1
|
Haghgouei H, Seidi S, Shirkhodaie M. Metal organic framework derived composite as a new sorbent for micro-solid phase extraction of parabens from breast milk samples. J Chromatogr A 2024; 1738:465505. [PMID: 39520781 DOI: 10.1016/j.chroma.2024.465505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In an attempt to enhance the adsorptive properties while addressing the limitations associated with powdered nature, zeolitic imidazolate framework (ZIF-67)-derived cobalt-doped nanoporous carbon (Co-NPC) was incorporated into chitosan and then shaped like hollow fiber by a simple casting method. Further modification with polyaniline (PANI) was also performed to improve extraction efficacy. The applicability of the modified hollow fibers was then investigated by packing them into a cartridge and utilizing them for conducting hollow fibers-packed in-cartridge micro solid-phase extraction (HF-IC µ-SPE) of parabens including methylparaben (MP), ethylparaben (EP), and propylparaben (PP) from human breast milk samples. Factors affecting extraction performance were studied using central composite design (CCD). Under the optimal conditions, good linearity was achieved within the range of 0.5-500 μg L-1 with the determination coefficient (R2) higher than 0.9901. All analytical parameters were obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In this regard, the limits of detection values (LODs) were 0.5 to 1.0 μg L-1. Intra- and inter-assay precision RSDs % were lower than 7.9 % and 8.4 %, respectively. Relative recoveries of breast milk samples were found in the range of 88.0-109.5 %. Accordingly, the novel nanocomposite sorbent based on PANI@Co-NPC/Chitosan hollow fiber was found to be an efficient, simple, and cost-effective packing material for HF-IC µ-SPE. It can also be offered as a promising alternative adsorbent to coated conventional hollow fiber.
Collapse
Affiliation(s)
- Hanieh Haghgouei
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611, Tehran, Iran.
| | - Mahsa Shirkhodaie
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
2
|
El-Khalafy SH, Hassanein MT, Alaskary MM, Salahuddin NA. Synthesis and characterization of Co(II) porphyrin complex supported on chitosan/graphene oxide nanocomposite for efficient green oxidation and removal of Acid Orange 7 dye. Sci Rep 2024; 14:17073. [PMID: 39048588 PMCID: PMC11269599 DOI: 10.1038/s41598-024-65517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Catalytic degradation of Acid Orange 7 (AO7) by hydrogen peroxide in an aqueous solution has been investigated using cobalt(II) complex of 5, 10, 15, 20 Tetrakis [4-(hydroxy)phenyl] porphyrin [Co(II) TPHPP] covalently supported chitosan/Graphene Oxide nanocomposite [Co(II) TPHPP]-Cs/GO, as highly efficient and recoverable heterogeneous catalyst. The structures and properties of [Co(II) TPHPP]-Cs/GO nanocomposite were characterized by techniques such as UV-Vis, FT-IR, SEM, EDX, TEM, and XRD. The oxidation reaction was followed by recording the UV-Vis spectra of the reaction mixture with time at λmax = 485 nm. [Co(II) TPHPP]-Cs/GO nanocomposite demonstrated high catalytic activity and could decompose 94% of AO7 within 60 min. The factors that may influence the oxidation of Acid Orange 7, such as the effect of reaction temperature, pH, concentration of catalyst, Acid Orange 7, and hydrogen peroxide, have been studied. The results of total organic carbon analysis (TOC) showed 50% of dye mineralization under mild reaction conditions of AO7 (1.42 × 10-4M) with H2O2 (8 × 10-2M) in the presence of [Co(II) TPHPP]-Cs/GO nanocomposite (15 × 10-3 g/ml) and pH = 9 at 40 °C. The reuse and stability of the nanocomposite were examined and remarkably, even after six cycles of reuse, there was no significant degradation or deactivation of the recycled catalyst. Residual organic compounds in the reaction mixture were identified by using GC-MS analyses. The radical scavenging measurements and photoluminescence probing technology of disodium salt of terephthalic acid indicated the formation of the hydroxyl radical as the reactive oxygen species in the [Co(II) TPHPP]-Cs/GO nanocomposite/H2O2 system. A mechanism for the oxidation reaction has been discussed.
Collapse
Affiliation(s)
- Sahar H El-Khalafy
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt.
| | - Mahmoud T Hassanein
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Mohamed M Alaskary
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Nehal A Salahuddin
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Ge X, Feng S, Bian L, Wang M, Li K, Wang X. Determination of parabens in breast milk using stir bar sorptive extraction coupled with UHPLC-UV. Talanta 2024; 270:125609. [PMID: 38159355 DOI: 10.1016/j.talanta.2023.125609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
We developed an analytical method based on ultra-high performance liquid chromatography with UV detection, using a stir bar coated with amino/hydroxyl bifunctional microporous organic network (B-MON), for the analysis of parabens in breast milk samples. B-MON demonstrated superior performance with maximal methylparaben adsorption of 112.15 mg/g. Kinetic fitting revealed that outer diffusion was the key limiting step, and the adsorption was chemisorption. The thermodynamic analysis demonstrated that increased methylparaben adsorption was found at higher temperatures in spontaneous processes. The developed approach showed excellent linearity (R2 ≥ 0.9964) and a low detection limit (0.01 μg/L). Recoveries ranged from 85.8 to 105.5 % and the relative standard deviation was lower than 9.2 %. Based on the daily exposure assessment, these pollutants do not pose unacceptable health hazards to babies. However, the high detection frequencies (41.9%-93.5 %) suggest that breast milk still should be monitored.
Collapse
Affiliation(s)
- Xue Ge
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Senwei Feng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Linlin Bian
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Mingjuan Wang
- Beijing Sun-Novo Pharmaceutical Research Company Ltd, Beijing, 102200, China.
