1
|
Borges Martins da Silva L, Vieira Arruda K, Yumi Suzuki J, Edgar Herkenhoff M. Survival of the probiotic strain Lacticaseibacillus paracasei subsp. paracasei F19 in high-hopped beers. Food Res Int 2024; 196:115040. [PMID: 39614485 DOI: 10.1016/j.foodres.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
This study aims to enhance understanding of probiotic lactic acid bacteria (LAB) survival in high-hopped beer formulations and their interactions with different yeasts and highlights the fermentation processes, microbial metabolism, and production of distinctive beer flavors. For this, this research used Lacticaseibacillus paracasei F19 (F19), Saccharomycodes ludwigii, and Saccharomyces cerevisiae strains US-05 (US-05) and Kveik (Kveik) for brewing. Bacterial and yeast cultures were prepared, fermented in wort, and analyzed in different hop concentrations (International Bitterness Units - IBU 0, 20, 40). Methods included physicochemical analysis, yeast and bacterial counts, RT-qPCR for gene expression, statistical analysis, and sensory evaluation by sommeliers following BJCP guidelines. Physicochemical analysis showed efficient fermentation across all hop concentrations (IBU 0, 20, 40), with decreasing SG and pH over time due to lactic acid bacteria and yeast metabolism. Higher hop levels (IBU 20 and 40) resulted in less acidic beer, indicating hop interference with bacterial activity. Yeast populations remained stable regardless of hop content, with Saccharomyces cerevisiae and Saccharomycodes ludwigii performing well. Probiotic strain F19 exhibited robust viability in all formulations. Sensory analysis favored higher hop content beers, suggesting consumer acceptance and potential health benefits of probiotic, high-hop beers. Higher hop content hindered sour beer production as only hop-free beers reached low pH levels. Probiotic strain F19 remained viable under high IBU formulations (20 and 40), with these being preferred by sommeliers using BJCP methodology. All yeast strains supported F19 survival. Further studies are needed on gastrointestinal resistance and clinical benefits.
Collapse
Affiliation(s)
- Lucas Borges Martins da Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Katy Vieira Arruda
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Juliana Yumi Suzuki
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
2
|
Loukri A, Kissas T, Kyriakoudi A, Zymvrakaki E, Stratakos AC, Mourtzinos I. Coupling of cold atmospheric plasma treatment with ultrasound-assisted extraction for enhanced recovery of bioactive compounds from cornelian cherry pomace. Food Chem 2024; 455:139989. [PMID: 38850969 DOI: 10.1016/j.foodchem.2024.139989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cornelian cherry pomace is produced during the production of juice from this traditional superfood. Due to its high nutritive value, the by-product can be utilized as a source of bioactive compounds. The present study aimed to develop a sustainable methodology for the recovery of bioactive compounds based on the combination of atmospheric cold plasma (CAP) with ultrasound assisted extraction. The pomace was treated with cold plasma under different conditions. Cyclodextrin was used as green extraction enhancer due to its capacity to develop inclusion complexes with bioactive compounds. CAP pretreatment before extraction appeared to enhance the recovery of the target compounds. GC-MS analysis and in vitro digestion analysis conducted in order to evaluate the composition and the protentional bioavailability of the bioactive compounds. CHEMICALS COMPOUNDS: β-cyclodextrin (PubChem CID: 444041), DPPH free radical (PubChem CID: 2735032), Trolox (PubChem CID: 40634), sodium carbonate (PubChem CID: 10340), gallic acid (PubChem CID: 370) potassium chloride (PubChem CID: 4873), sodium acetate (PubChem CID: 517045), loganic acid (PubChem CID: 89640), pyridine (PubChem CID: 1049, BSTFA(PubChem CID: 94358), potassium chloride (PubChem CID: 4873), ammonium carbonate (PubChem CID: 517111), calcium chloride dehydrate (PubChem CID: 24844), potassium dihydrogen phosphate (PubChem CID: 516951), magnesium chloride hexahydrate (PubChem CID: 24644), sodium hydrogen carbonate (PubChem CID: 516892), sodium chloride (PubChem CID: 5234).
Collapse
Affiliation(s)
- Anastasia Loukri
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Thomas Kissas
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Eleni Zymvrakaki
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexandros Ch Stratakos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK.
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Coronas R, Bianco A, Niccolai M, Fancello F, Sanna AML, Asteggiano A, Medana C, Caboni P, Budroni M, Zara G. Polyphenolic Content and Antimicrobial Effects of Plant Extracts as Adjuncts for Craft Herbal Beer Stabilization. Foods 2024; 13:2804. [PMID: 39272569 PMCID: PMC11395130 DOI: 10.3390/foods13172804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Extracts from locally grown aromatic plants can enhance the geographical characteristics and microbial stability of craft beers, which are often not pasteurized or filtered. Here, the chemical and antimicrobial properties of aqueous extracts from leaves of Myrtus communis L., Pistacia lentiscus L., Artemisia arborescens L., and floral wastes of Crocus sativus L., all cultivated in Sardinia (Italy), were assessed. P. lentiscus extract had the highest polyphenol content (111.20 mg GAE/g), followed by M. communis (56.80 mg GAE/g), C. sativus (32.80 mg GAE/g), and A. arborescens (8.80 mg GAE/g). Notably, only the M. communis extract demonstrated significant inhibitory activity against pathogenic and spoilage microorganisms, with minimum inhibitory concentrations of 0.18, 0.71, and 1.42 mg GAE/mL against Staphylococcus aureus, Lactiplantibacillus plantarum, and Lacticaseibacillus casei, respectively. Additionally, it reduced the growth of Levilactobacillus brevis and Fructilactobacillus lindneri at concentrations of 0.35 and 0.71 mg GAE/mL, respectively. Based on its significant antimicrobial activity, the M. communis extract was further characterized using high-resolution mass spectrometry, revealing high abundances of nonprenylated phloroglucinols, flavonoid derivatives (myricetin), and quinic acids. Lastly, adding M. communis extract (2.84 mg GAE/mL) to commercial beer effectively prevented the growth of L. brevis and F. lindneri, showing its potential to avoid beer's microbial spoilage.
