1
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Jin C, Wang L, Liu X, Lu Y, Yu N, Nie X, Ye Q, Meng X. Health oil preparation from gardenia seeds by aqueous enzymatic extraction combined with puffing pre-treatment and its properties analysis. Food Sci Biotechnol 2023; 32:2043-2055. [PMID: 37860735 PMCID: PMC10581964 DOI: 10.1007/s10068-023-01319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
Gardenia jasminoides Ellis, a representative for "homology of medicine and food", can be used to produce pigment and edible oil. Here, aqueous enzymatic extraction (AEE) combined with puffing pre-treatment was explored to prepare oil from gardenia seeds. Both wet-heating puffing (WP) at 90 °C and dry-heating puffing (DP) at 1.0 MPa facilitated the release of free oil by AEE, resulting in the highest free oil yields (FOY) of 21.8% and 23.2% within 3 h, much higher than that of un-puffed group. Additionally, active crocin and geniposide were also completely released. The FOY obtained was much higher than mechanical pressing method (10.44%), and close to solvent extraction (25.45%). Microstructure analysis indicated that gardenia seeds expanded by dry-heating puffing (1.0 MPa) had a larger, rougher surface and porous structure than other groups. Overall, AEE coupled with puffing pre-treatment developed is an eco-friendly extraction technology with high efficiency that can be employed to oil preparation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01319-9.
Collapse
Affiliation(s)
- Chengyu Jin
- College of Food Science and Technology, Zhejiang University of Technology, No. 18, Road Chaowang, District Gongshu, Hangzhou, 310014 Zhejiang China
| | - Lingyun Wang
- College of Food Science and Technology, Zhejiang University of Technology, No. 18, Road Chaowang, District Gongshu, Hangzhou, 310014 Zhejiang China
| | - Xiaoying Liu
- College of Food Science and Technology, Zhejiang University of Technology, No. 18, Road Chaowang, District Gongshu, Hangzhou, 310014 Zhejiang China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, No. 18, Road Chaowang, District Gongshu, Hangzhou, 310014 Zhejiang China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, No. 18, Road Chaowang, District Gongshu, Hangzhou, 310014 Zhejiang China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, No. 18, Road Chaowang, District Gongshu, Hangzhou, 310014 Zhejiang China
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, No. 18, Road Chaowang, District Gongshu, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
3
|
Jin C, Zongo AWS, Du H, Lu Y, Yu N, Nie X, Ma A, Ye Q, Xiao H, Meng X. Gardenia ( Gardenia jasminoides Ellis) fruit: a critical review of its functional nutrients, processing methods, health-promoting effects, comprehensive application and future tendencies. Crit Rev Food Sci Nutr 2023; 65:165-192. [PMID: 37882781 DOI: 10.1080/10408398.2023.2270530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Gardenia fruit (GF) is the mature fruit of Gardenia jasminoides Ellis, boasting a rich array of nutrients and phytochemicals. Over time, GF has been extensively utilized in both food and medicinal contexts. In recent years, numerous studies have delved into the chemical constituents of GF and their associated pharmacological activities, encompassing its phytochemical composition and health-promoting properties. This review aims to provide a critical and comprehensive summary of GF research, covering nutrient content, extraction technologies, and potential health benefits, offering new avenues for future investigations and highlighting its potential as an innovative food resource. Additionally, the review proposes novel industrial applications for GF, such as utilizing gardenia yellow/red/blue pigments in the food industry and incorporating it with other herbs in traditional Chinese medicine. By addressing current challenges in developing GF-related products, this work provides insights for potential applications in the cosmetics, food, and health products industries. Notably, there is a need for the development of more efficient extraction methods to harness the nutritional components of GF fully. Further research is needed to understand the specific molecular mechanisms underlying its bioactivities. Exploring advanced processing techniques to create innovative GF-derived products will show great promise for the future.
