1
|
Tantai S, Xu J, Ma W, Liu X, Li L, Wang Y. Melatonin/P34HB Films for Active Packaging: Optimizing Flavor Preservation and Quality of Honey Peaches During Storage. Foods 2025; 14:869. [PMID: 40077571 PMCID: PMC11899634 DOI: 10.3390/foods14050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
To address unpredictable flavor changes in postharvest peaches during storage, this study investigated the use of bioactive packaging with melatonin-infused P34HB films. Films with melatonin concentrations of 0%, 1%, 3%, and 5% were prepared using the extrusion casting method and applied to peach storage at room temperature. Comprehensive film properties were characterized, showing that melatonin minimally impacted the films' mechanical properties, including gas and water vapor permeability, but significantly increased film haze. Using GC-IMS, 30 organic compounds affecting peach flavor were effectively identified, including 8 aldehydes, 5 alcohols, 4 ketones, 12 esters, 1 pyrazine, 1 olefin, and 1 furan. Unpackaged, naturally ripening peaches served as a reference for assessing flavor and quality changes across various packaging groups during storage. The results indicated that the appearance of off-flavor organic compounds, such as ethanol produced by peach anaerobic respiration and complex esters, was the primary cause of flavor deterioration. The P34HB film with 1% melatonin most effectively preserved the original flavor and juiciness of peaches, highlighting its potential as an active packaging solution for fruit.
Collapse
Affiliation(s)
- Sunxiao Tantai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Jiayi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Xiaofang Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Yifen Wang
- Biosystems Engineering Department, Auburn University, Auburn, AL 36849-5417, USA
| |
Collapse
|
2
|
Ren H, Li S, Ding K, Wang Y, Zhan Q, Zheng Y, Wu Z, Jin P. Dual structure on-demand release chitosan-based coating film for peach preservation. Int J Biol Macromol 2024; 282:136898. [PMID: 39490850 DOI: 10.1016/j.ijbiomac.2024.136898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
After harvest, fruits and vegetables go through the stages of storage, transportation and sales, and how to regulate the role of preservative in different stages is an urgent problem to be solved. Herein, chitosan-stearic acid is synthesized, then interacting with trans-2-hexenal (E2H) to prepare nanoclusters. Subsequently, the temperature-sensitive liposomes were designed to encase E2H by using the special temperature-responsive open-chain phospholipids, and then combined with chitosan to obtain chitosan-based coating film for peach preservation. The thermosensitive liposomes were uniformly distributed, highly dispersed and spherical, which has excellent temperature response characteristics, and the release of active substances could be regulated in the temperature range of 10 °C-40 °C to achieve the effect of on-demand release. In addition, thermosensitive liposomes also have excellent antioxidant and antibacterial activities. Therefore, the obtained chitosan-based coating could maintain the freshness of peaches, improve the quality and extend the storage period of peaches. The edible chitosan coating and active preservative prepared in this study have potential application value in responsive intelligent active packaging.
Collapse
Affiliation(s)
- Hongyi Ren
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengzi Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Keying Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Liu G, Chen Q, Gou M, Bi J. Formation of key aroma-active and off-flavor components in concentrated peach puree. Food Chem 2024; 439:138105. [PMID: 38043287 DOI: 10.1016/j.foodchem.2023.138105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Non-volatiles offer some insight into the formation of aroma-active components in peach puree (PP), but more depth investigation is still needed. Formation pathways of key aroma-active and off-flavor components in PP during thermal concentration (PP + C) and sterilization (PP + C + S) are unclear. Therefore, GC-O-MS combined with UPLC-MS/MS was used to identify the volatile and nonvolatile components and their formation pathways. Among the 36 aroma-active compounds, the contents of γ-decalactone, hexyl acetate, leaf acetate, hexanal, and 1-hexanol (odor activity value ≥ 1) decreased by 46 %, 100 %, 100 %, 92 %, and 100 % between PP and PP + C + S, causing the weakening of "green" and "fruity" attributes. Off-flavor components including 1-octen-3-one, isobutyric acid, isothiazole, and isovaleric acid were identified during thermal processing. 1-Octen-3-one content increased by 75 % from PP to PP + C + S through linolenic acid metabolism, which contributed to "cooked"; the formation of isobutyric and isovaleric acids, isothiazole, resulted in the enhancement of "sour/rancid" via serine and leucine metabolism.
Collapse
Affiliation(s)
- Gege Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China.
| | - Min Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, 100193 Beijing, China.
| |
Collapse
|
4
|
Gui H, Ma W, Cao Y, Chao H, Fan M, Dong Q, Li L. Sustained release, antimicrobial, and antioxidant properties of modified porous starch-based biodegradable polylactic acid/polybutylene adipate-co-terephthalate/thermoplastic starch active packaging film. Int J Biol Macromol 2024; 267:131657. [PMID: 38636753 DOI: 10.1016/j.ijbiomac.2024.131657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Porous starch (PS) is a modified starch with commendable biodegradable and adsorption properties. PS exhibits poor thermal stability, and the aqueous solution casting method is conventionally used for PS-activated packaging films. This approach limits the large-scale production of films and makes it difficult to play the functions of porous pores. In this study, PS was prepared by enzymatic digestion combined with freeze-drying and adsorbed with clove essential oil (CEO) after cross-linking with sodium trimetaphosphate. Subsequently, a novel PLA/PBAT/TPS/ScPS-CEO sustained release active packaging film was prepared by blending PLA, PBAT, TPS, and ScPS-CEO using industrial melt extrusion. Compared with PS, ScPS effectively slowed down the release of CEO from the film, with the maximum release of active substances at equilibrium increasing by approximately 100 %, which significantly enhanced the persistence of the antimicrobial and antioxidant properties. The polylactic acid/poly (butylene adipate-co-terephthalate)/thermoplastic starch/trimetaphosphate-crosslinked porous starch incorporated with clove essential oil (PLA/PBAT/TPS/ScPS-CEO) film could reduce the proteolysis, lipid oxidation and microbial growth of salmon, extending its shelf life by approximately 100 % at 4 °C. These results indicate that the ScPS can be used in fresh packaging material in practical applications.
