercetin was significantly higher than quercetin. Using LC-MS/MS analysis, we found that quercetin and quercetin-7-glucoside underwent dimerization during the antioxidant reaction, potentially leading to a decline in AAs. However, 3-glycoside substitution may have hindered dimer formation, thereby allowing the FLVs to retain strong free radical scavenging abilities.
Collapse
Affiliation(s)
- Zhengcao Xiao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China;
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Liangliang He
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
| | - Xiaohui Hou
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Xiaoyu Ma
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Zihan Gao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China;
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| |
Collapse
|
16
|
Tian T, Sun J, Wu D, Xiao J, Lu J. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles. Food Chem 2021; 340:128179. [PMID: 33007693 DOI: 10.1016/j.foodchem.2020.128179] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
This study is sought to identify the components in greengage wine that predict the sensory properties. Taste-active compounds and aroma-active compounds of 20 commercially available greengage wines from different regions were characterized. The relationship between these compounds, wine samples and sensory attributes was modeled by partial least squares regression. The regression analysis indicated the taste-active compounds, alanine, leucine, proline, glutamic acid, lysine, malic acid, citric acid, sucrose, glucose, gallic acid, caffeic acid and tannin made a great contribution to the characteristic taste or mouthfeel of greengage wine. Meanwhile, the aroma-active compounds, including ethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, 3-methylbutanol, 5-hydroxymethylfurfural, octanoic acid and benzaldehyde, modeled well with the flavor characteristic of greengage wine. The study revealed new insights into the relationship between chemistry and wine sensory characters, which has implications for developing an objective measurement system for determining greengage wine quality.
Collapse
Affiliation(s)
- Tiantian Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
17
|
Cao H, Yi L, Zhong J, Högger P, Wang M, Prieto M, Simal‐Gandara J, Xiao J. Investigation of new products and reaction kinetics for myricetin in DMEM via an in situ UPLC–MS–MS analysis. FOOD FRONTIERS 2020; 1:243-252. [DOI: 10.1002/fft2.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractMyricetin, with its pyrogallol B‐ring, is evidently instable in DMEM (Dulbecco's modified Eagle's) medium at 37°C. However, the underlying mechanism of this instability is not clear yet. Herein, the reaction products of myricetin in DMEM were investigated via an in situ UPLC–MS–MS analysis. Myricetin was mixed with prewarmed DMEM in an autosampler screw top vial for UPLC. Immediately, a 50‐µl sample was automatically injected every 50 min. Myricetin was highly stable in dimethyl sulfoxide (DMSO) when kept at 37°C for 2 weeks. Myricetin was very unstable in DMEM at 37°C and largely converted to new products A (m/z = 635.07) and B (m/z = 633.05) within 1 min. Another new product, C (m/z = 469.04), was detected after the fourth injection (150 min). Myricetin was much more stable in DMEM at 4°C as compared to 37°C. There was a minor conversion of myricetin to the new product A (m/z = 635.07) within 1.0 min, but it subsequently increased until the sixth injection (250 min), and disappeared after the fifteenth injection (700 min). In summary, myricetin first formed a dimer A (m/z = 635.07) and then was oxidized to B (m/z = 633.05), which was finally degraded to C (m/z = 469.04) in DMEM. This process was significantly affected by the temperature, and low temperature is helpful to detect the unstable products.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality University of Macau Taipa Macau
| | - Lunzhao Yi
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| | - Jiayi Zhong
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie Universität Würzburg Würzburg Germany
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Miguel‐Angel Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality University of Macau Taipa Macau
| |
Collapse
|
18
|
Ouyang Y, Chen L, Qian L, Lin X, Fan X, Teng H, Cao H. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside. Food Chem 2020; 317:126418. [DOI: 10.1016/j.foodchem.2020.126418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 11/15/2022]
|
19
|
Wu X, Li M, Xiao Z, Daglia M, Dragan S, Delmas D, Vong CT, Wang Y, Zhao Y, Shen J, Nabavi SM, Sureda A, Cao H, Simal-Gandara J, Wang M, Sun C, Wang S, Xiao J. Dietary polyphenols for managing cancers: What have we ignored? Trends Food Sci Technol 2020; 101:150-164. [DOI: 10.1016/j.tifs.2020.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|