Collapse
Affiliation(s)
- Chengyu Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ashton Ma
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Phillips Academy Andover, Andover, MA, USA
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Zou S, Sun C, Li F, Xie Y, Liang T, Yang Y, Shi B, Ma Q, Shi Z, Chai S, Shan A. Effect of Gardenia Pomace Supplementation on Growth Performance, Blood Metabolites, Immune and Antioxidant Indices, and Meat Quality in Xiangcun Pigs. Animals (Basel) 2022; 12:ani12172280. [PMID: 36078000 PMCID: PMC9454504 DOI: 10.3390/ani12172280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate the effect of gardenia pomace (GP) as an unconventional feed of antioxidants, 180 Xiangcun pigs were randomly divided into 3 groups during the finishing period, with 6 replicates per group and 10 pigs per replicate. During the 47-day feeding period, the pigs were fed either a control diet based on corn and soybean meal (control group), or the control diet added with 50 g/kg or 100 g/kg GP (groups GP5 and GP10, respectively). Feed and water were provided ad libitum. One pig per replicate was slaughtered and sampled. The effects on growth performance, meat quality, digestibility, metabolism, and immunity and antioxidant properties of the pigs were investigated. The results showed that GP had no significant effect on the growth performance of Xiangcun pigs. Compared with the control group, the digestibility of crude ash, phosphorus, and crude fibre of pigs in the GP groups improved (p < 0.01), and the content of inosinic acid in the longissimus dorsi muscle increased (p < 0.05). The addition of GP to the diet significantly increased superoxide dismutase (SOD) levels in the liver and spleen, and glutathione peroxidase (GSH-Px) activity in the longissimus dorsi muscle and spleen (p < 0.05). Additionally, it significantly reduced the contents of malondialdehyde (MDA) in the liver and spleen (p < 0.05). The GP5 group had a higher inosinic acid content in the longissimus dorsi and lower levels of the inflammatory factor interleukin-2 and interleukin-8 than those in the other groups (p < 0.05). The GP10 group had a higher IgA level (p < 0.05). Adding different proportions of GP to the diet improved the a* and b* of the longissimus dorsi muscles of Xiangcun pigs (p < 0.05). In summary, GP, as an unconventional feed, improved the apparent digestibility of the diet and body antioxidant capacity in Xiangcun pigs during the finishing period and did not negatively affect the growth performance or meat quality.
Collapse
Affiliation(s)
| | | | - Feng Li
- Correspondence: (F.L.); (A.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wu J, Ma K, Li H, Zhang Y, Wang X, Abbas N, Yin C, Zhang Y. Stability assessment of lutein under the existence of different phenolic acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wu J, Pu C, Zhang Y, Wang X, Wang M, Shao H, Yin C, Zhang Y. Stability evaluation of gardenia yellow pigment in the presence of different antioxidants or microencapsulating agents. J Food Sci 2022; 87:3036-3047. [PMID: 35674470 DOI: 10.1111/1750-3841.16222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
The chemical instability of gardenia yellow pigment (GYP) limits its utilization in the food industry. In this study, the effects of different antioxidants (0.2% of tea polyphenols, sodium phytate, potassium citrate, and ascorbic acid) and microencapsulating agents (gum Arabic, maltodextrin, inulin, and gum Arabic/maltodextrin) on the degradation of GYP under different conditions (heat, light, and ferric iron) were evaluated. Then, the characteristic properties of microcapsules coated with gum Arabic/maltodextrin, gum Arabic/maltodextrin/tea polyphenols, maltodextrin, and maltodextrin/tea polyphenols were investigated. Furthermore, food models were simulated to evaluate the GYP stability of the microcapsules. The results showed that tea polyphenols, maltodextrin, and gum Arabic/maltodextrin significantly improved the GYP stability. Moreover, the presence of GYP in microcapsules was confirmed by nuclear magnetic resonance and Fourier transform infrared spectroscopy. In addition, GYP-MD/TP possessed high thermal stability under different cooking methods. PRACTICAL APPLICATION: Gardenia yellow pigment (GYP) is easily degraded under light and high-temperature conditions, which limits its applications in the food industry. This study will provide effective clues for expanding the practical applications of GYP in the natural pigment industry.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui, 230036, China
| | - Cui Pu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui, 230036, China
| | - Yingjia Zhang
- Hefei No.45 middle school, 103 Tongcheng Rd, Hefei, Anhui, 230061, China
| | - Xiaona Wang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui, 230036, China
| | | | - Heyi Shao
- Hefei No.45 middle school, 103 Tongcheng Rd, Hefei, Anhui, 230061, China
| | - Caiping Yin
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui, 230036, China
| | - Yinglao Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, Anhui, 230036, China
| |
Collapse
|
7
|