Collapse
Affiliation(s)
- Hang Gui
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yichen Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hui Chao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
5
|
Liu R, Xie R, Zhu X, Huang C. Preparation and application of chlorine dioxide gas slow-release fresh-keeping card based on polylactic acid. Int J Biol Macromol 2024; 263:130273. [PMID: 38368990 DOI: 10.1016/j.ijbiomac.2024.130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Blueberries are highly perishable after harvest, so a simple preservation method is needed to extend the shelf life of blueberries. In this study, sodium chlorite-loaded sepiolite was added to polylactide solution with tartaric acid to create a ClO2 gas slow-release fresh-keeping card. The fresh-keeping card absorbs moisture in the air, which causes tartaric acid to enter the sepiolite and react with sodium chlorite to release ClO2 gas slowly. The study investigated the impact of fresh-keeping cards on the quality attributes of blueberries, including appearance, decay rate, ethylene release rate, respiration rate, hardness, ascorbic acid content, and anthocyanin concentration. Low-field nuclear magnetic technology was used to analyze the water state and distribution of blueberries during storage. The results showed that the ClO2 gas released by the fresh-keeping card can destroy ethylene in the air and kill microorganisms in blueberries, thereby delaying fruit decay.
Collapse
Affiliation(s)
- Ren Liu
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Ruibang Xie
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Xuhao Zhu
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, China.
| |
Collapse
|
6
|
Jiang X, Feng L, Han J, Li L, Wang J, Liu H, Kitazawa H, Wang X. Preparation of hydroxypropyl methylcellulose/pueraria-based modified atmosphere film and its influence on delaying the senescent process of postharvest Agaricus bisporus. Int J Biol Macromol 2024; 261:129611. [PMID: 38266840 DOI: 10.1016/j.ijbiomac.2024.129611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Based on the key factor of spontaneous modified atmosphere packaging (MAP)-gas permeability, a spontaneous MAP film was created for the preservation of Agaricus bisporus by delaying the senescence of white mushrooms. Compared with other mixed films, hydroxypropyl methylcellulose (HPMC)/pueraria (P)-2 showed better mechanical properties, barrier properties and thermal stability energy. Applying the HPMC/P-2 film for preserving white mushrooms can spontaneously adjust the internal gas environment. Moreover, the O2 concentration in the package remained stable at 1-2 %, and the CO2 concentration was between 8 % and 14 %. The film can effectively reduce the respiration rate of white mushrooms, inhibit enzymatic browning, maintain their good color and texture, and delay their aging. In conclusion, the HPMC/P-2 film can be used not only for fruit and vegetables preservation but also provide theoretical basis for sustainable food packaging.
Collapse
Affiliation(s)
- Xin Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Lei Feng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jiali Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Jia Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Haipeng Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Hiroaki Kitazawa
- Department of Food and Nutrition, Japan Women's University, Tokyo 112-8681, Japan
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
7
|
Zheng Y, Duan L, Li J, Zhang P, Jiang Y, Yang X, Li X, Jia X. Photocatalytic titanium dioxide reduces postharvest decay of nectarine fruit packaged in different materials through modulating central carbon and energy metabolisms. Food Chem 2024; 433:137357. [PMID: 37688821 DOI: 10.1016/j.foodchem.2023.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
The capacity of titanium dioxide (TiO2) photocatalysis photocatalytic reactor to prevent and control pathogen infection in nectarine fruit packed in laminated nylon/LDPE, low density polyethylene and microperforated LDPE films was evaluated. Results showed that TiO2 combined with microperforated LDPE packaging (TPL) exhibited superior inhibition of microbial growth, reducing total viable counts by 4.18 log CFU g-1 and yeast and mold counts by 3.20 log CFU g-1, compared to microperforated LDPE packaging alone. TiO2 photocatalysis primed the defense systems in nectarine fruit packed in microperforated LDPE, improving the activity of defense-related enzymes. Metabolomics analysis indicated that l-aspartate, oxaloacetate, and succinic acid involved in central carbon metabolism including the glycolysis and tricarboxylic acid cycle pathways, were significantly upregulated by TPL. TiO2 increased the activity of energy metabolism-related enzymes, adenosine triphosphate, adenosine diphosphate, and energy charge levels to provide adequate energy, thus reducing fruit decay.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lihua Duan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
| | - Peng Zhang
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
| | - Yunbin Jiang
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China.
| | - Xiangzheng Yang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250200, China.