Collapse
Affiliation(s)
- Roberta Coronas
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angela Bianco
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marta Niccolai
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Alberto Asteggiano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Sun W, Chen X, Bi P, Han J, Li S, Liu X, Zhang Z, Long F, Guo J. Screening and characterization of indigenous non-Saccharomyces cerevisiae with high enzyme activity for kiwifruit wine production. Food Chem 2024; 440:138309. [PMID: 38159319 DOI: 10.1016/j.foodchem.2023.138309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
To explore the diversity and fermentation potential of non-Saccharomyces cerevisiae associated with kiwifruit, indigenous yeasts isolated from kiwifruit and natural fermentation were comprehensively analyzed. A total of 166 indigenous yeasts were isolated, of which 54 representative strains were used for subsequent enzyme activity characterization. Different colorimetric methods were used to verify the ability of these strains to secrete hydrolytic enzymes, and then six strains were selected for sequential fermentation by specific activity assay. The performance of indigenous yeasts in improving organic acids, polyphenols, volatile compounds and sensory characteristics of wines was evaluated holistically. Results indicated that most sequential fermentations exhibited significant improvements in vitamin C and polyphenols. Remarkably, the involvement of Zygosaccharomyces rouxii, Meyerozyma guilliermondii, and Pichia kudriavzevii increased the concentrations of ethyl esters, acetates and alcohols, enhancing floral and tropical fruit odors and ultimately achieving the highest overall sensory acceptability, thereby highlighting their potential in kiwifruit wine fermentation.
Collapse
Affiliation(s)
- Wangsheng Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xiaowen Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Pengfei Bi
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Jia Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xu Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Zhe Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Martusevice P, Li X, Hengel MJ, Wang SC, Fox GP. A Review of N-Heterocycles: Mousy Off-Flavor in Sour Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7618-7628. [PMID: 38538519 DOI: 10.1021/acs.jafc.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.
Collapse
Affiliation(s)
- Paulina Martusevice
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas 58344, Lithuania
- Botanical Garden, Vytautas Magnus University, Kaunas 44248, Lithuania
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Matt J Hengel
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Glen P Fox
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Zhao X, Yin Y, Fang W, Yang Z. What happens when fruit married with beer? Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Belcar J, Kapusta I, Sekutowski TR, Gorzelany J. Impact of the Addition of Fruits of Kamchatka Berries ( L. caerulea var. kamtschatica) and Haskap ( L. caerulea var. emphyllocalyx) on the Physicochemical Properties, Polyphenolic Content, Antioxidant Activity and Sensory Evaluation Craft Wheat Beers. Molecules 2023; 28:molecules28104011. [PMID: 37241752 DOI: 10.3390/molecules28104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Kamchatka berry (Lonicera caerulea var. kamtschatica) and haskap (Lonicera caerulea var. emphyllocalyx) fruit are important sources of bioactive compounds, mainly polyphenols, but also macro- and microelements. Physico-chemical analysis showed that wheat beers with added fruit were characterised by an average 14.06% higher ethanol content, lower bitterness and intense colour compared to the control, which was a wheat beer without added fruit. Wheat beers enriched with kamchatka berry fruit, including the "Aurora" variety, had the highest polyphenolic profile (e.g., chlorogenic acid content averaged 7.30 mg/L), and the antioxidant activity of fruit-enriched wheat beers determined by the DPPH method showed higher antioxidant activity of wheat beers enriched with kamchatka berry fruit, while those determined by the FRAP and ABTS methods showed higher antioxidant activity of wheat beers enriched with haskap fruit, including the "Willa" variety. Sensory evaluation of the beer product showed that wheat beers enriched with kamchatka berry fruits of the "Duet" variety and haskap fruits of the "Willa" variety were characterised by the most balanced taste and aroma. On the basis of the conducted research, it follows that both kamchatka berry fruits of the "Duet" and "Aurora" varieties and haskap fruit of the "Willa" variety can be used successfully in the production of fruity wheat beers.
Collapse
Affiliation(s)
- Justyna Belcar
- Doctoral School, University of Rzeszów, St. Rejtana 16C, 35-959 Rzeszów, Poland
- Department of Food and Agriculture Production Engineering, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Tomasz R Sekutowski
- Institute of Soil Science and Plant Cultivation, National Research Institute, Puławy, Department of Weed Science and Tillage Systems, Orzechowa 61 St., 50-540 Wroclaw, Poland
| | - Józef Gorzelany
- Department of Food and Agriculture Production Engineering, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszów, Poland
| |
Collapse
|
8
|
Sileoni V, Maranghi S, De Francesco G, Perretti G, Marconi O. Flavour Stability of a Cold-Stored Unpasteurized Low-Alcohol Beer Produced by Saccharomycodes ludwigii. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractLow-alcohol beer (LAB) is a growing part of the brewing industry in terms of market volumes and consumer interest. Universities and research centres are making efforts to improve organoleptic profile and flavour stability of the product. One of the main limitations of such products is the stability. These beers must be severely filtered and pasteurized, causing a significant loss of quality in terms of flavour. Herein, flavour stability of an unpasteurized and unfiltered LAB was checked during 120 days of cold storage (4 ± 1 °C). The results showed that the beer remained stable for 120 days for many observed parameters. The alcohol content increased from 0.5 to 0.7% v/v. The beer without oxygen was more stable than that filled with oxygen in the headspace. The results confirmed the possibility to produce an unpasteurized craft LAB by Saccharomycodes ludwigii by the cold chain.