Zhang X, Ren X, Zhao X, Liu H, Wang M, Zhu Y. Stability, structure, and antioxidant activity of astaxanthin crystal from
Haematococcus pluvialis. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaowei Zhang
- Department of Food Science and Nutrition University of Jinan Jinan China
| | - Xiangrui Ren
- Department of Food Science and Nutrition University of Jinan Jinan China
| | - Xiaoyan Zhao
- Department of Food Science and Nutrition University of Jinan Jinan China
| | - Hongkai Liu
- Department of Food Science and Nutrition University of Jinan Jinan China
| | - Meng Wang
- Department of Food Science and Nutrition University of Jinan Jinan China
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| |
Collapse
|
8
|
Xu Z, Lin S, Tong Z, Chen S, Cao Y, Li Q, Jiang Y, Cai W, Tong Y, Zahra BS, Wang P. Crocetin ameliorates non-alcoholic fatty liver disease by modulating mitochondrial dysfunction in L02 cells and zebrafish model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114873. [PMID: 34848360 DOI: 10.1016/j.jep.2021.114873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine considers that the etiology and pathogenesis of non-alcoholic fatty liver disease (NAFLD) are related to liver depression and qi stagnation. Saffron and its active ingredient, crocetin (CCT), are used for the treatment of metabolic diseases owing to their "Liver deobstruent" and "Liver tonic" effects. However, the effect of CCT on NAFLD has not been fully elucidated. In the present study, the effect and potential molecular mechanism of CCT were explored in both in vivo and in vitro models of NAFLD. MATERIALS AND METHODS CCT was isolated from saffron and purity and structure characterization were performed using HPLC, MS, 1H-NMR, and 13C-NMR. The effect of CCT on the viability of L02 cells and its maximum tolerable concentration (MTC) in zebrafish were investigated. Free fatty acids (FFA) and thioacetamide (TAA) were used to induce lipid accumulation in L02 cells and steatosis in zebrafish, respectively. The effects of CCT on indexes related to lipid metabolism, oxidative stress, and mitochondrial function in NAFLD models were explored using biochemical assay kits, Western blot analysis, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), histopathology analysis, and determination of mitochondrial membrane potential (ΔΨm). Morphological analysis of mitochondria was performed using transmission electron microscopy (TEM). RESULTS The levels of triglyceride (TG), total cholesterol (TC), malondialdehyde (MDA), and alanine/aspartate aminotransferases (ALT/AST) activities in FFA treated L02 cells were significantly reduced after CCT treatment. CCT treatment significantly increased ATP concentration, ΔΨm, and activities of superoxide dismutase (SOD), catalase (CAT), and cytochrome c oxidase (COX IV) in FFA treated L02 cells. TEM images showed restoration of mitochondrial morphology. CCT decreased ATP concentration and upregulated expression of B-cell lymphoma-2 (Bcl-2) and COX IV, whereas, CCT downregulated expression of BCL2-Associated X (Bax) and cleaved caspase-3 in TAA treated zebrafish. These findings indicated that mitochondrial dysfunction was alleviated after CCT treatment. Oil Red O staining of L02 cells and zebrafish showed that CCT treatment reversed the accumulation of lipid droplets. CONCLUSION In summary, CCT treatment effectively alleviated the symptoms of NAFLD and restored mitochondrial function in L02 cells and zebrafish NAFLD model.
Collapse
Affiliation(s)
- Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zheren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Yifeng Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yuli Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Weijie Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Yingpeng Tong
- School of Life Sciences, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Bathaie S Zahra
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-133, Tehran, Islamic Republic of Iran
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
9
|
Guo ZL, Li MX, Li XL, Wang P, Wang WG, Du WZ, Yang ZQ, Chen SF, Wu D, Tian XY. Crocetin: A Systematic Review. Front Pharmacol 2022; 12:745683. [PMID: 35095483 PMCID: PMC8795768 DOI: 10.3389/fphar.2021.745683] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and produced in biological systems by hydrolysis of crocin as a bioactive metabolite. It is known to exist in several medicinal plants, the desiccative ripe fruit of the cape jasmine belonging to the Rubiaceae family, and stigmas of the saffron plant of the Iridaceae family. According to modern pharmacological investigations, crocetin possesses cardioprotective, hepatoprotective, neuroprotective, antidepressant, antiviral, anticancer, atherosclerotic, antidiabetic, and memory-enhancing properties. Although poor bioavailability hinders therapeutic applications, derivatization and formulation preparation technologies have broadened the application prospects for crocetin. To promote the research and development of crocetin, we summarized the distribution, preparation and production, total synthesis and derivatization technology, pharmacological activity, pharmacokinetics, drug safety, drug formulations, and preparation of crocetin.