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyu Jia
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China; Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China.
| |
Collapse
|
8
|
Nieto G, Martínez-Zamora L, Peñalver R, Marín-Iniesta F, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023; 13:47. [PMID: 38201075 PMCID: PMC10778451 DOI: 10.3390/foods13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
According to the Codex Alimentarius, a food additive is any substance that is incorporated into a food solely for technological or organoleptic purposes during the production of that food. Food additives can be of synthetic or natural origin. Several scientific evidence (in vitro studies and epidemiological studies like the controversial Southampton study published in 2007) have pointed out that several synthetic additives may lead to health issues for consumers. In that sense, the actual consumer searches for "Clean Label" foods with ingredient lists clean of coded additives, which are rejected by the actual consumer, highlighting the need to distinguish synthetic and natural codded additives from the ingredient lists. However, this natural approach must focus on an integrated vision of the replacement of chemical substances from the food ingredients, food contact materials (packaging), and their application on the final product. Hence, natural plant alternatives are hereby presented, analyzing their potential success in replacing common synthetic emulsifiers, colorants, flavorings, inhibitors of quality-degrading enzymes, antimicrobials, and antioxidants. In addition, the need for a complete absence of chemical additive migration to the food is approached through the use of plant-origin bioactive compounds (e.g., plant essential oils) incorporated in active packaging.
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Lorena Martínez-Zamora
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Fulgencio Marín-Iniesta
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Amaury Taboada-Rodríguez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
- Agrosingularity, Calle Pintor Aurelio Pérez 12, 30006 Murcia, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| |
Collapse
|
9
|
Kumari SVG, Pakshirajan K, Pugazhenthi G. Facile fabrication and characterization of novel antimicrobial and antioxidant poly (3-hydroxybutyrate)/essential oil composites for potential use in active food packaging applications. Int J Biol Macromol 2023; 252:126566. [PMID: 37648135 DOI: 10.1016/j.ijbiomac.2023.126566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Poly (3-hydroxybutyrate) (PHB) is a bio-based biodegradable biopolymer with excellent potential to substitute petrochemical-based food packaging materials. Nevertheless, low elongation at break is one of the limiting factors for its commercial-scale application in the packaging field. Microbial contamination and lipid oxidation are the two main causes of food spoilage and pose huge challenges to the food industry. In this regard, essential oils are bioactive compounds that, in addition to providing antimicrobial and antioxidant properties, can improve the flexibility of biopolymers. Therefore, to overcome the aforementioned challenges, the current study aimed to fabricate novel PHB composite films loaded with essential oils, viz. grapeseed oil (GS), bergamot oil (BG), and ginger oil (GG), by a simple solution casting technique. To evaluate the potential of prepared PHB/essential oil composites for food packaging applications, extensive characterizations of their mechanical, structural, barrier, optical, and thermal properties were carried out. Interestingly, PHB/essential oil composites demonstrated good UV-blocking properties without affecting its transparency. PHB films loaded with 5 wt% GS showed a 30-fold enhancement in flexibility compared to pristine PHB. The DPPH radical scavenging activities of PHB/5GS, PHB/5BG, and PHB/5GG films are 53.17 ± 4.76, 50.70 ± 3.92 and 86.38 ± 2.73 %, respectively. The antibacterial activities of PHB/5GS, PHB/5BG, and PHB/5GG films against the model bacterium E. coli are 19.72 ± 0.97, 12.62 ± 2.23 and 29.98 ± 2.15 %, respectively, whereas, for S. aureus, the values are 61.56 ± 3.39, 30.28 ± 0.92 and 70.97 ± 0.26 %, respectively. Moreover, the overall migration values of the composite films in simulants representing hydrophilic, acidic, and lipophilic foods did not exceed the prescribed overall migration limit (10 mg/dm2).
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
10
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
11
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Wu Y, Xiao K, zhu L, Luo Q. Preparation and application of equilibrium modified atmosphere packaging membranes with polylactic acid and polymers of intrinsic microporosity. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Guo Y, Chen X, Gong P, Long H, Wang J, Deng Z, Wang R, Han A, Qi Z, Yao W, Yang W, Wang J, Li N, Chen F. Characterization of an active film prepared with Lentinus edodes (shiitake) polysaccharide and its effect on post-harvest quality and storage of shiitake. Int J Biol Macromol 2023; 238:123973. [PMID: 36921827 DOI: 10.1016/j.ijbiomac.2023.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
The aim of this study was to prepare a film based on shiitake (Lentinus edodes) stalk polysaccharides (LEP) for mushroom preservation. The effects of different LEP concentrations on physical, mechanical, antioxidant, and antimicrobial properties of the prepared film were evaluated. Using scanning electron microscopy, it was revealed that the addition of 1.5 % LEP resulted in homogeneous distribution in the prepared film, as well as greatly improved its antimicrobial properties. Moreover, LEP film resulted in superior mushroom preservation by regulating enzyme activities related to mushroom browning and softening, thereby decaying these processes. In addition, the prepared film maintained mushroom quality by reducing the accumulation of H2O2 and activating the regulatory system against oxidative stress. Collectively, the findings of the present study highlight the potential benefits of LEP films as a strategy to improve mushroom quality and prevent post-harvest spoilage, hence constituting a novel prospect for the development of shiitake by-products.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Aoyang Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
14
|
Rozman AS, Hashim N, Maringgal B, Abdan K, Sabarudin A. Recent advances in active agent-filled wrapping film for preserving and enhancing the quality of fresh produce. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
16
|