Graphical Abstract
Collapse
|
9
|
Tirado-Kulieva VA, Hernández-Martínez E, Minchán-Velayarce HH, Pasapera-Campos SE, Luque-Vilca OM. A comprehensive review of the benefits of drinking craft beer: Role of phenolic content in health and possible potential of the alcoholic fraction. Curr Res Food Sci 2023; 6:100477. [PMID: 36935850 PMCID: PMC10020662 DOI: 10.1016/j.crfs.2023.100477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
Currently, there is greater production and consumption of craft beer due to its appreciated sensory characteristics. Unlike conventional beer, craft beers provide better health benefits due to their varied and high content of phenolic compounds (PCs) and also due to their alcohol content, but the latter is controversial. The purpose of this paper was to report on the alcoholic fraction and PCs present in craft beers and their influence on health. Despite the craft beer boom, there are few studies on the topic; there is a lot of field to explore. The countries with the most research are the United States > Italy > Brazil > United Kingdom > Spain. The type and amount of PCs in craft beers depends on the ingredients and strains used, as well as the brewing process. It was determined that it is healthier to be a moderate consumer of alcohol than to be a teetotaler or heavy drinker. Thus, studies in vitro, with animal models and clinical trials on cardiovascular and neurodegenerative diseases, cancer, diabetes and obesity, osteoporosis and even the immune system suggest the consumption of craft beer. However, more studies with more robust designs are required to obtain more generalizable and conclusive results. Finally, some challenges in the production of craft beer were detailed and some alternative solutions were mentioned.
Collapse
|
10
|
Šimora V, Ďúranová H, Brindza J, Moncada M, Ivanišová E, Joanidis P, Straka D, Gabríny L, Kačániová M. Cornelian Cherry ( Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes. Foods 2023; 12:foods12030593. [PMID: 36766122 PMCID: PMC9913965 DOI: 10.3390/foods12030593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
In the current study, Cornelian cherry powder (CCP, Cornus mas) was investigated as a functional ingredient for bread production. Experimental bread loaves were prepared using five levels of CCP (0, 1, 2, 5, and 10% w/w) to replace wheat flour in bread formulation. The final products were analyzed regarding their proximate composition, content of selected biologically active substances, antioxidant activity (AA), volume, and sensory attributes. Increasing the incorporation of CCP led to significantly (p < 0.05) higher concentrations of carbohydrate, ash, energetic value, total polyphenols, phenolic acids and AA, and reduced fat and protein contents (p < 0.05). Moreover, up to 5% addition of CCP positively affected the volume (642.63 ± 7.24 mL) and specific volume (2.83 ± 0.02 cm3/g) of bread loaves, which were significantly (p < 0.05) higher compared to the control (no addition of CCP; 576.99 ± 2.97 mL; 2.55 ± 0.002 cm3/g). The sensory attributes chewiness, crumb springiness, bitterness, and sourness had lower scores (p < 0.05) in bread formulated with 10% CCP compared to the control. Overall, results show that the bread loaves produced with up to 5% CCP addition were considered the preferred formulation among the experimental samples tested, taking into consideration their composition, bioactive content, sensory, and physical properties.
Collapse
Affiliation(s)
- Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Ján Brindza
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Marvin Moncada
- Department of Food, Bioprocessing, and Nutrition Science, North Carolina State University, Raleigh, NC 27606, USA
| | - Eva Ivanišová
- Institute of Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Patrícia Joanidis
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Dušan Straka
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Lucia Gabríny
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
11
|
Nyhan L, Sahin AW, Arendt EK. Co-fermentation of non- Saccharomyces yeasts with Lactiplantibacillus plantarum FST 1.7 for the production of non-alcoholic beer. Eur Food Res Technol 2023; 249:167-181. [PMID: 36466321 PMCID: PMC9702684 DOI: 10.1007/s00217-022-04142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
Abstract
The non-alcoholic beer (NAB) sector has experienced steady growth in recent years, with breweries continuously seeking new ways to fulfil consumer demands. NAB can be produced by limited fermentation of non-Saccharomyces yeasts; however, beer produced in this manner is often critiqued for its sweet taste and wort-like off-flavours due to high levels of residual sugars and lack of flavour metabolites. The use of Lactobacillus in limited co-fermentation with non-Saccharomyces yeasts is a novel approach to produce NABs with varying flavour and aroma characteristics. In this study, lab-scale fermentations of Lachancea fermentati KBI 12.1 and Cyberlindnera subsufficiens C6.1 with Lactiplantibacillus plantarum FST 1.7 were performed and compared to a brewer's yeast, Saccharomyces cerevisiae WLP001. Fermentations were monitored for pH, TTA, extract reduction, alcohol production, and microbial cell count. The final beers were analysed for sugar and organic acid concentration, free amino nitrogen content (FAN), glycerol, and levels of volatile metabolites. The inability of the non-Saccharomyces yeasts to utilise maltotriose as an energy source resulted in extended fermentation times compared to S. cerevisiae WLP001. Co-fermentation of yeasts with lactic acid bacteria (LAB) resulted in a decreased pH, higher TTA and increased levels of lactic acid in the final beers. The overall acceptability of the NABs produced by co-fermentation was higher than or similar to that of the beers fermented with the yeasts alone, indicating that LAB fermentation did not negatively impact the sensory attributes of the beer. C. subsufficiens C6.1 and L. plantarum FST 1.7 NAB was characterised as fruity tasting with the significantly higher ester concentrations masking the wort-like flavours resulting from limited fermentation. NAB produced with L. fermentati KBI12.1 and L. plantarum FST1.7 had decreased levels of the undesirable volatile compound diacetyl and was described as 'fruity' and 'acidic', with the increased sourness masking the sweet, wort-like characteristics of the NAB. Moreover, this NAB was ranked as the most highly acceptable in the sensory evaluation. In conclusion, the limited co-fermentation of non-Saccharomyces yeasts with LAB is a promising strategy for the production of NAB.