Collapse
Affiliation(s)
- Zi-Liang Guo
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Gang Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Ze Du
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Qiang Yang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,Institute of Chemical Technology, Northwest Minzu University, Lanzhou, China
| | - Sheng-Fu Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Di Wu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Liqin T, Haocheng L, Jing W, Yujuan X, Wenni T, Lu L, Yuanshan Y, Xian L, Manqin F. Study on ultrahigh-pressure extraction technology on properties of yellow extract from gardenia fruit. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Fan Y, Li X, Ding L, Zhou W, Xu G, Wang Y, Zhang Y, Ni Q. Accelerated Solvent Extraction of Antioxidant Compounds from Gardeniae Fructus and Its Acetylcholinesterase Inhibitory and PC12 Cell Protective Activities. Foods 2021; 10:foods10112805. [PMID: 34829086 PMCID: PMC8622743 DOI: 10.3390/foods10112805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Gardeniae fructus is a common neuroprotective medicinal food in China, however the extraction efficiency and mixture activities are rarely mentioned. In this study, accelerated solvent extraction (ASE) parameters were optimized by a response surface methodology to extract antioxidants from Gardeniae fructus. Neuroprotective activity was evaluated using H2O2 and amyloid-β25–35 peptide-treated PC12 cells. By comparing with three other extract methods (i.e., heated refluxing extraction (HRE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE)), it was found that the yield (35.10%), total iridoids (27.69%), total flavonoid (6.12%) content, antioxidant activities (IC50 on DPPH, 164.46 µg/mL; FRAP value 4703.54 μmol/L), and acetylcholinesterase inhibitory ability (IC50 92.58 µg/mL) of ASE extract under the optimal condition (150 °C temperature, 10 min static time, 60% ethanol, 2 extract cycles) were significantly higher than other extract methods. The strongest ability to protect PC12 cells from damage was also present in ASE extract, as evidenced by decreasing lactate dehydrogenase and malondialdehyde levels, elevating superoxide dismutase and glutathioneperoxidase activities. Compositional analysis indicated that the extremely high crocetin level in ASE extract (1.30 μg/mg) may offer great potential. Our results indicated that ASE is a proper extraction method that could offer great potential for finding the neuroprotective ability of Gardeniae fructus for the treatment of AD.
Collapse
Affiliation(s)
- Yiling Fan
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Xueying Li
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Lan Ding
- Agricultural and Forestry Technology Extension Center of Lin’an, Hangzhou 311300, China;
| | - Weiying Zhou
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Guangzhi Xu
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Yan Wang
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Youzuo Zhang
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Qinxue Ni
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: ; Tel.: +86-15858191911
| |
Collapse
|
12
|
Wu J, Wang X, He Y, Li J, Ma K, Zhang Y, Li H, Yin C, Zhang Y. Stability evaluation of gardenia yellow pigment in presence of different phenolic compounds. Food Chem 2021; 373:131441. [PMID: 34715628 DOI: 10.1016/j.foodchem.2021.131441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
Gardenia yellow pigment (GYP) may undergo chemical degradation under different conditions resulting in color fading. This study investigated the effects of different phenolic compounds (caffeic acid, rosmarinic acid, tannic acid, epicatechin, chlorogenic acid, epigallocatechin, and epigallocatechin gallate) on the physical and chemical stability of GYP under light and different temperatures. Furthermore, food models with GYP/phenolic compounds were simulated to evaluate the GYP stability under different cooking methods. The addition of phenolic compounds, especially tannic acid, epigallocatechin gallate, epigallocatechin, and rosmarinic acid, significantly improved the GYP stability during light and thermal treatments. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirmed that the formation of hydrogen bonds between GYP and selected phenolic compounds (tannic acid, epigallocatechin gallate, epigallocatechin, and rosmarinic acid), which may lead to the enhancement of GYP stability. Moreover, these selected phenolic compounds provided potent protective effects on GYP under different cooking methods.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Xiaona Wang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Yu He
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Jieying Li
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Keke Ma
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Yifan Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Haoran Li
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Caiping Yin
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Yinglao Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China.