Chen L, Shi Q, Dong Q, Du Y, Peng Z, Zeng Q, Lin Z, Qiu J, Zhao Y, Wang JJ. Covalent Grafting of 5-Aminolevulinic Acid onto Polylactic Acid Films and Their Photodynamic Potency in Preserving Salmon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:905-919. [PMID: 36548110 DOI: 10.1021/acs.jafc.2c08340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel photodynamic inactivation (PDI)-mediated antimicrobial film of polylactic acid/5-aminolevulinic acid (PLA/ALA) was successfully fabricated by a covalent grafting method using low-temperature plasma. The chemical structure, surface morphology, hydrophilic ability, and mechanical and barrier properties of the films were characterized, and their antibacterial, anti-biofilm potency and preservation effects on ready-to-eat salmon were investigated during storage. Results showed that the amino group of ALA was covalently grafted with the carboxyl group on the surface of PLA after the plasma treatment, with the highest grafting rate reaching ∼50%. The fabricated PLA/ALA films displayed an enhanced barrier ability against water vapor and oxygen. Under blue light-emitting diode illumination, the PLA/ALA films generated massive reactive oxygen species from the endogenous porphyrins in cells induced by ALA and then fatally destroyed the cell wall of planktonic cells and the architectural structures of sessile biofilms of the pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) and spoilage bacterium (Shewanella putrefaciens). More importantly, the PDI-mediated PLA/ALA films potently inhibited 99.9% native bacteria on ready-to-eat salmon and significantly suppressed the changes of its drip loss, pH, and lipid oxidation (MDA) during storage, and on this basis, the shelf life of salmon was extended by 4 days compared with that of the commercial polyethylene film. Therefore, the PDI-mediated PLA/ALA films are valid in inactivating harmful bacterial and preserving the quality of seafood.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Qiandai Shi
- School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Yu Du
- Data Information Center, Polar Research Institute of China, Shanghai200136, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Zihao Lin
- Guang Zhou Institute for Food Inspection, Guangzhou511410, China
| | - Jieer Qiu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| |
Collapse
|
17
|
Zheng Y, Jia X, Zhao Z, Ran Y, Du M, Ji H, Pan Y, Li Z, Ma X, Liu Y, Duan L, Li X. Innovative natural antimicrobial natamycin incorporated titanium dioxide (nano-TiO2)/ poly (butylene adipate-co-terephthalate) (PBAT) /poly (lactic acid) (PLA) biodegradable active film (NTP@PLA) and application in grape preservation. Food Chem 2023; 400:134100. [DOI: 10.1016/j.foodchem.2022.134100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
18
|
Zhou C, Li C, Cui H, Lin L. Metabolomics insights into the potential of encapsulated essential oils as multifunctional food additives. Crit Rev Food Sci Nutr 2022; 64:5143-5160. [PMID: 36454059 DOI: 10.1080/10408398.2022.2151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Growing consumer concern about foodborne disease outbreaks and health risks associated with chemical additives has propelled the usage of essential oils (EOs) as novel food additives, but are limited by instability. In this regard, a series of EOs nano/micro-capsules have been widely used to enhance their stability and improve food quality. However, classical food quality assessment methods are insufficient to fully characterize the effects of encapsulated EOs on food properties, including physical, biochemical, organoleptic, and microbial changes. Recently, the rapid development of high-throughput sequencing is accelerating the application of metabolomics in food safety and quality analysis. This review seeks to present the most recent achievements in the application of non-targeted metabolomics to identify and quantify the overall metabolite profile associated with food quality, which can guide the development of emerging food preservation technologies. The scientific findings confirm that metabolomics opens up exciting prospects for biomarker screening in food preservation and contributes to an in-depth understanding of the mechanisms of action (MoA) of EOs. Future research should focus on constructing food quality assessment criteria based on multi-omics technologies, which will drive the standardization and commercialization of EOs for food industry applications.
Collapse
Affiliation(s)
- Changqian Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
19
|
Cao Z, Zhou D, Ge X, Luo Y, Su J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J Food Biochem 2022; 46:e14513. [PMID: 36385402 DOI: 10.1111/jfbc.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Fruits are highly susceptible to postharvest losses induced majorly by postharvest diseases. Peach are favored by consumers because of their high nutritional value and delicious taste. However, it was easy to be affected by fungal infection. The current effective method to control postharvest diseases of fruits is to use chemical fungicides, but these chemicals may cause adverse effects on human health and the residual was potentially harmful to nature and the environment. So, it is especially important to develop safe, non-toxic, and highly effective strategies for the preservation of the fruits. Essential oil, as a class of the natural bacterial inhibitor, has been proven to exhibit strong antibacterial activity, low toxicity, environmental friendliness, and induce fruit resistance to microorganism, which could be recognized as one of the alternatives to chemical fungicides. This paper reviews the research progress of essential oils (Eos) in the storage and preservation of fruits, especially the application in peach, as well as the application in active packaging such as edible coatings, microcapsules, and electrospinning loading. Electrospinning can prepare a variety of nanofibers from different viscoelastic polymer solutions, and has broad application prospects. The paper especially summarizes the application of the new Eos technology on peach. The essential oil with thymol, eugenol, and carvacrol as the main components has a better inhibitory effect on the postharvest disease of peaches, and can be further applied. PRACTICAL APPLICATIONS: As an environmentally friendly natural antibacterial agent, essential oil can be used as a substitute for chemical preservatives to keep fruits fresh. This paper summarizes the different preservation methods of essential oils for fruits, and especially summarizes the different preservation methods of essential oils for peaches after harvesting, as well as their inhibitory effects on pathogenic fungi. It could provide ideas for preservation of fruits and vegetables by essential oils.