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China.
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
4
|
Pezhhanfar S, Farajzadeh MA, Kheirkhah Ghaleh M, Hosseini-Yazdi SA, Afshar Mogaddam MR. MIL-68 (Ga) for the extraction of derivatized and non-derivatized parabens from healthcare products. Sci Rep 2023; 13:21304. [PMID: 38042936 PMCID: PMC10693546 DOI: 10.1038/s41598-023-48880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
This study was the first-ever attempt to apply MIL-68 (Ga) in developing an analytical method. The method extracts and preconcentrates some parabens from mouthwash and hydrating gel samples. The variable extraction parameters were optimized, and the figures of merit were documented. Avogadro software was used besides discussing intermolecular interactions to clarify the absorption process. ComplexGAPI software was also exploited to assess the greenness of the method. After the derivatization of the parabens using acetic anhydride in the presence of sodium carbonate, sodium chloride was added to the solution and vortexed to dissolve. A few milligrams of MIL-68 (Ga) were added into the solution and vortexed. Centrifugation separated the analyte-loaded absorbent, which was treated with mL volume of methanol through vortexing for desorption aim. A few microliters of 1,2-dibromoethane were merged with the methanolic phase and injected into a sodium chloride solution. One microliter of the extracted phase was injected into a gas chromatograph equipped with a flame ionization detector. High enrichment factors (200-330), reasonable extraction recoveries (40-66%), wide linear ranges (265-30,000 µg L-1), and appreciable coefficients of determination (0.996-0.999) were documented. The applicability of dispersive solid phase extraction for extracting polar analytes, imposing no additional step for performing derivatization, the capability of MIL-68 (Ga) for the absorption of both derivatized and non-derivatized parabens, the use of only 10 mg absorbent, and one-pot synthesis besides no high temperature or long reaction time in the sorbent provision are the highlights of the method.
Collapse
Affiliation(s)
- Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, Mersin 10, 99138, Nicosia, North Cyprus, Turkey.
| | - Mahdi Kheirkhah Ghaleh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Kumar S, Bhogal S, Malik AK, Aulakh JS. Magnetic graphene oxide carbon dot nanocomposites as an efficient quantification tool against parabens in water and cosmetic samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104319-104335. [PMID: 37704806 DOI: 10.1007/s11356-023-29613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
A new method is developed for the simultaneous detection and extraction of parabens, including methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), and butyl paraben (BP), based on magnetic graphene oxide carbon dot nanocomposites (Fe3O4@GO@CD). Fe3O4@GO@CD has been synthesized using one pot hydrothermal method by intercalating iron oxide and carbon dots between the layers of graphene oxide. Fe3O4@GO@CD was applied as the magnetic solid phase sorbent for the simultaneous extraction and detection of parabens from water (tap and river water) and cosmetic samples (hair serum and sunscreen cream). MP was measured at concentration of 0.25-0.26 ng/mL in hair serum, while PP at 0.32-0.33 ng/mL in sunscreen cream. Notably, good recoveries (88.74-98.03%; RSD = 2.31-6.88%) for river and tap water with detection limit of 0.039-0.046 ng/mL were attained. The method has good cyclability up to 16 cycles and was highly repeatable. All these findings suggest that the Fe3O4@GO@CD would be potential sorbent for the analysis of parabens.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Shikha Bhogal
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | | |
Collapse
|
6
|
Liu N, Wang N, Yang T, Zhou X, Chai Q, Liu G, Cui B. Preparation and application of an imidazolium-based poly (ionic liquid) functionalized silica sorbent for solid-phase extraction of parabens from food samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123888. [PMID: 37716344 DOI: 10.1016/j.jchromb.2023.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In this work, an imidazolium-based poly (ionic liquid) (poly(1-octyl-3-vinyl- imidazolium naphthalene sulfonate)) functionalized silica (poly(C8VIm+NapSO3-) @SiO2) was successfully prepared for the determination of parabens in food samples. The prepared poly(C8VIm+NapSO3-)@SiO2 was characterized by Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectrogram (XPS) and Scanning electron microscopy (SEM). The simulation calculation results indicated that the suitable binding energies were between the polymeric ionic liquids and parabens, and the main interactions for extraction were hydrogen bonding, electrostatic and π-π stacking interactions. In addition, compared with commercial extraction materials, the prepared poly(C8VIm+NapSO3-)@SiO2 sorbent showed comparable or even better extraction performance towards parabens. The effective parameters were optimized by a combination of the univariate method and Box-Behnken design (BBD). Under the optimum conditions, coupled with high performance liquid chromatography (HPLC), wide linear ranges (1.0-800 μg L-1), good linearity (R2 ≥ 0.9997) and low limits of detection (0.1 μg L-1) were obtained. In addition, the intra-day and inter-day relative standard deviations (RSDs) were all lower than 6.3%. Moreover, the proposed method was successfully used for the determination of parabens in food samples and satisfactory recoveries in the range of 76.9-97.4% were obtained. The results indicated that the proposed method had good sensitivity, accuracy and precision for the detection of parabens in food samples.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ting Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuesheng Zhou
- Key Laboratory of Transportation Industry for Transport Vehicle Detection, Diagnosis and Maintenance Technology, School of Automotive Engineering, ShanDong JiaoTong University, Jinan 250357, China
| | - Qingqing Chai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
7
|
Manouchehri M, Seidi S, Tavasolinoor A, Razeghi Y. A new approach of magnetic field application in miniaturized pipette-tip extraction for trace analysis of four synthetic hormones in breast milk samples. Food Chem 2023; 409:135222. [PMID: 36586256 DOI: 10.1016/j.foodchem.2022.135222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Herein, a novel homemade electrical device was designed, including two pieces of external neodymium magnets, providing a reciprocating magnetic field to introduce a magnetic-assisted dispersive pipette-tip micro solid-phase extraction. To evaluate the performance efficiency of the proposed method, a novel magnetic calcined GO/SiO2@Co-Fe nanocube sorbent was synthesized, filled into the pipette-tip, exposed to the reciprocating magnetic field, and applied for the preconcentration of some hormone therapy drugs in human biological matrices. The effective adsorption and desorption parameters were optimized using a rotatable central composite design and one-variable-at-a-time approaches. Under the optimized conditions, the target analytes' detection limits were found to be below 0.02 ng mL-1. Moreover, the calibration curves were linear in the range of 0.03-500.00 ng mL-1 (R2 > 0.9966), with RSDs% less than 7.8 %. Eventually, the established method was applied to extract the analytes from breast milk samples, followed by LC-ESI-MS/MS analysis.