Collapse
Affiliation(s)
- Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland ,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Adamenko K, Kawa-Rygielska J. Effect of Hop Varieties and Forms in the Hopping Process on Non-Alcoholic Beer Quality. Molecules 2022; 27:7910. [PMID: 36432011 PMCID: PMC9692510 DOI: 10.3390/molecules27227910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine how the hopping technique affects the quality of non-alcoholic beer (NAB). A series of NABs were brewed and tested for basic physicochemical characteristics, profiles of selected volatile compounds, and microbial contamination. The brewing process yielded 13 experimental groups of beers, all of which had an ethanol content of <0.5%v/v. Among the batches brewed with ‘Marynka’ hops, the pellet form was found to provide the highest concentrations of hop-derived volatile compounds, whereas in the ‘Magnum’ groups, the extracts and whole hops proved superior. Humulene and caryophyllene were the primary volatiles in terms of quantity. All the brews were contamination-free—no microbes other than yeast cells were detected. Their microbiological purity was also supported by an assay of beer-defect indicators (volatile compounds), which only showed low levels of acetaldehyde, 1-propanol, 2-methylbutanol, and 3-methylbutanol. The hopping technique deployed was found not to affect the physicochemical parameters of NABs, but did have a significant impact on their volatile compound profile.
Collapse
Affiliation(s)
- Kinga Adamenko
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | | |
Collapse
|
13
|
Salek RN, Lorencová E, Gál R, Kůrová V, Opustilová K, Buňka F. Physicochemical and Sensory Properties of Czech Lager Beers with Increasing Original Wort Extract Values during Cold Storage. Foods 2022; 11:foods11213389. [PMID: 36360002 PMCID: PMC9657140 DOI: 10.3390/foods11213389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
The scope of the study was the evaluation of the selected physicochemical (O2 and CO2 contents, bitterness, color, total polyphenol content (TPC), turbidity, foaming stability) and sensory properties of Czech lager beer with different original wort extract (OWE) values (OWE of 10.0; 11.0; 11.5; 12.0% w/w) during a cold storage period of 6 months (4 ± 2 °C). The length of the cold storage period did not influence the values of dissolved O2 and CO2, bitterness, color and foam stability of the samples. Contrarily, the TPC, turbidity, and sensory attributes of the samples were affected by the course of cold storage. The OWE values did not affect the development of the parameters tested. All beer samples stored until the 5th month presented “very good” sensory characteristics. Cold storage of beer is advantageous in order to maintain its freshness and sensory attributes at the highest level for the final consumer.
Collapse
Affiliation(s)
- Richardos Nikolaos Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Eva Lorencová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
- Correspondence: ; Tel.: +420-576-03-3010
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Vendula Kůrová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Kristýna Opustilová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - František Buňka
- Laboratory of Food Quality and Safety Research, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic
| |
Collapse
|
14
|
Przybylska D, Kucharska AZ, Sozański T. A Review on Bioactive Iridoids in Edible Fruits – from Garden to Food and Pharmaceutical Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - A. Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - T. Sozański
- Department of Pharmacology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
15
|
Vaštík P, Rosenbergová Z, Furdíková K, Klempová T, Šišmiš M, Šmogrovičová D. Potential of non-Saccharomyces yeast to produce non-alcoholic beer. FEMS Yeast Res 2022; 22:6653522. [PMID: 35918186 DOI: 10.1093/femsyr/foac039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, non-Saccharomyces yeast have become very popular in wine and beer fermentation. Their interesting abilities introduce novel aromatic profiles to the fermented product. In this study, screening of eight non-Saccharomyces yeast (Starmerella bombicola, Lindnera saturnus, Lindnera jadinii, ZygoSaccharomyces rouxii, Torulaspora delbrueckii, Pichia kluyveri, Candida pulcherrima, and Saccharomycodes ludwigii) revealed their potential in non-alcoholic beer production. Conditions for non-alcoholic beer production were optimised for all strains tested (except T. delbrueckii) with the best results obtained at temperature 10 to 15 °C for maximum of 10 days. Starmerella bombicola, an important industrial producer of biosurfactants, was used for beer production for the first time and was able to produce non-alcoholic beer even at 20 °C after 10 days of fermentation. Aromatic profile of the beer fermented with S. bombicola was neutral with no negative impact on organoleptic properties of the beer. The most interesting organoleptic properties were evaluated in beers fermented with L. jadinii and L. saturnus, which produced banana-flavoured beers with low alcohol content. This work confirmed the suitability of mentioned yeast to produce non-alcoholic beers and could serve as a steppingstone for further investigation.
Collapse
Affiliation(s)
- Peter Vaštík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Zuzana Rosenbergová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Katarína Furdíková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Tatiana Klempová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Šišmiš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Daniela Šmogrovičová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
16
|
Scioli G, Della Valle A, Zengin G, Locatelli M, Tartaglia A, Cichelli A, Stefanucci A, Mollica A. Artisanal fortified beers: Brewing, enrichment, HPLC-DAD analysis and preliminary screening of antioxidant and enzymatic inhibitory activities. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Gorzelany J, Patyna M, Pluta S, Kapusta I, Balawejder M, Belcar J. The Effect of the Addition of Ozonated and Non-Ozonated Fruits of the Saskatoon Berry ( Amelanchier alnifolia Nutt.) on the Quality and Pro-Healthy Profile of Craft Wheat Beers. Molecules 2022; 27:molecules27144544. [PMID: 35889416 PMCID: PMC9319635 DOI: 10.3390/molecules27144544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Research into the suitability of domestic raw materials, including, for example, new wheat cultivars and fruit additives for the production of flavoured beers, is increasingly being undertaken by minibreweries and craft breweries. The fruits of the Saskatoon berry are an important source of bioactive compounds, mainly polyphenols, but also macro- and microelements. The fruits of two Canadian cultivars of this species, 'Honeywood' and 'Thiessen', were used in this study. Physicochemical analysis showed that wheat beers with the addition of non-ozonated fruit were characterised by a higher ethanol content by 7.73% on average. On the other hand, enrichment of the beer product with fruit pulp obtained from the cv. 'Thiessen' had a positive effect on the degree of real attenuation and the polyphenol profile. Sensory evaluation of the beer product showed that wheat beers with the addition of 'Honeywood' fruit were characterised by the most balanced taste and aroma. On the basis of the conducted research, it can be concluded that fruits of both cvs. 'Honeywood' and 'Thiessen' can be used in the production of wheat beers, but the fermentation process has to be modified in order to obtain a higher yield of the fruit beer product.