Collapse
Affiliation(s)
- Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yali Luo
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Siew ZZ, Chan EWC, Wong CW. Anti‐browning active packaging: A review on delivery mechanism, mode of action, and compatibility with biodegradable polymers. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Zhou Siew
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences UCSI University Cheras Kuala Lumpur Malaysia
| |
Collapse
|
21
|
Zhang Y, Guo M, Mei J, Xie J. Effects of Different Postharvest Precooling Treatments on Cold-Storage Quality of Yellow Peach (Amygdalus persica). PLANTS 2022; 11:plants11182334. [PMID: 36145734 PMCID: PMC9504317 DOI: 10.3390/plants11182334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
The rapid precooling of yellow peaches after harvest can minimize the tissue damage and quality deterioration of yellow peaches during postharvest storage. Refrigerator precooling (RPC), cold-water precooling (CWPC), strong-wind precooling (SWPC), fluidized-ice precooling (FIPC), and vacuum precooling (VPC) were used to precool the fresh yellow peaches. The yellow peaches after different precooling treatments were stored at 4 °C for 15 days. CWPC and RPC can effectively retard the respiration and ethylene peak production, reduce the quality loss of yellow peaches during postharvest storage, maintain the color and fruit hardness of yellow peaches, inhibit browning, maintain the contents of soluble solids, titratable acids, and ascorbic acid, increase the activity contents of superoxide dismutase (SOD) and peroxidase (POD), inhibit the decrease in the phenylalanine ammonia-lyase (PAL) activity, and delay the increase in the polyphenol oxidase (PPO) activity. The shelf life of yellow peaches with cold-water precooling and refrigerator precooling reached 15 days, which was 6 days longer than those of the VPC- and FIPC-treated samples, and 3 days longer than that of the SWPC-treated samples. Therefore, CWPC and RPC were effective methods to prolong the storage period and maintain the quality of yellow peaches during postharvest storage.
Collapse
Affiliation(s)
- Yuchen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Meijie Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| |
Collapse
|
22
|
Chen J, Li Y, Wang Y, Yakubu S, Tang H, Li L. Active polylactic acid/tilapia fish gelatin-sodium alginate bilayer films: Application in preservation of Japanese sea bass (Lateolabrax japonicus). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Li S, Fan M, Deng S, Tao N. Characterization and Application in Packaging Grease of Gelatin-Sodium Alginate Edible Films Cross-Linked by Pullulan. Polymers (Basel) 2022; 14:3199. [PMID: 35956713 PMCID: PMC9371049 DOI: 10.3390/polym14153199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Gelatin-sodium alginate-based edible films cross-linked with pullulan were prepared using the solution casting method. FTIR spectroscopy demonstrated the existence of hydrogen bonding interactions between the components, and scanning electron microscopy observed the component of the films, revealing electrostatic interactions and thus explaining the differences in the properties of the blend films. The best mechanical properties and oxygen barrier occurred at a 1:1 percentage of pullulan to gelatin (GP11) with sodium alginate dosing for modification. Furthermore, GP11 demonstrated the best thermodynamic properties by DSC analysis, the highest UV barrier (94.13%) and the best oxidation resistance in DPPH tests. The results of storage experiments using modified edible films encapsulated in fresh fish liver oil showed that GP11 retarded grease oxidation by inhibiting the rise in peroxide and anisidine values, while inappropriate amounts of pullulan had a pro-oxidative effect on grease. The correlation between oil oxidation and material properties was investigated, and water solubility and apparent color characteristics were also assessed.
Collapse
Affiliation(s)
- Shuo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
24
|
Hu J, Dong T, Bu H, Sun T, Zhang J, Xu C, Yun X. Construction of gas permeable channel in poly(l-lactic acid) membrane and its control of the micro atmosphere in okra packaging. Int J Biol Macromol 2022; 219:519-529. [DOI: 10.1016/j.ijbiomac.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
|
25
|
Multilayer gelatin/myofibrillar films containing clove essential oil: Properties, protein-phenolic interactions, and migration of active compounds. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Lara G, Takahashi C, Nagaya M, Uemura K. Improving the shelf life stability of vacuum‐packed fresh‐cut peaches (
Prunus persica
L.) by radio frequency heating in water. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grace Lara
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Chieko Takahashi
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Miku Nagaya
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Kunihiko Uemura
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| |
Collapse
|
27
|
Almeida-Couto JMFDE, Ressutte JB, Cardozo-Filho L, Cabral VF. Current extraction methods and potential use of essential oils for quality and safety assurance of foods. AN ACAD BRAS CIENC 2022; 94:e20191270. [PMID: 35544845 DOI: 10.1590/0001-3765202220191270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Essential oils (EOs) or vegetable oils have become the focus of several studies because of their interesting bioactive properties. Their application has been successfully explored in active packaging, edible coatings, and as natural flavoring to extend the shelf life of various types of food products. In addition, alternative methods of extraction of EOs (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction and supercritical fluid extraction) have been shown to be more attractive than traditional methods since they present better efficiency, shorter extraction times and do not use toxic solvents. This review paper provides a concise and critical view of extraction methods of EOs and their application in food products. The researchers involved in the studies approached in this review were motivated mainly by concern about food quality. Here, we recognize and discuss the major advances and technologies recently used to enable shelf life extension of food products.