Collapse
Affiliation(s)
- Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran.
| | - Ali Tavasolinoor
- Department of Computer Engineering, Shahre-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| |
Collapse
|
8
|
Cosano D, Esquivel D, Romero-Salguero FJ, Jiménez-Sanchidrián C, Ruiz JR. Carboxymethylcellulose/Hydrotalcite Bionanocomposites as Paraben Sorbents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5294-5305. [PMID: 37022353 PMCID: PMC10849270 DOI: 10.1021/acs.langmuir.2c03265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In this work, we synthesized several bionanocomposites of hydrotalcites containing carboxymethylcellulose as interlayer anion (HT-CMC) to be used as sorbents for parabens, a family of emergent pollutants (specifically, for 4-methyl-, 4-propyl- and 4-benzylparaben). Bionanocomposites were obtained by ultrasound-assisted coprecipitation and characterized by X-ray diffraction analysis, fourier transform infrared and raman spectroscopies, elemental and thermogravimetric analysis, scanning and transmission electron microscopies and X-ray fluorescence. All materials proved to be efficient sorbents for parabens through a process conforming to a pseudo second-order kinetics. The experimental adsorption data fitted the Freundlich model very closely and were also highly correlated with the Temkin model. The effects of pH, adsorbate concentration, amount of sorbent and temperature on the adsorption process was evaluated, obtaining the best results for methylparaben adsorption at pH 7, 25 mg of adsorbent and 348 K. The sorbent, HT-CMC-3, showed the highest adsorption capacity (>70%) for methylparaben. Furthermore, a reusability study showed that the bionanocomposite is reusable after its regeneration with methanol. The sorbent still retained its adsorption capacity for up to 5 times with a little loss of efficiency (<5%).
Collapse
Affiliation(s)
- Daniel Cosano
- Departamento de Química
Orgánica, Instituto Químico para la Energía y
el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Dolores Esquivel
- Departamento de Química
Orgánica, Instituto Químico para la Energía y
el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Francisco J. Romero-Salguero
- Departamento de Química
Orgánica, Instituto Químico para la Energía y
el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - César Jiménez-Sanchidrián
- Departamento de Química
Orgánica, Instituto Químico para la Energía y
el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - José Rafael Ruiz
- Departamento de Química
Orgánica, Instituto Químico para la Energía y
el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| |
Collapse
|
9
|
Sampaio NMFM, de Oliveira BH, Riegel-Vidotti IC, da Silva BJG. Polyvinyl alcohol-based hydrogel sorbent for extraction of parabens in human milk samples by in-tube SPME–LC–UV. Anal Bioanal Chem 2022:10.1007/s00216-022-04481-x. [PMID: 36525120 DOI: 10.1007/s00216-022-04481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
In this work, we developed an in-tube solid-phase microextraction (SPME) device consisting of a fused silica capillary modified with a polyvinyl alcohol (PVOH) hydrogel. Methylparaben, ethylparaben, propylparaben, and butylparaben were determined in human milk samples by using the in-tube SPME device coupled with liquid chromatography with spectrophotometric detection in the ultraviolet region (LC-UV). The inner surface of the fused silica capillary was silanized to allow covalent modification with the PVOH-hydrogel, using glutaraldehyde as cross-linking agent. The developed device was used up to 250 times with no reduction in the analytes' peak areas or carryover effect, besides having a low production cost. The human milk samples showed a significant matrix effect for parabens with higher logKo/w. Low limits of quantification (LLOQ) between 10.0 and 15.0 ng mL-1 were obtained with RSD values in the range of 1.18 to 18.3%. For the intra- and inter-day assays, RSD values from 5.6 to 16.5% and accuracy from 74.5 to 128.8% were achieved. The PVOH-based hydrogel sorbent allowed the use of water as desorption solvent, eliminating the use of organic solvents, which follows the principles of green chemistry. The results showed a great application potential of the PVOH-based hydrogel sorbent for the extraction of organic compounds from high-complexity samples.
