1
|
Muhammad Yunus F, Alias Y, Yahya N, Mohamad Zain NN, Raoov M. Poly-(ionic liquid) coated with magnetic nanoparticles for micro solid phase extraction of polycyclic aromatic hydrocarbons in food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:495-512. [PMID: 38466777 DOI: 10.1080/19440049.2024.2326426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Poly(methyl methacrylate-vinyl imidazole bromide) (poly-MMA-IL)-grafted magnetic nanoparticles were successfully developed and applied in the micro-magnetic solid phase extraction (μ-MSPE) for 16 types of polycyclic aromatic hydrocarbons (PAHs) from tea, fried food, and grilled food samples via gas chromatography flame ionization detector (GC-FID). One variable at a time (OVAT) and response surface methodology (RSM) were used for efficient optimization. The validation method showed a good coefficient of determination (R2) ranging from 0.9901 to 0.9982 (n = 3) with linearity of 0.2 μg L-1-500 μg L-1. Detection and quantification limits were 0.06 µg L-1-0.32 µg L-1 and 0.18 µg L-1-0.97 µg L-1. Additionally, satisfactory reproducibility was attained with intra-day and inter-day precisions having RSD ranges of 3.6%-11.1%. The spiked recovery value of 16 PAHs in fried food, grilled food and tea samples obtained from the night market in Malaysia ranged from 80%-12%, respectively.
Collapse
Affiliation(s)
- Faizah Muhammad Yunus
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorfatimah Yahya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Yıldırım S, Karabulut SN, Çiçek M, Horstkotte B. Deep eutectic solvent-based ferrofluid for vortex-assisted liquid-liquid microextraction of nonsteroidal anti-inflammatory drugs from environmental waters. Talanta 2024; 268:125372. [PMID: 37952315 DOI: 10.1016/j.talanta.2023.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
A novel ferrofluid of Fe3O4 nanoparticles and a deep eutectic solvent (DES) composed of menthol and pentanoic acid was introduced as a green microextraction medium. The ferrofluid was successfully used as an extractant for vortex-assisted liquid-liquid microextraction (VALLME) of nonsteroidal anti-inflammatory drugs (NSAIDs) in environmental waters prior to their determination by HPLC-DAD. Once the ferrofluid was dispersed in the sample by vortex agitation, phase separation could be easily achieved by placing a neodymium magnet next to the tube, which eliminated the centrifugation step and simplified the operational procedure. As a result, the sample pretreatment took only ≈2 min. The experimental parameters, including pH, nanoparticle amount, ferrofluid volume, vortex time, salt amount, and disruptive solvent type and its volume, were optimized stepwise. The method showed linear behavior for all NSAIDs from 5 to 100 μg/L, with limit of detection values and enrichment factors in the ranges of 1.68-2.05 μg/L and 38.9-50.6, respectively. Intra- and Inter-day accuracies obtained from the analysis of spiked river, lake, and tap water samples at low and high-quality control levels (20 and 80 μg/L) ranged from 90.3% to 108.0%, with relative standard deviations less than <12.3%. The results of this study demonstrate that the use of DES-based ferrofluid in VALLME can be considered a simple, environmentally friendly, and reliable alternative for the determination of NSAIDs in environmental waters.
Collapse
Affiliation(s)
- Sercan Yıldırım
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, Farabi Street, 61080, Trabzon, Turkey.