Collapse
Affiliation(s)
- Jéssica M F DE Almeida-Couto
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Jéssica B Ressutte
- Universidade Estadual de Londrina/UEL, Departamento de Ciência e Tecnologia de Alimentos/UEL, Rodovia Celso Garcia Cid, 86057970 Londrina, PR, Brazil
| | - Lúcio Cardozo-Filho
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Vladimir F Cabral
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia de Alimentos, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
28
|
Zheng H, Tang H, Yang C, Chen J, Wang L, Dong Q, Shi W, Li L, Liu Y. Evaluation of the slow-release polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil on the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets. Food Chem 2022; 385:132693. [PMID: 35303650 DOI: 10.1016/j.foodchem.2022.132693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
Active packaging is an innovative and effective way to extend the shelf life of food, but few studies have focused on the effect of its active ingredients on food flavor. This study aimed to develop slow-release polylactic acid/polyhydroxyalkanoates (PLA/PHA) active packaging containing oregano essential oil (OEO) and investigate the effect of active composite packaging on the flavor and quality of pufferfish fillets. The plasticizing effect of OEO increased the elongation at break (EAB) of the films from 23.36% to 65.80%. The adsorption of montmorillonite (MMT) reduces the loss of OEO during processing. The amount of active substance (carvacrol) released from PLA/PHA/OEO/MMT film to pufferfish was 9.70 mg/kg. The pufferfish fillets packed in PLA/PHA/OEO/MMT film showed the slightest difference on the 8th day from the beginning of storage. The slow-release composite films could extend the shelf life of pufferfish fillets by 2-3 days at 4 °C ± 1 °C.
Collapse
Affiliation(s)
- Hui Zheng
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Haibing Tang
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Chunxiang Yang
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Jingwen Chen
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Li Wang
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Qingfeng Dong
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Wenzheng Shi
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China
| | - Li Li
- Collage of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, PR China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
29
|
Non-migrating active antibacterial packaging and its application in grass carp fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Ekrami A, Ghadermazi M, Ekrami M, Hosseini MA, Emam-Djomeh Z, Hamidi-Moghadam R. Development and evaluation of Zhumeria majdae essential oil-loaded nanoliposome against multidrug-resistant clinical pathogens causing nosocomial infection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Zhai X, Zhou S, Zhang R, Wang W, Hou H. Antimicrobial starch/poly(butylene adipate-co-terephthalate) nanocomposite films loaded with a combination of silver and zinc oxide nanoparticles for food packaging. Int J Biol Macromol 2022; 206:298-305. [PMID: 35240209 DOI: 10.1016/j.ijbiomac.2022.02.158] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022]
Abstract
Antimicrobial starch/PBAT films with the combination of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were prepared by extrusion blowing. SEM demonstrated the relatively homogeneous distribution of nanoparticles on the fracture surfaces of the nanocomposite films. The incorporation of nanoparticles improved mechanical and barrier properties of the film. The UV-vis spectroscopy revealed that the SP-ZnO(1) film had the highest UV-absorbance. The inhibition effects of the nanocomposite films against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were observed. The antimicrobial efficiency of SP-Ag(0.8)-ZnO(0.2) and SP-Ag(0.6)-ZnO(0.4) films reached more than 95% within 3 h of contact. The combination of AgNPs and ZnONPs into starch/PBAT blends showed synergistic effects on improving material properties and antimicrobial efficiency of the films. Furthermore, preliminary packaging studies on peaches and nectarines revealed that the antimicrobial films inhibited spoilage of fresh produce and extended their shelf life compared with commercial LDPE packaging films.
Collapse
Affiliation(s)
- Xiaosong Zhai
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Shengxue Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Rui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
32
|
Perumal AB, Huang L, Nambiar RB, He Y, Li X, Sellamuthu PS. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem 2021; 375:131810. [PMID: 34959137 DOI: 10.1016/j.foodchem.2021.131810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/16/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023]
Abstract
Fruits and vegetables are highly perishable in nature. Several factors could affect the quality and shelf life of fruits and vegetables. Packaging materials (usually made up of polymers, proteins, lipids, polysaccharides, etc.,) are incorporated with essential oil (EO) which is high in antimicrobial and antioxidant compounds that can enhance the shelf life of fruits and vegetables without affecting their quality. However, the use of EO for postharvest preservation can alter the organoleptic properties of fresh produce. Exploiting synergistic interactions between several EOs, encapsulation of EO, or combining EO with non-thermal techniques such as irradiation, UV-C, cold plasma, ultrasound, etc., may help in preventing the spoilage of food products at lower concentrations without altering their organoleptic properties. This review aims to discuss the overview and current scenario of packaging film with EO for the preservation of fruit and vegetables. We have also discussed the spoilage mechanism of fruits and vegetables, mode of action of EOs, and the effect of EO with packaging film on antimicrobial and sensory properties of fruits and vegetables.