Collapse
|
10
|
Grover A, Mohiuddin I, Lee J, Brown RJC, Malik AK, Aulakh JS, Kim KH. Progress in pre-treatment and extraction of organic and inorganic pollutants by layered double hydroxide for trace-level analysis. ENVIRONMENTAL RESEARCH 2022; 214:114166. [PMID: 36027961 DOI: 10.1016/j.envres.2022.114166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Continuous release of pollutants into the environment poses serious threats to environmental sustainability and human health. For trace-level analysis of pollutants, layered double hydroxide (LDH) is an attractive option to impart enhanced sorption capability and sensitivity toward pollutants because of its unique layered structure, tunable interior architecture, high anion-exchange capacities, and high porosity (e.g., Zn/Cr LDH/DABCO-IL, Ni/Al LDH, CS-Ni/Fe LDH, SDS-Fe3O4@SiO2@Mg-Al LDH, Boeh/Mg/Al LDH/pC, and Fe@NiAl LDH). In concert with the well-defined analytical methodologies (e.g., HPLC and GC), the LDH materials can be employed to detect trace-level targets (e.g., as low as ∼ 20 fg/L for phenols) in aqueous environments. This review highlights LDH as a promising material for pre-treatment of a variety of organic and inorganic target pollutants in complex real matrices. Challenges and future requirements for research into LDH-based analytical methods are also discussed.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
11
|
Golestanzadeh M, Ebrahimpour K, Daniali SS, Zarean E, Yazdi M, Basirat Z, Goodarzi-Khoigani M, Kelishadi R. Association between parabens concentrations in human amniotic fluid and the offspring birth size: A Sub-study of the PERSIAN birth cohort. ENVIRONMENTAL RESEARCH 2022; 212:113502. [PMID: 35609656 DOI: 10.1016/j.envres.2022.113502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 05/22/2023]
Abstract
OBJECTIVE Parabens are extensively used, and cause widespread exposure of the general population including pregnant women and developing fetuses to these pollutants. In this study, we aimed to investigate the association between the maternal exposure of parabens to study their transfer passed through the placental barrier to amniotic fluid; the second objective was to determine the association of paraben concentration in the amniotic fluid with the offspring birth size. METHODS This cross-sectional study was conducted from June 2019 to March 2021 in Isfahan, Iran. Samples of amniotic fluid were collected as set from 128 pregnant women at Cesarean section. The amniotic fluid concentrations of four parabens including methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) were determined using gas chromatography tandem mass spectroscopy (GC-Mass). RESULTS The pointed parabens were extracted from yielded clear supernatant using a dispersive liquid-liquid microextraction (DLLME) method. Four paraben derivatives including MP (normal: 0.68 ± 0.7; overweight: 1.40 ± 1.76; obese: 0.30 ± 0.26; p-value: 0.275), EP (normal: 0.14 ± 0.09; overweight: 0.72 ± 0.72; obese: 0.38 ± 0.05; p-value: 0.434), PP (normal: 0.05 ± 0.05; overweight: 0.06 ± 0.06; obese: 0.20 ± 0.17; p-value: 0.770), and BP (normal: 2.89 ± 1.80; overweight: 3.89 ± 6.48; obese: 5.80 ± 7.56; p-value: 0.341) were simultaneously detected in samples of maternal amniotic fluid using GC-MS. In 92.2% (n = 118) of pregnant women, the paraben derivatives (MP, EP, PP, BP) were detected. We found that considerable levels of MP, EP, PP, and BP existed in 22.6% (n = 29), 21.9% (n = 28), 29.7% (n = 38), and 85.2% (n = 109) of samples, respectively. In addition, the correlation between paraben concentrations in amniotic fluid and birth size was investigated. The results showed that an inverse significant association between MP and head circumference, chest, hip, and arm circumference. While a positive correlation between MP and height of newborn was observed. Similar correlations were observed for EP and weight, height, head circumference, chest, hip, and arm. CONCLUSION The current study indicated that parabens have been detected in amniotic fluid samples and a strong/possible correlation between exposure of pregnant women to parabens and the birth size of newborns.
Collapse
Affiliation(s)
- Mohsen Golestanzadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyede Shahrbanoo Daniali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Zarean
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Yazdi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Basirat
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Goodarzi-Khoigani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Senosy IA, Lu ZH, Zhou DD, Abdelrahman TM, Chen M, Zhuang LY, Liu X, Cao YW, Li JH, Hua Yang Z. Construction of a magnetic solid-phase extraction method for the analysis of azole pesticides residue in medicinal plants. Food Chem 2022; 386:132743. [PMID: 35364494 DOI: 10.1016/j.foodchem.2022.132743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
In this work, a sensitive and cost-effective method for the quantitative analysis of azole pesticides residues in six medicinal plants was established based on magnetic cyclodextrin crosslinked with tetrafluoroterephthalonitrile (Fe3O4@TFN-CDPs) coupled with high-performance liquid chromatography (HPLC). Through characterization analysis, the outer shell of Fe3O4@TFN-CDPs has observed coating with a network of the polymer and forming a core-shell structure. Under the optimum conditions, the limits of detection (LODs) and limits of qualification (LOQs) of target pesticides were ranged from 0.011 to 0.106 µg Kg-1 and from 0.036 to 0.354 µg Kg-1, respectively. Finally, the achieved recoveries of pesticides in six medicinal samples fluctuated from 60.1% to 102.3%. Altogether, this method based on Fe3O4@TFN-CDPs composites provided a new idea for the analysis of trace pesticides in complicated matrices.