| | - Sema Nur Karabulut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, Farabi Street, 61080, Trabzon, Turkey
| | - Mükafat Çiçek
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, Farabi Street, 61080, Trabzon, Turkey
| | - Burkhard Horstkotte
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Morovati S, Larijani K, Helalizadeh M, Mohammadkhani LG, Faraji H. Determination of remdesivir in human plasma using (deep eutectic solvent-ionic liquid) ferrofluid microextraction combined with liquid chromatography. J Chromatogr A 2023; 1712:464468. [PMID: 37926006 DOI: 10.1016/j.chroma.2023.464468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
A microextraction technique based on ferrofluids was developed for the preconcentration and quantification of Remdesivir in human plasma samples. This method utilized a new type of magnetic colloids created by combining silica-coated magnetic particles with modified ionic liquid and natural hydrophobic deep eutectic solvent as the carrier liquid. The efficiency of the sorption and desorption steps was optimized using a chemometrics approach. Under the optimized conditions, the calibration curve exhibited linearity in the concentration range of 0.5 to 500.0 μg L-1, with a limit of detection and quantification of 0.2 and 0.5 μg L-1, respectively. The method precision was evaluated by assessing intra- and interday precision at three different analyte concentrations, yielding values of 8.9% and 16.8%, respectively. Moreover, the method accuracy fell within the range of 90.9% to 107.5%. This proposed method offers a green and environmentally friendly sample preparation technique for conducting pharmacodynamic, pharmacokinetic, and therapeutic drug monitoring studies of Remdesivir in biological fluids. Importantly, this technique eliminates the need for external energy sources or the use of dispersive solvents, providing a more efficient and sustainable approach.
Collapse
Affiliation(s)
- Sanaz Morovati
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Helalizadeh
- Department of Exercise Physiology, Sport Medicine Research Center, Sport Sciences Research Institute, Tehran, 1587958711, Iran
| | | | - Hakim Faraji
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206, Tenerife, Spain.
| |
Collapse
|
4
|
Shirani M, Aslani A, Ansari F, Parandi E, Nodeh HR, Jahanmard E. Zirconium oxide/ titanium oxide nanorod decorated nickel foam as an efficient sorbent in syringe filter based solid-phase extraction of pesticides in some vegetables. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Separation and Enrichment of Selected Polar and Non-Polar Organic Micro-Pollutants—The Dual Nature of Quaternary Ammonium Ionic Liquid. Processes (Basel) 2022. [DOI: 10.3390/pr10081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the dual nature of quaternary ammonium ionic liquid–didecyldimethylammonium perchlorate, [DDA][ClO4], was evaluated. A novel and sensitive in situ ionic liquid dispersive liquid–liquid microextraction method (in situ IL-DLLME) combined with magnetic retrieval (MR) was applied to enrich and separate selected organic micro-pollutants, both polar and non-polar. The magnetic support relied on using unmodified magnetic nanoparticles (MNPs) prepared by the co-precipitation of Fe2+/Fe3+ (Fe3O4). The separation technique was on-lined with high-performance liquid chromatography (HPLC–DAD) verified by inverse gas chromatography. An anion exchanger, NaClO4, was added to form an in situ hydrophobic IL. The fine droplets of [DDA][ClO4], molded in aqueous samples, functioned as an extractant for isolating the studied compounds. Then the carrier MNPs were added to separate the IL from the water matrix. The supernatant-free sample was desorbed in acetonitrile (MeCN) and injected into the HPLC system. The applicability of [DDA][ClO4] as an extraction solvent in the MR in situ IL-DLLME method was checked by the selectivity parameters (Sij∞) at infinite dilution. The detection limit (LOD) ranged from 0.011 to 0.079 µg L−1 for PAHs and from 0.012 to 0.020 µg L−1 for benzophenones. The method showed good linearity with correlation coefficients (r2) ranging from 0.9995 to 0.9999.