Collapse
Affiliation(s)
- Józef Gorzelany
- Department of Food and Agriculture Production Engineering, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland; (J.G.); (M.P.)
| | - Michał Patyna
- Department of Food and Agriculture Production Engineering, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland; (J.G.); (M.P.)
| | - Stanisław Pluta
- Department of Horticultural Crop Breeding, the National Institute of Horticultural Research, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland;
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| | - Maciej Balawejder
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A Street, 35-601 Rzeszów, Poland;
| | - Justyna Belcar
- Department of Food and Agriculture Production Engineering, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland; (J.G.); (M.P.)
- Correspondence:
| |
Collapse
|
18
|
Escudero-López B, Cerrillo I, Ortega Á, Martín F, Fernández-Pachón MS. Effect of Acute Intake of Fermented Orange Juice on Fasting and Postprandial Glucose Metabolism, Plasma Lipids and Antioxidant Status in Healthy Human. Foods 2022; 11:foods11091256. [PMID: 35563979 PMCID: PMC9101597 DOI: 10.3390/foods11091256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
Higher postprandial plasma glucose and lipemia, and oxidative and inflammatory responses, are considered important cardiovascular risk factors. Fermentation of fruits has generated products with high concentrations of bioactive compounds. The aim of this study was to evaluate the potential acute effects that fermented orange juice (FOJ) can exert in healthy humans by modulating postprandial response, and inflammatory/antioxidant status, compared with orange juice (OJ). Nine volunteers were recruited for a randomized, controlled, and crossover study. Participants ingested 500 mL of FOJ. At 4 h post intake, subjects consumed a standardized mixed meal. Blood samples were collected at 0-8 h hours post intake. The subjects repeated the protocol with OJ following a 2-week washout period. Glucose and lipid metabolism, plasma antioxidant capacity (ORAC, FRAP), endogenous antioxidants (albumin, bilirubin, uric acid), C-reactive protein and fibrinogen were measured in plasma samples. There was a trend of a smaller increase in LDL-C after FOJ intake compared with OJ, a significant decrease in apo-B and significant increase in ORAC. The glycemic and triglyceride response of meal was attenuated with FOJ. No differences were obtained in endogenous antioxidants and inflammation status between the treatments. The acute consumption of FOJ could play a protective role against cardiovascular risk factors.
Collapse
|
19
|
Kawa-Rygielska J, Adamenko K, Pietrzak W, Paszkot J, Głowacki A, Gasiński A. Characteristics of New England India Pale Ale Beer Produced with the Use of Norwegian KVEIK Yeast. Molecules 2022; 27:molecules27072291. [PMID: 35408689 PMCID: PMC9000580 DOI: 10.3390/molecules27072291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this research was to determine the potential of four unconventional Norwegian yeasts of the KVEIK type to produce NEIPA beer. The influence of yeast strains on fermentation process, physicochemical properties, antioxidant potential, volatile compounds, and sensory properties was investigated. The KVEIK-fermented beer did not differ in terms of physicochemical parameters from the beer produced with the commercial variants of US-05 yeast. The yeast strain influenced the sensory quality (taste and aroma) of the beers, with KVEIK-fermented beer rating significantly higher. The antioxidant activity of the tested beers also significantly depended on the yeast strain applied. The beers fermented with KVEIK had a significantly higher antioxidant potential (ABTS•+) than those fermented with US-05. The strongest antioxidant activity was found in the beer brewed with the Lida KVEIK yeast. The use of KVEIK to produce NEIPA beer allowed enrichment of the finished products with volatile compounds isobutanol, 2-pentanol, 3-methylobutanol, ethyl octanoate, and ethyl decanoate.
Collapse
|
20
|
Effect of Ozone-Treated or Untreated Saskatoon Fruits (Amelanchier alnifolia Nutt.) Applied as an Additive on the Quality and Antioxidant Activity of Fruit Beers. Molecules 2022; 27:molecules27061976. [PMID: 35335343 PMCID: PMC8954700 DOI: 10.3390/molecules27061976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Fruit of Saskatoon (Amelanchier alnifolia Nutt.) are a good source of bioactive compounds, such as polyphenols, including anthocyanins, as well as vitamins, macro- and microelements and fibre. By treating Saskatoon fruits with gaseous ozone, and adding the material as an enhancer to barley beers, it is possible to impact the contents of bioactive compounds in the produced fruit beers. Sensory tests showed that beers made from barley with addition of Saskatoon fruit of the ‘Smoky’ cultivar were characterised by the most balanced taste and aroma. Physicochemical analyses of fruit beers, produced with Saskatoon fruit pulp added on the seventh day of fermentation, showed that the beers enhanced with ozone-treated and untreated ‘Smoky’ Saskatoon fruits had the highest contents of alcohol, 5.51% v/v and 5.66% v/v, respectively, as well as total polyphenol contents of 395 mg GAE/L and 401 mg GAE/L, respectively, and higher antioxidant activity (assessed using DPPH•, FRAP and ABTS+• assays). It was demonstrated that the ozonation process led to a decrease in the contents of neochlorogenic acid, on average by 91.00%, and of caffeic acid by 20.62%, relative to the beers enhanced with ‘Smoky’ Saskatoon fruits not subjected to ozone treatment. The present study shows that Saskatoon fruits can be used in the production of beer, and the Canadian cultivar ‘Smoky’ is recommended for this purpose.
Collapse
|
21
|
Kordialik-Bogacka E. Biopreservation of beer: Potential and constraints. Biotechnol Adv 2022; 58:107910. [PMID: 35038561 DOI: 10.1016/j.biotechadv.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
The biopreservation of beer, using only antimicrobial agents of natural origin to ensure microbiological stability, is of great scientific and commercial interest. This review article highlights progress in the biological preservation of beer. It describes the antimicrobial properties of beer components and microbiological spoilage risks. It discusses novel biological methods for enhancing beer stability, using natural antimicrobials from microorganisms, plants, and animals to preserve beer, including legal restrictions. The future of beer preservation will involve the skilled knowledge-based exploitation of naturally occurring components in beer, supplementation with generally regarded as safe antimicrobial additives, and mild physical treatments.