Collapse
Affiliation(s)
- Ibrahim A Senosy
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Agriculture, Department of Plant Protection, Fayoum University, Fayoum 63514, Egypt
| | - Zhi-Heng Lu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Dong Zhou
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Talat M Abdelrahman
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Agriculture, Department of Plant Protection, Al-Azhar University, Assiut 71524, Egypt
| | - Min Chen
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Lv-Yun Zhuang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Wen Cao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Hong Li
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong- Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Li J, Jiang Y, Yang J, Sun Y, Ma P, Song D. Fabrication of the Metal-Organic Framework Membrane with Excellent Adsorption Properties for Paraben Based on Micro Fibrillated Cellulose. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Gholizadeh Hosein Abadi H, Bazmandegan-Shamili A. Novel Magnetic Molecularly Imprinted Polymer (MMIP) Based on a Magnesium-Aluminum Layered Double Hydroxide for the Selective Dispersive Micro-Solid-Phase Extraction (SPE) of Fenitrothion with Analysis by Ion Mobility Spectrometry. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2068564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Vikrant K, Kim KH, Brown RJC. Magnesium/aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127454. [PMID: 34655876 DOI: 10.1016/j.jhazmat.2021.127454] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, the adsorptive performance of a starch-magnesium/aluminum layered double hydroxide (S-Mg/Al LDH) composite was investigated for different organic dyes in single-component systems by conducting a series of batch mode experiments. S-Mg/Al LDH composite showed preferential adsorption of anionic dyes than cationic dyes. The marked impact of key process variables (e.g., contact time, adsorbent dosage, pH, and temperature) on its adsorption was investigated. Multiple isotherms, kinetics, and thermodynamic models were applied to describe adsorption behavior, diffusion, and uptake rates of the organic dyes over S-Mg/Al LDH composite. A better fitting of the non-linear Langmuir model reflects the predominance of monolayered adsorption of dye molecules on the composite surface. Partition coefficients (mg g-1 μM-1) for S-Mg/Al LDH were observed in the following descending order: Amaranth (665) > Tartrazine (186) > Sunset yellow (71) > Eosin yellow (65). Furthermore, comparative evaluation of the adsorption enthalpy, entropy, and Gibbs free energy values indicates that the adsorption process is spontaneous and exothermic. S-Mg/Al LDH composite maintained a stable adsorption/desorption recycling process over six consecutive cycles with the advantages of low cost, chemical/mechanical stability, and easy recovery. The results of this study are expected to expand the application of modified LDHs toward wastewater treatment.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | | | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington TW11 0LW, UK
| |
Collapse
|
17
|
Abdar A, Amiri A, Mirzaei M. Semi-automated solid-phase extraction of polycyclic aromatic hydrocarbons based on stainless steel meshes coated with metal-organic framework/graphene oxide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Khongkla S, Phonchai A, Nurerk P, Bunkoed O. A hierarchical composite ZnO@Carbon foam/PVA cryogel sorbent for the extraction and enrichment of parabens and synthetic phenolic antioxidant in fruit juice. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Iribarne-Durán LM, Peinado FM, Freire C, Castillero-Rosales I, Artacho-Cordón F, Olea N. Concentrations of bisphenols, parabens, and benzophenones in human breast milk: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150437. [PMID: 34583069 DOI: 10.1016/j.scitotenv.2021.150437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Breast milk is the main source of nutrition for infants but may be responsible for their exposure to environmental chemicals, including endocrine-disrupting chemicals. AIM To review available evidence on the presence and concentrations of bisphenols, parabens (PBs), and benzophenones (BPs) in human milk and to explore factors related to exposure levels. METHODS A systematic review was carried out using Medline, Web of Science, and Scopus databases, conducting a comprehensive search of peer-reviewed original articles published during the period 2000-2020, including epidemiological and methodological studies. Inclusion criteria were met by 50 studies, which were compiled by calculating weighted detection frequencies and arithmetic mean concentrations of the chemicals. Their risk of bias was assessed using the ROBINS-I checklist. RESULTS Among the 50 reviewed studies, concentrations of bisphenols were assessed by 37 (74.0%), PBs by 21 (42.0%), and BPs by 10 (20.0%). Weighted detection frequencies were 63.6% for bisphenol-A (BPA), 27.9-63.4% for PBs, and 39.5% for benzophenone-3 (BP-3). Weighted mean concentrations were 1.4 ng/mL for BPA, 0.2-14.2 ng/mL for PBs, and 24.4 ng/mL for BP-3. Mean concentrations ranged among studies from 0.1 to 3.9 ng/mL for BPA, 0.1 to 1063.6 ng/mL for PBs, and 0.5 to 72.4 ng/mL for BP-3. The highest concentrations of BPA and PBs were reported in samples from Asia (versus America and Europe). Higher BPA and lower methyl-paraben concentrations were observed in samples collected after 2010. Elevated concentrations of these chemicals were associated with socio-demographic and lifestyle factors in eight studies (16.0%). Two epidemiological studies showed moderate/serious risk of bias. CONCLUSIONS This systematic review contributes the first overview of the widespread presence and concentrations of bisphenols, PBs, and BPs in human breast milk, revealing geographical and temporal variations. The methodological heterogeneity of published studies underscores the need for well-conducted studies to assess the magnitude of exposure to these chemicals from human milk.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - C Freire
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain
| | | | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E-18016 Granada, Spain.
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E-18016 Granada, Spain; Unidad de Medicina Nuclear, Hospital Universitario San Cecilio, E-18016 Granada, Spain
| |
Collapse
|
20
|
Fattahi N, Hashemi B, Shiri F, Shamsipur M, Babajani N. Extraction of parabens from personal care products using a pH-responsive hydrophobic deep eutectic solvent: experimental design and COSMO-RS evaluations. NEW J CHEM 2022. [DOI: 10.1039/d2nj02519a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A pH-responsive hydrophobic deep eutectic solvent is used for the extraction of parabens from different personal care products.