Collapse
|
6
|
Oehlsen O, Cervantes-Ramírez SI, Cervantes-Avilés P, Medina-Velo IA. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS OMEGA 2022; 7:3134-3150. [PMID: 35128226 PMCID: PMC8811916 DOI: 10.1021/acsomega.1c05631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
Ferrofluids are colloidal suspensions of iron oxide nanoparticles (IONPs) within aqueous or nonaqueous liquids that exhibit strong magnetic properties. These magnetic properties allow ferrofluids to be manipulated and controlled when exposed to magnetic fields. This review aims to provide the current scope and research opportunities regarding the methods of synthesis of nanoparticles, surfactants, and carrier liquids for ferrofluid production, along with the rheology and applications of ferrofluids within the fields of medicine, water treatment, and mechanical engineering. A ferrofluid is composed of IONPs, a surfactant that coats the magnetic IONPs to prevent agglomeration, and a carrier liquid that suspends the IONPs. Coprecipitation and thermal decomposition are the main methods used for the synthesis of IONPs. Despite the fact that thermal decomposition provides precise control on the nanoparticle size, coprecipitation is the most used method, even when the oxidation of iron can occur. This oxidation alters the ratio of maghemite/magnetite, influencing the magnetic properties of ferrofluids. Strategies to overcome iron oxidation have been proposed, such as the use of an inert atmosphere, adjusting the Fe(II) and Fe(III) ratio to 1:2, and the exploration of other metals with the oxidation state +2. Surfactants and carrier liquids are chosen according to the ferrofluid application to ensure stability. Hence, a compatible carrier liquid (polar or nonpolar) is selected, and then, a surfactant, mainly a polymer, is embedded in the IONPs, providing a steric barrier. Due to the variety of surfactants and carrier liquids, the rheological properties of ferrofluids are an important response variable evaluated when synthesizing ferrofluids. There are many reported applications of ferrofluids, including biosensing, medical imaging, medicinal therapy, magnetic nanoemulsions, and magnetic impedance. Other applications include water treatment, energy harvesting and transfer, and vibration control. To progress from synthesis to applications, research is still ongoing to ensure control of the ferrofluids' properties.
Collapse
Affiliation(s)
- Oscar Oehlsen
- Department
of Natural Sciences, Western New Mexico
University, 1000 W College Avenue, Silver City, New Mexico 88062, United States
| | - Sussy I. Cervantes-Ramírez
- Escuela
de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Tecnologico de Monterrey, Puebla, Pue 72453, Mexico
| | - Pabel Cervantes-Avilés
- Escuela
de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Tecnologico de Monterrey, Puebla, Pue 72453, Mexico
| | - Illya A. Medina-Velo
- Department
of Natural Sciences, Western New Mexico
University, 1000 W College Avenue, Silver City, New Mexico 88062, United States
- Department
of Chemistry, Mathematics, and Physics, Houston Baptist University, 7502 Fondren Road, Houston, Texas 77074, United States
| |
Collapse
|
7
|
|
8
|
Vortex assisted dispersive liquid–liquid microextraction based on low transition temperature mixture solvent for the HPLC determination of pyrethroids in water samples: Experimental study and COSMO-RS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
|
10
|
|
11
|
Yan XT, Zhang Y, Zhou Y, Li GH, Feng XS. Source, Sample Preparation, Analytical and Inhibition Methods of Polycyclic Aromatic Hydrocarbons in Food (Update since 2015). SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2021.1977321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao-ting Yan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Recent advances and applications of cyclodextrins in magnetic solid phase extraction. Talanta 2021; 229:122296. [PMID: 33838782 DOI: 10.1016/j.talanta.2021.122296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins (CDs) as a family of cyclic oligosaccharides are toroidal with a hydrophobic interior and a hydrophilic exterior. They are well-known for their ability to form host-guest inclusion complexes with different compounds. They are used as chiral stationary phases in high performance liquid chromatography (HPLC) and gas chromatography (GC) or as chiral reagents in the background electrolyte of capillary electrophoresis (CE). In recent years, they have been used for modification of sorbents or as sorbents in solid phase extraction (SPE) procedures. Magnetic solid-phase extraction (MSPE), as a new type of SPE procedure, has received considerable attention due to its rapid phase separation process as compared to traditional extraction mode. This review covers the synthesis of CD-based magnetic sorbents (such as immobilization of CDs onto the different supports, production of nanosponges, and making hybrid substances with nanomaterials) and the use of these compounds in MSPE of different analytes from biological, environmental, and food samples. Also, prospects of CD-based sorbents for sample pre-treatment are also proposed.