Collapse
Affiliation(s)
- Edyta Kordialik-Bogacka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wolczanska Street, 90-530 Lodz, Poland.
| |
Collapse
|
22
|
The Potential of Traditional Norwegian KVEIK Yeast for Brewing Novel Beer on the Example of Foreign Extra Stout. Biomolecules 2021; 11:biom11121778. [PMID: 34944422 PMCID: PMC8698465 DOI: 10.3390/biom11121778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
The development of craft brewing has spurred huge interest in unusual and traditional technologies and ingredients allowing the production of beers that would fulfil consumers' growing demands. In this study, we evaluated the brewing performance of traditional Norwegian KVEIK yeast during the production of Foreign Extra Stout beer. The content of alcohol of the KVEIK-fermented beer was 5.11-5.58% v/v, the extract content was 5.05-6.66% w/w, and the pH value was 4.53-4.83. The KVEIK yeast was able to completely consume maltose and maltotriose. The mean concentration of glycerol in KVEIK-fermented beers was higher than in the control sample (1.51 g/L vs. 1.12 g/L, respectively). The use of KVEIK-type yeast can offer a viable method for increasing the concentration of phenolic compounds in beer and for boosting its antioxidative potential. The beers produced with KVEIK-type yeast had a total phenol content of 446.9-598.7 mg GAE/L, exhibited antioxidative potential of 0.63-1.08 mM TE/L in the DPPH• assay and 3.85-5.16 mM TE/L in the ABTS•+ assay, and showed a ferric ion reducing capacity (FRAP) of 3.54-4.14 mM TE/L. The KVEIK-fermented bears contained various levels of volatile compounds (lower or higher depending on the yeast strain) and especially of higher alcohols, such as 3-metylobutanol, 2-metylobutanol, and 1-propanol, or ethyl esters, such as ethyl acetate or decanoate, compared to the control beers. In addition, they featured a richer fruity aroma (apricot, dried fruit, apples) than the control beers fermented with a commercial US-05 strain.
Collapse
|
23
|
Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients. Foods 2021; 10:foods10081831. [PMID: 34441608 PMCID: PMC8391379 DOI: 10.3390/foods10081831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023] Open
Abstract
Selected biological resources used as raw materials in beer production are important drivers of innovation and segmentation in the dynamic market of craft beers. Among these resources, local/regional ingredients have several benefits, such as strengthening the connection with territories, enhancing the added value of the final products, and reducing supply costs and environmental impacts. It is assumed that specific ingredients provide differences in flavours, aromas, and, more generally, sensory attributes of the final products. In particular, of interest are ingredients with features attributable and/or linked to a specific geographical origin. This review encompasses the potential contribution and exploitation of biodiversity in the main classes of beer inputs, such as cereals, hops, microbes, and adjuncts, with a specific emphasis on autochthonous biological resources, detailing the innovative paths already explored and documented in the scientific literature. This dissertation proposes an overview of the impact on beer quality for each raw material category, highlighting the benefits and limitations that influence its concrete applications and scale-up, from the field to the stain. The topics explored promote, in the sector of craft beers, trends already capitalised in the production of other alcoholic beverages, such as the preservation and revalorisation of minor and autochthonous varieties, the exploitation of yeast and bacteria strains isolated from specific sites/plant varieties, and the valorisation of the effects of peculiar terroirs on the quality of agricultural products. Finally, the examined tendencies contribute toward reducing the environmental impacts of craft beer manufacturing, and are in line with sustainable development of food systems, increasing the economic driver of biodiversity preservation.
Collapse
|
24
|
Adamenko K, Kawa-Rygielska J, Kucharska AZ, Głowacki A, Piórecki N. Changes in the Antioxidative Activity and the Content of Phenolics and Iridoids during Fermentation and Aging of Natural Fruit Meads. Biomolecules 2021; 11:biom11081113. [PMID: 34439780 PMCID: PMC8394733 DOI: 10.3390/biom11081113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to investigate changes in the content of biologically active compounds during the fermentation and aging of natural meads with the addition of three Cornelian cherry juices from three cultivars: 'Koralovyi', 'Podolski' and 'Yantarnyi', in the amount of 10% v/v. After the fermentation process the content of gallic and ellagic acids significantly increased, in relation to wort. Whereas the greatest losses were observed among unstable anthocyanins. The three-month aging process also reduced the content of the analyzed compounds except for ellagic acid, the content of which increased by up to 90%. The content of biologically active compounds, including iridoids and antioxidant phenolics, are constantly changing in the process of fermentation and aging of fruit meads. The studies proved that the addition of Cornelian cherry juice allows significantly enriched classic meads with new biologically active compounds, such as: exceptional iridoids (loganic acid, cornuside, loganine, sweroside), flavonols, phenolic acids and anthocyanins.
Collapse
Affiliation(s)
- Kinga Adamenko
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.K.-R.); (A.G.)