Collapse
Affiliation(s)
- Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Lingxia Huang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Reshma B Nambiar
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Periyar Selvam Sellamuthu
- Department of Food Process Engineering, Postharvest Research Lab, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamilnadu, India.
| |
Collapse
|
33
|
Wang D, Sun Z, Sun J, Liu F, Du L, Wang D. Preparation and characterization of polylactic acid nanofiber films loading Perilla essential oil for antibacterial packaging of chilled chicken. Int J Biol Macromol 2021; 192:379-388. [PMID: 34619277 DOI: 10.1016/j.ijbiomac.2021.09.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023]
Abstract
Biodegradable and eco-friendly food packaging materials have attracted attention. Novel blending films were prepared with polylactic acid (PLA) and Perilla essential oil (PEsO). The morphological features of the nanofibers were modulated by adjusting process parameters (e.g. PLA solution concentration, applied voltage and ultrasonic power). The optimal spinning concentrations, applied voltages and ultrasonic power of the PLA solutions were set at 15% (m/v), 20 kV and 640 W, respectively. Compared with the PLA films, the addition of PEsO increased the diameter of the nanofibers and solvent resistance and reduced the swelling rate of the PLA/PEsO films. The breakage elongation and the gas barrier properties significantly improved when 2% (w/w) PEsO was used. Fourier infrared spectroscopy, X-ray diffractometer, thermogravimetry and differential scanning were used in analyzing the potential interactions of the film matrices. The PLA/PEsO films had good biocompatibility and antibacterial and antioxidant properties. The PLA/PEsO (1:0.02) film loaded with 2% PEsO extended the shelf life of chilled chicken to 12 days, as indicated by the measured total volatile basic nitrogen (TVB-N), total viable count and pH value. Therefore, PLA/PEsO films have great potential as fresh-keeping packaging.
Collapse
Affiliation(s)
- Debao Wang
- Jiangsu Key Laboratory for Food Quality, Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality, Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Jinyue Sun
- Jiangsu Key Laboratory for Food Quality, Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality, Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality, Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
34
|
Chawla R, Sivakumar S, Kaur H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Chen J, Li Y, Shi W, Zheng H, Wang L, Li L. Release of Cinnamaldehyde and Thymol from PLA/Tilapia Fish Gelatin-Sodium Alginate Bilayer Films to Liquid and Solid Food Simulants, and Japanese Sea Bass: A Comparative Study. Molecules 2021; 26:7140. [PMID: 34885735 PMCID: PMC8659066 DOI: 10.3390/molecules26237140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in β-cyclodextrin (β-CD) to prepare the active β-CD inclusion complex (β-CD-CI/β-CD-Ty). The tilapia fish gelatin-sodium alginate composite (FGSA) containing β-CD-CI or β-CD-Ty was coated on the surface of PLA film to obtain the active bilayer film. Different food simulants including liquid food simulants (water, 3% acetic acid, 10% ethanol, and 95% ethanol), solid dry food simulant (modified polyphenylene oxide (Tenax TA)), and the real food (Japanese sea bass) were selected to investigate the release behaviors of bilayer films into different food matrixes. The results showed that the prepared β-CD inclusion complexes distributed evenly in the cross-linking structure of FGSA and improved the thickness and water contact angle of the bilayer films. Active compounds possessed the lowest release rates in Tenax TA, compared to the release to liquid simulants and sea bass. CI and Ty sustained the release to the sea bass matrix with a similar behavior to the release to 95% ethanol. The bilayer film containing β-CD-Ty exhibited stronger active antibacterial and antioxidant activities, probably due to the higher release efficiency of Ty in test mediums.
Collapse
Affiliation(s)
- Jingwen Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinxuan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| | - Hui Zheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| |
Collapse
|
36
|
Zhao M, Zhang Z, Cai H, Wang L, Hu C, Li D, Chen Y, Kang Y, Li L. Controlled moisture permeability of thermoplastic starch/polylactic acid/poly butylene adipate-co-terephthalate film for the autolysis of straw mushroom Volvariella volvacea. Food Chem 2021; 373:131409. [PMID: 34715630 DOI: 10.1016/j.foodchem.2021.131409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022]
Abstract
Straw mushrooms are prone to autolyze, leading to a high requirement of environmental humidity. In this work, thermoplastic starch/polylactic acid/poly (butylene adipate-co-terephthalate) (TPS/PLA/PBAT) film was produced by extrusion. The moisture permeability of the film was controlled by adjusting the content of TPS, which could be expected to further control humidity of the microenvironment in the package. Results revealed that the water vapor transmission rate of the film linearly increased from 612.31 g/m2·24 h to 1082.50 g/m2·24 h with the increase in the TPS concentration. The TPS/PLA/PBAT film with 30 wt% TPS showed the strongest inhibition on the autolysis of straw mushrooms compared with other groups, effectively delaying the increase in the free water, soluble solid content, rate of weight loss, and polyphenol oxidase of straw mushrooms and extending the shelf life of straw mushrooms from 24 h to 72 h.
Collapse
Affiliation(s)
- Meiyan Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhikun Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hong Cai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Changying Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Dan Li
- Special Clothing and Food Research Room, Naval Special Medical Center, The Naval Military Medical University, Shanghai 200433, PR China.