Collapse
Affiliation(s)
- Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Beshare Hashemi
- School of Arts and Sciences, American International University, Jahra, Kuwait
| | - Fereshteh Shiri
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Mojtaba Shamsipur
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Nasrin Babajani
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
21
|
Numerical investigations of response surface methodology for organic dye adsorption onto Mg-Al LDH -GO Nano Hybrid: An optimization, kinetics and isothermal studies. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Farahmandi M, Yamini Y, Baharfar M, Karami M. Dispersive magnetic solid phase microextraction on microfluidic systems for extraction and determination of parabens. Anal Chim Acta 2021; 1188:339183. [PMID: 34794570 DOI: 10.1016/j.aca.2021.339183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/06/2023]
Abstract
In this study, a customized microfluidic system was utilized for magnetic solid phase extraction of parabens. For this sake, magnetite nanoparticles were synthesized and coated with polyaniline to enable efficient extraction and magnetic separation of sorbents particles. The synthesized particles were extensively characterized in terms of morphology, composition, and magnetic properties. The utilized microfluidic platform consisted of a relatively long spiral microchannel fabricated through laser-cutting and multi-layered assembly. To obtain an efficient dispersion, simultaneous flows of sample solution and magnetic beads dispersion were introduced to the chip with the aid of two syringe pumps. In order to increase the stability of the dispersed nanoparticles in the aqueous solution, various chemical and instrumental parameters were investigated and optimized. In this context, exploitation of hydrophobic surfactants and surface charge manipulation of the particles was shown to be a highly promising approach for effective dispersion and maintenance of magnetic beads in long microfluidic channels. Under the optimized conditions, the calibration curves were linear in the range of 5.0-1000.0 μg L-1 for propyl paraben and 8.0-1000.0 μg L-1 for methyl- and ethyl paraben with coefficients of determination greater than 0.992. Relative standard deviations were assessed as intra- and inter-day values which were less than 7.2% and the preconcentration factors in water were 10-15 for 100 μg L-1 of parabens in water. Finally, the method was applied for the extraction of parabens from fruit juice, sunscreen, and urine samples which showed favorable accuracy and precision.
Collapse
Affiliation(s)
- Maryam Farahmandi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Monireh Karami
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
23
|
Hatami E, Ashraf N, Arbab-Zavar MH. Construction of β-Cyclodextrin-phosphomolybdate grafted polypyrrole composite: Application as a disposable electrochemical sensor for detection of propylparaben. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
|
25
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. ENVIRONMENTAL RESEARCH 2021; 198:110488. [PMID: 33221305 DOI: 10.1016/j.envres.2020.110488] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Parabens usage as preservatives in cosmetics and personal care products have been debated among scientists and consumers. Parabens are easy to production, effective and cheap, but its safety status remains controversial. Other popular cosmetics preservatives are formaldehyde, triclosan, methylisothiazolinone, methylchloroisothiazolinone, phenoxyethanol, benzyl alcohol and sodium benzoate. Although their high antimicrobial effectiveness, they also exhibit some adverse health effects. Lately, scientists have shown that natural substances such as essential oils and plant extracts present antimicrobial potential. However, their use in cosmetic is a challenge. The present review article is a comprehensive summary of the available methods to prevent microbial contamination of cosmetics and personal care products, which can allow reducing the use of parabens in these products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
26
|
The enrichment and extraction of parabens with polydopamine-coated microporous carrageenan hydrogel beads incorporating a hierarchical composite of metal-organic frameworks and magnetite nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Alampanos V, Samanidou V. An overview of sample preparation approaches prior to liquid chromatography methods for the determination of parabens in biological matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Mashile GP, Mpupa A, Nomngongo PN. Magnetic Mesoporous Carbon/β-Cyclodextrin-Chitosan Nanocomposite for Extraction and Preconcentration of Multi-Class Emerging Contaminant Residues in Environmental Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:540. [PMID: 33672631 PMCID: PMC7924173 DOI: 10.3390/nano11020540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022]
Abstract
This study reports the development of magnetic solid-phase extraction combined with high-performance liquid chromatography for the determination of ten trace amounts of emerging contaminants (fluoroquinolone antibiotics, parabens, anticonvulsants and β-blockers) in water systems. Magnetic mesoporous carbon/β-cyclodextrin-chitosan (MMPC/Cyc-Chit) was used as an adsorbent in dispersive magnetic solid-phase extraction (DMSPE). The magnetic solid-phase extraction method was optimized using central composite design. Under the optimum conditions, the limits of detection (LODs) ranged from 0.1 to 0.7 ng L-1, 0.5 to 1.1 ng L-1 and 0.2 to 0.8 ng L-1 for anticonvulsants and β-blockers, fluoroquinolone and parabens, respectively. Relatively good dynamic linear ranges were obtained for all the investigated analytes. The repeatability (n = 7) and reproducibility (n = 5) were less than 5%, while the enrichment factors ranged between 90 and 150. The feasibility of the method in real samples was assessed by analysis of river water, tap water and wastewater samples. The recoveries for the investigated analytes in the real samples ranged from 93.5 to 98.8%, with %RSDs under 4%.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
29
|
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Kukkar D, Kim KH. Chitosan-Ni/Fe layered double hydroxide composites as an efficient solid phase extraction sorbent for HPLC-PDA monitoring of parabens in personal care products. CHEMOSPHERE 2021; 264:128429. [PMID: 33011479 DOI: 10.1016/j.chemosphere.2020.128429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
There is a dire need for development of efficient and sensitive methods to efficiently screen parabens. In this research, we focused on quantification of four parabens (i.e., methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butyl paraben (BP)) using chitosan intercalated nickel/iron layered double hydroxide (CS-Ni/Fe-LDH) composites as solid phase extraction sorbent prior to HPLC-PDA analysis. CS-Ni/Fe LDH composites with a heterogeneous, porous texture, and coral reef-like structure exhibit appealing extraction efficiency for the target parabens due to the enhanced possibility for the formation of hydrogen bonding and hydrophobic interactions. The performance of the composites was assessed and optimized for solid phase extraction of parabens from standard samples and real samples (rose water, cream, toothpaste, hair serum, and sunscreen). The LDH-SPE-HPLC method exhibited a wide linear range (e.g., 100-50,000 ng L-1), good linearity (R2 ≥ 0.999), and good precision (relative standard deviation (RSD) < 3%). This method successfully enriched selected parabens with remarkable recovery above 85.95% and a good RSD (0.01-2.90%). The quantitation of MP, EP, PP, and BP was made at detection range (and limits of detection (LOD)) of 5-15 (9.8), 11-21 (16.2), 6-18 (12.4), and 10-20 (15.6) ng L-1, respectively. The prepared composites also displayed excellent performance with enhanced reusability/durability (n = 30 cycles) and reproducibility (n = 5).