| |
Collapse
|
13
|
Li C, Gao X, Gao X, Lv J, Bian X, Lv J, Sun J, Luo G, Zhang H. Effects of medicine food Fructus Gardeniae on liver and kidney functions after oral administration to rats for 12 weeks. J Food Biochem 2021; 45:e13752. [PMID: 34086366 DOI: 10.1111/jfbc.13752] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 01/09/2023]
Abstract
Fructus Gardeniae (FG) is medicine food widely used for the treatment and prevention of various diseases. However, in recent years, research has suggested that high doses of FG can cause hepatotoxicity and nephrotoxicity. To assess this potential toxicity in more depth, this study investigated the effects of decocted FG and two of its bioactive constituents (geniposide and genipin) on liver and kidney function in rats. Rats were intragastrically administered FG (330 mg/kg body weight), geniposide (50 mg/kg body weight), or genipin (50 mg/kg body weight) for 12 weeks. Changes in body weight, liver and kidney indices, biochemical indices, and inflammatory factors were monitored. In addition, pathological sections were assessed and the expression of caspase-3, NF-κBp65, COX-2, and iNOS was detected by immunohistochemistry and Western blot. It was found that the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, and urea nitrogen increased following administration of FG, geniposide, and genipin. Furthermore, the activities of superoxide dismutase and reduced glutathione decreased following treatment, while malondialdehyde levels increased. Pathological and immunohistochemical evaluations further confirmed that FG and its constituents may cause damage to the liver and kidneys. The mechanism study revealed that the protein level of inflammatory pathway increased and further promoted apoptosis, suggesting that it should not be taken orally for extended periods of time. PRACTICAL APPLICATIONS: Chinese medicine and food safety have always been public health concerns. Fructus Gardeniae (FG) is a plant with a dual-purpose as it is used as both a medicine and food. Medicinally, it has the effects of heat-clearing and detoxification. However, its adverse effects and related mechanisms are not clear, and this has potential safety implications. In this study, rats were treated with FG for 12 weeks and found that the long-term administration of FG or high dosing can lead to damage to liver and kidney function. Therefore, close attention must be paid to the dosage of FG in order to achieve a therapeutic effect and avoid adverse reactions. Thus, this study lays a foundation for the safety evaluation and clinical application of FG.
Collapse
Affiliation(s)
- Chunnan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xu Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaochen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuefeng Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinpeng Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangming Luo
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Wu J, Zhang J, Yu X, Shu Y, Zhang S, Zhang Y. Extraction optimization by using response surface methodology and purification of yellow pigment from Gardenia jasminoides var. radicans Makikno. Food Sci Nutr 2021; 9:822-832. [PMID: 33598166 PMCID: PMC7866593 DOI: 10.1002/fsn3.2046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022] Open
Abstract
Gardenia jasminoides var. radicans Makikno contains rich gardenia yellow pigment (GYP). In this study, the process of pigment extraction was optimized based on a Box-Behnken design (BBD) and response surface methodology (RSM). The absorbance and antioxidant activity (AA) were considered as responses. The result showed that the optimal extraction conditions were ethanol concentration 65.10%, liquid/solid ratio 10:1 ml/g, extraction time 59.85 min, and extraction temperature 60.04℃ for the maximal response values of absorbance (0.79) and AA (91.30%), respectively. Crude GYP was purified by the 13 different resins. The result showed that BJ-7514 was suitable for purifying GYP with the absorption ratio of 95.4%. Moreover, the 80% of ethanol eluent is applicable on the BJ-7514 with the desorption ratio of 91.93%. The major component of GYP (Crocin-3) was isolated and identified from the purified GYP.
Collapse
Affiliation(s)
- Jun Wu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Jiangtao Zhang
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Xin Yu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Yue Shu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Siyu Zhang
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Yinglao Zhang
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| |
Collapse
|