| | - Yu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yongfeng Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
37
|
Zhang L, Yu D, Regenstein JM, Xia W, Dong J. A comprehensive review on natural bioactive films with controlled release characteristics and their applications in foods and pharmaceuticals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Nilsen‐Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 2021; 20:1333-1380. [DOI: 10.1111/1541-4337.12715] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Julie Nilsen‐Nygaard
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | | | - Tanja Radusin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Bjørn Tore Rotabakk
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Jawad Sarfraz
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Nusrat Sharmin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Morten Sivertsvik
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Izumi Sone
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Marit Kvalvåg Pettersen
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| |
Collapse
|
39
|
Su L, Huang J, Li H, Pan Y, Zhu B, Zhao Y, Liu H. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. Int J Biol Macromol 2021; 172:231-240. [PMID: 33453253 DOI: 10.1016/j.ijbiomac.2021.01.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Photodynamic inactivation (PDI) is a novel sterilization technology that has proven effective in medicine. This study focused on applying PDI to food packaging, where chitosan (CS) films containing photosensitizing riboflavin (RB) were prepared via solution casting. The CS-RB composite films exhibited good ultraviolet (UV)-barrier properties, and had a visually appealing highly transparent yellow appearance. Scanning electron microscopy (SEM) confirmed even dispersion of RB throughout the CS film. The addition of RB led to improved film characteristics, including the thickness, mechanical properties, solubility, and water barrier properties. The CS-RB5 composite films produced sufficient singlet oxygen under blue LED irradiation for 2 h to inactivate two food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) and one spoilage bacteria (Shewanella baltica). The CS-RB composite films were assessed as a salmon packaging material, where inhibition of bacterial growth was observed. The film is biodegradable, and has the potential to alleviate the issues associated with the excessive use of petrochemical materials, such as environmental pollution and limited resources. The CS-RB composite films showed potential as a novel environmentally friendly packaging material for shelf-life extension of refrigerated food products.
Collapse
Affiliation(s)
- Linyue Su
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaming Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huihui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Beiwei Zhu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
40
|
Zhang L, Huang C, Xu Y, Huang H, Zhao H, Wang J, Wang S. Synthesis and characterization of antibacterial polylactic acid film incorporated with cinnamaldehyde inclusions for fruit packaging. Int J Biol Macromol 2020; 164:4547-4555. [PMID: 32946936 DOI: 10.1016/j.ijbiomac.2020.09.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
To maintain the quality of postharvest fruits continuously and meet the health requirements of consumers, a high barrier and long-lasting antibacterial polylactic acid film as packaging material was developed in this study. Polylactic acid-based antibacterial films incorporated with Cinnamaldehyde inclusions were used to achieve long-lasting antibacterial activity and improve the barrier properties. Cinnamaldehyde inclusions were prepared via the inclusion method and used as a sustained-release antibacterial agent and reinforcement to be incorporated into polylactic acid-based films within a concentration range of 0-30 wt%. The FT-IR spectrum demonstrated that the Cinnamaldehyde inclusions was physically interacting with PLA. The XRD results showed that the cinnamaldehyde inclusions at a concentration of 10 wt% enhanced the crystallinity of the antibacterial film. The oxygen and water vapor barrier properties of the film were respectively 14.29% and 12.38% higher than those of a pure PLA film. The tensile strength of the antibacterial film increased by 20%. And the antibacterial activity against Escherichia coli and Listeria monocytogenes was 100%. The release rate of cinnamaldehyde of the antibacterial film was slow and varied smoothly for 20 d.
Collapse
Affiliation(s)
- Linyun Zhang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Haohe Huang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Jian Wang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
41
|
Development of active agents filled polylactic acid films for food packaging application. Int J Biol Macromol 2020; 163:1451-1457. [DOI: 10.1016/j.ijbiomac.2020.07.209] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
|
42
|
Huang Y, Wang Y, Li Y, Luo C, Yang C, Shi W, Li L. Covalent Immobilization of Polypeptides on Polylactic Acid Films and Their Application to Fresh Beef Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10532-10541. [PMID: 32822187 DOI: 10.1021/acs.jafc.0c03922] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To enhance the advantage of a long-term stability and low-toxicity active packaging system, two biodegradable covalent immobilized antibacterial packaging films were developed and applied to fresh beef preservation in this study. A polylactic acid (PLA) film was prepared by the extrusion-casting method. The surface of the PLA film was modified with plasma treatment to generate carboxylic acid groups, and then antibacterial agent nisin or ε-poly lysine (ε-PL) was covalently attached to the modified film surface. Physical, chemical, and antimicrobial properties of films were then characterized. Scanning electron microscopy and water contact angle images confirmed that nisin or ε-PL was successfully grafted onto the film surface. The values of protein loading on the nisin-g-PLA film and ε-PL-g-PLA film were 5.34 ± 0.26 and 3.04 ± 0.25 μg of protein/cm2 on the surface. Microbial analysis indicated that the grafted films effectively inhibit the growth of bacteria. Finally, the effects of the nisin-g-PLA film or ε-PL-g-PLA film on physicochemical changes and microbiological counts of fresh beef during cold storage at 4 °C were investigated. The total viable count of the control sample exceeded 7 logarithms of the number of colony forming units per gram (log CFU/g) after 11 days of cold storage (7.01 ± 0.14 log CFU/g) versus 15 days for the ε-PL-g-PLA film (7.37 ± 0.06 log CFU/g) and the nisin-g-PLA film (6.83 ± 0.10 log CFU/g). The results showed that covalent immobilized antibacterial packaging films had positive impacts on the shelf life and quality of fresh beef. Therefore, a covalent immobilized antibacterial packaging system could be a novel preservative method for foods.
Collapse
Affiliation(s)
- Yongfei Huang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Yifen Wang
- Biosystems Engineering Department, Auburn University, Auburn, Alabama 36849-5417, United States
| | - Yuqi Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Chenmin Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Chunxiang Yang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Wenzheng Shi
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China
| |
Collapse
|