- Correspondence: ; Tel.: +48-71-323-9418
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.K.-R.); (A.G.)
| | - Alicja Z. Kucharska
- Vegetable and Plant Nutraceutical Technology, Department of Fruit, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Adam Głowacki
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.K.-R.); (A.G.)
| | - Narcyz Piórecki
- Institute and Arboretum of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland;
- Faculty of Physical Educaiton, University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
25
|
Müller M, Gastl M, Becker T. Key constituents, flavour profiles and specific sensory evaluation of wheat style non‐alcoholic beers depending on their production method. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Magdalena Müller
- Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology Technical University of Munich Freising 85354 Germany
| | - Martina Gastl
- Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology Technical University of Munich Freising 85354 Germany
| | - Thomas Becker
- Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology Technical University of Munich Freising 85354 Germany
| |
Collapse
|
26
|
Parveez Zia M, Alibas I. The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chem 2021; 364:130358. [PMID: 34186484 DOI: 10.1016/j.foodchem.2021.130358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Cornelian cherry was dehydrated using different drying techniques: namely natural, microwave, convective, and combined drying. The moisture content of cornelian cherry was reduced from 72.56% to 10.27%. The color parameters closest to the fresh samples were measured at 50 °C, 70 °C, 90 °C, and at 100 and 300 W. Both fresh and dried cornelian cherries show high antioxidant capacity and comprise of various polyphenolic compounds. TEACCUPRAC is the most suitable method for determining the total antioxidant capacity of cornelian cherry. We measured the total anthocyanin content closest to the fresh cornelian cherry with 2.62 and 2.11 mg (CDE) g-1 (dw) at 70 °C and 300 W. Also, we found the closest vitamin C to the fresh ones with values of 25.02 and 20.08 mg 100 g-1 (fw) at 300 and 500 W. Generally, the suitable drying technique in terms of physical parameters and phytochemical compounds was the microwave drying at 300 W.
Collapse
Affiliation(s)
- Mahrukh Parveez Zia
- Bursa Uludag University, Institute of Natural Sciences, Department of Biosystems Engineering, 16059, Nilufer, Bursa, Turkey
| | - Ilknur Alibas
- Bursa Uludag University, Faculty of Agriculture, Department of Biosystems Engineering, 16059, Nilüfer, Bursa, Turkey.
| |
Collapse
|
27
|
Dumitrașcu L, Stănciuc N, Aprodu I. Encapsulation of Anthocyanins from Cornelian Cherry Fruits Using Heated or Non-Heated Soy Proteins. Foods 2021; 10:1342. [PMID: 34200745 PMCID: PMC8230403 DOI: 10.3390/foods10061342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
In the current study, the effect of temperature on the potential of soy proteins to ensure the encapsulation and gastric stability of bioactives, such as anthocyanins from cornelian cherry fruits, was investigated. The powders obtained after freeze-drying were analyzed in relation to flow properties, encapsulation retention and efficiency, stability in simulated gastrointestinal medium, color, and morphology. Preheating the soy proteins generated a powder with low density. Powders obtained with native soy proteins allowed the highest encapsulation efficiency and the lowest was obtained when using preheated soy proteins. The heat treatment of the mixture of soy proteins and cornelian cherry fruits prior to encapsulation generated powders with the highest lightness and the lowest intensity of red shades among all samples. The in vitro experiments revealed that the highest protection in simulated gastric environment was provided when protein was heat treated either alone or in combination with bioactives to be encapsulated. The morphological analysis highlighted that powders consisted of large and rigid structures.
Collapse
Affiliation(s)
| | | | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galati, Romania; (L.D.); (N.S.)
| |
Collapse
|
28
|
Puligundla P, Smogrovicova D, Mok C. Recent innovations in the production of selected specialty (non-traditional) beers. Folia Microbiol (Praha) 2021; 66:525-541. [PMID: 34097198 DOI: 10.1007/s12223-021-00881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Customer demand for product diversity is the key driving force for innovations in the brewing industry. Specialty beers are regarded as a distinct group of beers different from two major types, lagers and ales, without established definitions or boundaries. Specialty beers, including low- to no-alcohol beer, low carbohydrate beer, gluten-free beer, sour beer, probiotic beer, and enriched beer, are exclusively brewed and developed keeping in mind their functionality, the health and wellbeing of the consumer, and emerging market trends. Compared with conventional beer-brewing, the production of specialty beers is technologically challenging and usually requires additional process steps, unique microorganisms, and special equipment, which in turn may incur additional costs. In addition, the maintenance of quality and stability of the products as well as consumer acceptability of the products are major challenges to successful commercialization. A harmonious integration of traditional brewing practices and modern technological approaches may hold potential for future developments. In the present review, latest developments in the fermentative production of selected specialty beers are discussed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Daniela Smogrovicova
- Institute of Biotechnology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Chulkyoon Mok
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
29
|
Dumitraşcu L, Stănciuc N, Borda D, Neagu C, Enachi E, Barbu V, Aprodu I. Microencapsulation of bioactive compounds from cornelian cherry fruits using different biopolymers with soy proteins. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Properties of Dry Hopped Dark Beers with High Xanthohumol Content. Antioxidants (Basel) 2021; 10:antiox10050763. [PMID: 34064972 PMCID: PMC8151753 DOI: 10.3390/antiox10050763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant activity of beers comes mainly from phenolic compounds and melanoidins. The aim of this research was to evaluate the effect of technological operations, especially the ethanol fermentation process using top fermentation brewer's yeast Saccharomyces cerevisiae, on the antioxidant activity of dark dry hopped beers with a high xanthohumol content. Four beers were produced using different varieties of hops. The polyphenol content during beer processing increased at the stage of hopping and fermentation, while it decreased during aging. The ability to reduce iron ions increased for all beers compared to hopped wort. The opposite tendency was noted for the antioxidant capacity expressed as the ability to reduce the radical cation ABTS•+ generated from 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). Fermentation and aging caused a decrease in beer color intensity. The content of 5-hydroxymethylfurfural (5-HMF) increased with the color intensity of wort, therefore in beers no presence of 5-HMF was observed. The beers were characterized by a distinctly high content of xanthohumol in the range of 1.77-3.83 mg/L and 0.85-1.19 mg/L of isoxanthohumol. The content of prenylflavonoids and bitterness of beer depended on the variety of hops used.