Collapse
|
13
|
Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Nie L, Toufouki S, Yao S, Guo D. Rethinking the Applications of Ionic Liquids and Deep Eutectic Solvents in Innovative Nano-Sorbents. Front Chem 2021; 9:653238. [PMID: 33898393 PMCID: PMC8062918 DOI: 10.3389/fchem.2021.653238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
With the development of green chemistry and nano materials, new alternatives to traditional volatile solvents are one of many important hotspots in the field of nano materials. Ionic liquids (ILs) and deep eutectic solvents (DESs) as excellent alternative solvents are being applied in the innovation of nano-sorbents, including nanoparticles, nanogels, and nanofluid. ILs and DESs are often used as carriers/modifiers/dispersers of nano-sorbents to enhance the adsorption capacity and selectivity in the extraction procedure. Various extraction technologies, such as solid-phase extraction, solid-phase microextraction, micro-solid phase extraction, hollow fiber liquid phase microextraction, and magnetic solid-phase extraction, have also been promoted by them to achieve rapid development. This paper focused on the latest development of nano-sorbents based on ILs and DESs. The problems and bottlenecks encountered were analyzed in order to provide meaningful and valuable references for the related research and thus promote further development and application of alternative solvents-assisted nano-sorbents.
Collapse
Affiliation(s)
- Lirong Nie
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sara Toufouki
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Shun Yao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dong Guo
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Abstract
Ferrofluids (FFs) constitute a type of tunable magnetic material, formed by magnetic nanoparticles suspended in a liquid carrier. The astonishing magnetic properties of these materials and their liquid nature have led to their extended use in different applications, including fields such as magnetochemistry, optics, and biomedicine, among others. Recently, FFs have been incorporated as extractant materials in magnetic-driven analytical sample preparation procedures, thus, permitting the development of different applications. FF-based extraction takes advantage of both the magnetic susceptibility of the nanoparticles and the properties of the liquid carrier, which are responsible for a wide variety of interactions with analytes and ultimately are a key factor in achieving better extraction performance. This review article classifies existing FFs in terms of the solvent used as a carrier (organic solvents, water, ionic liquids, deep eutectic solvents, and supramolecular solvents) while overviewing the most relevant analytical applications in the last decade.
Collapse
|
16
|
Musarurwa H, Tavengwa NT. Supramolecular solvent-based micro-extraction of pesticides in food and environmental samples. Talanta 2021; 223:121515. [PMID: 33303131 DOI: 10.1016/j.talanta.2020.121515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
Supramolecular solvent-based micro-extraction is a very important green technique for the isolation and pre-concentration of pesticide residues in food and environmental samples prior to their chromatographic analysis. The attractive features of supramolecular solvent-based micro-extraction include its simplicity, high pre-concentration factor, fastness, accuracy, low cost, less consumption of chemical reagents and environmental friendliness. The supramolecular solvent is generated from a ternary mixture of amphiphiles, water and a water miscible dispersion and coacervating solvent. Tehydrofuran is one of the solvents commonly used as both a dispersion solvent and a coacervating agent. This paper gives a recent comprehensive review on the application of alkanols as amphiphiles during supramolecular solvent-based micro-extraction of pesticide residues in food and environmental samples. Other researchers used long chain fatty acids as amphiphiles during pesticide analysis in food and environmental samples using supramolecular solvent-based micro-extraction, and this is discussed in this paper. The incorporation of ferrofluids in supramolecular solvents enables phase separation using a magnet instead of the time-consuming centrifugation technique. This paper also gives a detailed review of the application of ferrofluid-based supramolecular solvent micro-extraction of pesticide residues in food and environmental samples.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
17
|