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India; Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | | | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
30
|
Mohiuddin I, Grover A, Aulakh JS, Malik AK, Lee SS, Brown RJC, Kim KH. Starch-Mg/Al layered double hydroxide composites as an efficient solid phase extraction sorbent for non-steroidal anti-inflammatory drugs as environmental pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123782. [PMID: 33113735 DOI: 10.1016/j.jhazmat.2020.123782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Using a co-precipitation method, starch-Mg/Al layered double hydroxide (S-Mg/Al LDH) composites were synthesized. Their physicochemical properties were assessed by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermo-gravimetric analysis. The quantification of six non-steroidal anti-inflammatory drugs (NSAIDs) was conducted using real samples (e.g., hospital waste water, river water, sewage treatment plant water, and tablet formulations) by gas chromatography-mass spectrometry. For the development of this method, the system was optimized in terms of several key variables (e.g., pH, flow rate, and eluent type/volume). The developed method for NSAIDs exhibited good resolution, sensitivity, reproducibility, and specificity even in complex matrices with limits of detection between 4 and 20 pg/mL. Hence, S-Mg/Al LDH composites were proven to be efficient and fast solid phase extraction (SPE) sorbents for NSAIDs. In addition, each LDH-SPE cartridge showed good reusability without a noticeable change in performance (e.g., up to 30 cycles) and target recoveries between 99.5 - 82.9 %. This work should open up new opportunities for a sesnsitive and sustainable quantitative method for the determination of NSAIDs in complex samples.
Collapse
Affiliation(s)
- Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Aman Grover
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | | | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
31
|
Sun F, Bai L, Li M, Yu C, Liu H, Qiao X, Yan H. Fabrication of edge-curled petals-like covalent organic frameworks and their properties for extracting indole alkaloids from complex biological samples. J Pharm Anal 2020; 12:96-103. [PMID: 35573883 PMCID: PMC9073138 DOI: 10.1016/j.jpha.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, a functionalized covalent-organic framework (COF) was first synthesized using porphyrin as the fabrication unit and showed an edge-curled, petal-like and well-ordered structure. The synthesized COF was then introduced to prepare porous organic polymer monolithic materials (POPMs). Two composite POPM/COF monolithic materials with rod shapes, referred to as sorbent A and sorbent B, were prepared in stainless steel tubes using different monomers. Sorbents A and B exhibited relatively uniform porous structures and enhanced specific surface areas of 153.14 m2/g and 80.01 m2/g, respectively. The prepared composite monoliths were used as in-tube solid-phase extraction (SPE) sorbents combined with HPLC for the on-line extraction and quantitative analytical systems. Indole alkaloids (from Catharanthus roseus G. Don and Uncaria rhynchophylla (Miq.) Miq. Ex Havil.) contained in mouse plasma were extracted and quantitatively analyzed using the online system. The two composite multifunctional monoliths showed excellent clean-up ability for complex biological matrices, as well as superior selectivity for target indole alkaloids. Method validation showed that the RSD values of the repeatability (n=6) were ≤ 3.46%, and the accuracy expressed by the spiked recoveries was in the ranges of 99.38%–100.91% and 96.39%–103.50% for vinca alkaloids and Uncaria alkaloids, respectively. Furthermore, sorbents A and B exhibited strong reusability, with RSD values ≤ 5.32%, which were based on the peak area of the corresponding alkaloids with more than 100 injections. These results indicate that the composite POPM/COF rod-shaped monoliths are promising media as SPE sorbents for extracting trace compounds in complex biological samples. Edge-curled petals-like COF was synthesized using porphyrin as the fabrication unit. In-tube monolithic POMP/COF composite SPE sorbents with rod-shape were fabricated. The in-tube sorbents were used to extract hence indole alkaloids from complex samples. The two homemade sorbents show strong reusability of more than 100 times.
Collapse
Affiliation(s)
- Fanrong Sun
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
- Corresponding author. College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Mingxue Li
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Changqing Yu
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
- Corresponding author. College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
32
|
Mirzaee MT, Seidi S, Razeghi Y, Manouchehri M, Shanehsaz M. In-tube stir bar sorptive extraction based on 3-aminopropyl triethoxysilane surface-modified Ce-doped ZnAl layered double hydroxide thin film for determination of nonsteroidal anti-inflammatory drugs in saliva samples. Mikrochim Acta 2020; 187:528. [PMID: 32860534 DOI: 10.1007/s00604-020-04489-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
A thin-film based on 3-aminopropyl triethoxysilane surface-modified Ce-doped zinc-aluminum layered double hydroxide was synthesized on the inner surface of an aluminum tube. It has been applied to in-tube stir bar sorptive extraction of nonsteroidal anti-inflammatory drugs in saliva samples followed by high-performance liquid chromatography. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and elemental mapping. The extraction parameters including sample pH (4.2), extraction time (10 min), stirring speed (800 rpm), type of eluent (acidified tetrahydrofuran), eluent volume (100 μL), and desorption time (6 min) were thoroughly optimized. Under the optimum conditions, limits of detection were found to be less than 5.0 ng mL-1. Calibration plots were linear within the range 10-1000 ng mL-1 (R2 > 0.9982). Absolute recoveries were calculated in the range 63.5 to 72.4%. The repeatability (intra- and inter-day precision) and reproducibility (tube-to-tube precision) at concentrations of 50, 250, and 500 ng mL-1 were less than 7.6% and 9.4%, respectively. The method accuracy based on the relative error was calculated at these concentrations and ranged from - 4.9 to - 9.3% for intra-day relative error (%) and - 6.8 to - 11% for inter-day relative error (%). Finally, the method applicability was examined for the determination of nonsteroidal anti-inflammatory drugs in saliva samples, and good relative recoveries were obtained within the range 86.5 to 95.2%. As a result, the introduced method can be applied as a suitable alternative to measuring nonsteroidal anti-inflammatory drugs in biological fluids. Graphical abstract A surface-modified Ce-doped ZnAl LDH thin film was synthesized on the inner surface of an Al tube and applied for in-tube stir bar sorptive extraction of NSAIDs in saliva.