Collapse
|
31
|
Abstract
Consumers’ demand for functional fermented food that can fulfill nutritional needs and help maintain a balanced diet while also having a positive impact on one’s health status is increasing all over the world. Thus, healthy choices could include beverages with nutrients and bioactive compounds which can be used as an effective disease-prevention strategy. Regular beer has certain health benefits which inspire further research with the prospect of obtaining special functional beers with little or no alcohol content. As observed, the special beer market remains highly dynamic and is predicted to expand even further. Therefore, brewers need to keep up with the consumers’ interests and needs while designing special beers, namely nonalcoholic beers (NABs), low-alcohol beers (LABs), and craft beers (CBs). Thus, understanding the potential uses of bioactive compounds in special beer, the wide range of therapeutic effects, and the possible mechanisms of action is essential for developing healthier beverages. This review aimed to evaluate the nutritional features of special beers, and their proven or potential beneficial actions on one’s health status and in preventing certain diseases.
Collapse
|
32
|
Lorencová E, Salek RN, Černíková M, Buňková L, Hýlková A, Buňka F. Biogenic amines occurrence in beers produced in Czech microbreweries. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Gąsior J, Kawa-Rygielska J, Kucharska AZ. Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains. Molecules 2020; 25:E3882. [PMID: 32858842 PMCID: PMC7503650 DOI: 10.3390/molecules25173882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to assess the possibility of shaping properties of beers at the stage of brewing wort production with the use of various types of special malts (chocolate pale, chocolate dark, wheat chocolate, brown barley) and roasted barley grains. The carbohydrate profile, polyphenols content, antioxidant capacity, 5-hydroxymethylfurfural content, and the browning index level were analyzed. Statistical analysis showed significant differences in the values of the examined features between the samples. The sugars whose content was most affected by the addition of special malts were maltose and dextrins. The polyphenol content in worts with 10% of additive was 176.02-397.03 mg GAE/L, ferric reducing antioxidant power (FRAP) 1.32-2.07 mmol TE/L, and capacity to reduction radical generated from 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS•+) 1.46-2.70 mmol TE/L. Wort with 40% dark malt showed the highest content of polyphenolic compounds and antioxidant activity (FRAP and ABTS•+). The HMF content and the browning index value were higher for wort with the addition of darker-colored malts (EBC) and increased with increasing dark malt dose.
Collapse
Affiliation(s)
- Justyna Gąsior
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| |
Collapse
|
34
|
Gasiński A, Kawa-Rygielska J, Szumny A, Czubaszek A, Gąsior J, Pietrzak W. Volatile Compounds Content, Physicochemical Parameters, and Antioxidant Activity of Beers with Addition of Mango Fruit ( Mangifera Indica). Molecules 2020; 25:molecules25133033. [PMID: 32630803 PMCID: PMC7411757 DOI: 10.3390/molecules25133033] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/03/2023] Open
Abstract
This study was performed to determine the possibility of using mango fruit (Mangifera indica) in brewing technology. The aim of using the SPME-HS-GC-MS technique was to assess what changes occurred in the volatile composition of mango beers brewed in this study. Mango fruit was added to the beer in five different forms to ascertain what kind of preparation should be used to improve beer aroma. Analysis of the volatile components in mango beer showed that beer without mango addition was characterized by the lowest content of volatile compounds (1787.84 µg/100 mL). The addition of mango fruit increased the concentration of compounds, such as α-pinene, β-myrcene, terpinolene, α-terpineol, cis-β-ocimene, caryophyllene, and humulene, in beer. Beer prepared with mango pulp addition was characterized by the highest concentration of volatile components from mango beers (2112.15 µg/100 mL). Furthermore, beers with mango addition were characterized by a higher polyphenol content (up to 44% higher than control beer) and antioxidant activity than control beer and were evaluated by a trained panel as having a better taste and aroma than beer without fruit addition.
Collapse
Affiliation(s)
- Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
- Correspondence: ; Tel./Fax: +48-71-3209418
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| | - Antoni Szumny
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C. K. Norwida street 25, 50-375 Wrocław, Poland;
| | - Anna Czubaszek
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| | - Justyna Gąsior
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| | - Witold Pietrzak
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (A.C.); (J.G.); (W.P.)
| |
Collapse
|
35
|
Gasiński A, Kawa-Rygielska J, Szumny A, Gąsior J, Głowacki A. Assessment of Volatiles and Polyphenol Content, Physicochemical Parameters and Antioxidant Activity in Beers with Dotted Hawthorn ( Crataegus punctata). Foods 2020; 9:foods9060775. [PMID: 32545351 PMCID: PMC7353495 DOI: 10.3390/foods9060775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/15/2023] Open
Abstract
Beer with the addition of dotted hawthorn (Crataegus punctata) fruit and juice was prepared and analysed. The content of carbohydrates, glycerol and ethanol in beers was determined by high-performance liquid chromatography (HPLC). Analysis of the total content of polyphenols was also performed using the Folin-Ciocalteu method, as well as determining antioxidant capacity by DPPH• and ABTS+• assay, and the ability to reduce iron ions by FRAP assay. Content of volatile compounds was analysed by means of solid-phase microextraction and gas chromatography coupled with mass spectroscopy. Beers with addition of hawthorn, both juice and fruit, had higher antioxidative potential and higher polyphenols concentration compared to control beer. The content of polyphenols in beers was in the range 200.5–410.0 mg GAE/L, and the antioxidant activity was in the range of 0.936–2.04 mmol TE/L (ABTS+• assay), 0.352–2.175 mmol TE/L (DPPH• assay) and 0.512–1.35 mmol TE/L (FRAP assay). A sensory evaluation of beers was also carried out. Beer with hawthorn fruit addition obtained the best scores in sensory analysis for criteria such as aroma, taste and overall quality. This beer had the highest content of volatile compounds (287.9 µg/100 mL of beer), while the control beer had lowest concentrations (35.9 µg/100 mL of beer).
Collapse
Affiliation(s)
- Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (J.G.); (A.G.)
- Correspondence: ; Tel./Fax: +48-71-320-9418
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (J.G.); (A.G.)
| | - Antoni Szumny
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida street 25, 50-375 Wrocław, Poland;
| | - Justyna Gąsior
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (J.G.); (A.G.)
| | - Adam Głowacki
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Science, Chełmońskiego 37 Street, 51-630 Wroclaw, Poland; (J.K.-R.); (J.G.); (A.G.)
| |
Collapse
|