Martins RO, de Araújo GL, de Freitas CS, Silva AR, Simas RC, Vaz BG, Chaves AR. Miniaturized sample preparation techniques and ambient mass spectrometry as approaches for food residue analysis. J Chromatogr A 2021; 1640:461949. [PMID: 33556677 DOI: 10.1016/j.chroma.2021.461949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Analytical methods such as liquid chromatography (LC) and mass spectrometry (MS) are widely used techniques for the analyses of different classes of compounds. This is due to their highlighted capacity for separating and identifying components in complex matrices such food samples. However, in most cases, effective analysis of the target analyte becomes challenging due to the complexity of the sample, especially for quantification of trace concentrations. In this case, miniaturized sample preparation methods have been used as a strategy for analysis of complex matrices. This involves removing the interferents and concentrating the analytes in a sample. These methods combine simplicity and effectiveness and given their miniaturized scale, they are in accordance with green chemistry precepts. Besides, ambient mass spectrometry represents a new trend in fast and rapid analyses, especially for qualitative and screening analysis. However, for complex matrix analyses, sample preparation is still a difficult step and the miniaturized sample preparation techniques show great potential for an improved and widespread use of ambient mass spectrometry techniques. . This review aims to contribute as an overview of current miniaturized sample preparation techniques and ambient mass spectrometry methods as different approaches for selective and sensitive analysis of residues in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | |
Collapse
|
18
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
19
|
Simultaneous selective enrichment of methylparaben, propylparaben, and butylparaben from cosmetics samples based on syringe-to-syringe magnetic fluid phase microextraction. Talanta 2021; 221:121547. [DOI: 10.1016/j.talanta.2020.121547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/25/2023]
|
20
|
Taufiq A, Saputro RE, Susanto H, Hidayat N, Sunaryono S, Amrillah T, Wijaya HW, Mufti N, Simanjuntak FM. Synthesis of Fe 3O 4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents. Heliyon 2020; 6:e05813. [PMID: 33426329 PMCID: PMC7779699 DOI: 10.1016/j.heliyon.2020.e05813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
To date, the search for creating stable ferrofluids with excellent properties for biomedical application is one of the challenging scientific and practical investigations. In this study, novel Fe3O4/Ag nanohybrid ferrofluids from iron sand were synthesized using a double-layer method. The Fe3O4/Ag nanocomposites exhibited stable crystallite sizes of 11.8 12.1 nm and 36.8-37.2 nm for Fe3O4 and Ag, respectively. The lattice parameters of the spinel structure Fe3O4 and face-centered cubic Ag were respectively 8.344 Å and 4.091 Å. With increasing Ag amount, the crystallite phase of Ag in the nanocomposites increased from 40.2% to 77.2%. The XPS results confirmed that Fe3O4/Ag nanocomposites were successfully prepared, where Fe3O4 mixed well with Ag via strong ionic bonding. The FTIR results confirmed the presence of Fe3O4/Ag, oleic acid, and dimethyl sulfoxide as the filler, first layer, and second layer, respectively. The as-prepared ferrofluids exhibited superparamagnetic behavior, where the saturation magnetization decreased with increasing Ag content. The Fe3O4/Ag nanohybrid ferrofluids exhibited excellent antimicrobial performance against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Candida albicans. More importantly, the Fe3O4/Ag nanohybrid ferrofluids decreased the progression of liver fibrosis-related inflammation and fibrogenic activity on hepatic stellate cells.
Collapse
Affiliation(s)
- Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Rosy Eko Saputro
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nurul Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Sunaryono Sunaryono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Tahta Amrillah
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Husni Wahyu Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Firman Mangasa Simanjuntak
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
21
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Ionic liquids in the microextraction techniques: The influence of ILs structure and properties. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115994] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
|
24
|
Abstract
Ionic liquids (ILs) are a group of non-conventional salts with melting points below 100 °C. Apart from their negligible vapor pressure at room temperature, high thermal stability, and impressive solvation properties, ILs are characterized by their tunability. Given such nearly infinite combinations of cations and anions, and the easy modification of their structures, ILs with specific properties can be synthesized. These characteristics have attracted attention regarding their use as extraction phases in analytical sample preparation methods, particularly in liquid-phase extraction methods. Given the liquid nature of most common ILs, their incorporation in analytical sample preparation methods using solid sorbents requires the preparation of solid derivatives, such as polymeric ILs, or the combination of ILs with other materials to prepare solid IL-based composites. In this sense, many solid composites based on ILs have been prepared with improved features, including magnetic particles, carbonaceous materials, polymers, silica materials, and metal-organic frameworks, as additional materials forming the composites. This review aims to give an overview on the preparation and applications of IL-based composites in analytical sample preparation in the period 2017–2020, paying attention to the role of the IL material in those composites to understand the effect of the individual components in the sorbent.
Collapse
|