Collapse
Affiliation(s)
- Mahsa Torabi Mirzaee
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Maryam Shanehsaz
- Analytical Chemistry Research Laboratory, Mobin Shimi Azma Company, Tehran, Iran
| |
Collapse
|
33
|
Barabi A, Seidi S, Rouhollahi A, Manouchehri M, Shanehsaz M, Rasouli F. Electrochemically synthesized NiFe layered double hydroxide modified Cu(OH) 2 needle-shaped nanoarrays: A novel sorbent for thin-film solid phase microextraction of antifungal drugs. Anal Chim Acta 2020; 1131:90-101. [PMID: 32928484 DOI: 10.1016/j.aca.2020.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023]
Abstract
Herein, we applied a simple electrosynthesis process to deposit nickel-iron layered double hydroxides (NiFe LDH) on the surface of copper hydroxide (Cu(OH)2) needle-shaped nanoarrays and introduce a new sorbent for thin-film solid phase microextraction (TF-SPME). For this purpose, the nanoarrays were grown via electrochemical anodization on a copper foil's surface and then modified with NiFe LDH. The synthesized sorbent was characterized by field emission-scanning electron microscopy, Brunauer-Emmett-Teller (BET), and Barrett-Joiner-Halenda (BJH) analysis, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The Cu(OH)2-NiFe LDH based TF-SPME method was used to measure antifungal drugs in veterinary plasma samples followed by HPLC-UV analysis. The effects of various parameters in the extraction efficiency, including pH (5.0), extraction time (20 min), stirring rate (500 rpm), and salt effect (5.0%), type of eluent (acetonitrile), eluent volume (100 μL) and desorption time (5 min) were thoroughly optimized. Under the optimum conditions, limits of detection for ketoconazole, clotrimazole, and miconazole were obtained below 10 ng mL-1. Intra-day, inter-day and film-to-film RSDs% were obtained less than 6.2%, 7.3% and 7.0%, respectively. Moreover, calibration plots were linear from 30 to 5000 ng mL-1 for ketoconazole, 8.0-1000 ng mL-1 for clotrimazole, and 15-1000 ng mL-1 for miconazole, with determination coefficients between 0.9937 and 0.9971. Finally, good relative recoveries (%) in the range of 85-97% were obtained for measuring trace amounts of antifungal drugs in dogs' plasma samples. As a result, the method can be considered as an appropriate alternative to the conventional sample preparation methods for measuring trace amounts of antifungal drugs in biological samples.
Collapse
Affiliation(s)
- Ailin Barabi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran.
| | - Ahmad Rouhollahi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Mahshid Manouchehri
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Maryam Shanehsaz
- Analytical Chemistry Research Laboratory, Mobin Shimi Azma Company, Tehran, Iran
| | - Fatemeh Rasouli
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
34
|
Li J, Han Y, Li X, Xiong L, Wei L, Cheng X. Analysis of methylparaben in cosmetics based on a chemiluminescence H 2 O 2 -NaIO 4 -CNQDs system. LUMINESCENCE 2020; 36:79-84. [PMID: 32706930 DOI: 10.1002/bio.3922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022]
Abstract
In this article, a simple, effective chemiluminescence (CL) method for the detection of methylparaben (MP) in cosmetic samples was developed based on an IO4 - -H2 O2 -carbon nitrogen quantum dots (CNQDs) system without a separation process. The results indicated that the redox reaction between periodate and hydrogen peroxide released hydroxide radicals and superoxide radical anions in the presence of bicarbonate. These two radicals were responsible for the formation of excited luminophor CNQD* with a maximum wavelength at 480 nm. Due to the competitive reaction with hydroxide radicals, CL intensity was markedly diminished in the presence of MP. The relative standard deviation in the intraday assay was below 5.5% (n = 9), and the detection limit was as low as 0.50 μmol/L. The proposed method allowed for the successful, selective determination of MP in cosmetics.
Collapse
Affiliation(s)
- Jie Li
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Yingzi Han
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Xinyue Li
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Liping Xiong
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Lijun Wei
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Xianglei Cheng
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Hajebi N, Seidi S, Ramezani M, Manouchehri M. Electrospun polyamide/graphene oxide/polypyrrole composite nanofibers: an efficient sorbent for headspace solid phase microextraction of methamphetamine in urine samples followed by GC-MS analysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03240a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel polyamide/graphene oxide/polypyrrole nanofiber was fabricated with the aid of the electrospinning technique and applied in headspace solid phase microextraction.
Collapse
Affiliation(s)
- Nima Hajebi
- Department of Chemistry
- Arak Branch
- Islamic Azad University
- Arak
- Iran
| | - Shahram Seidi
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| | - Majid Ramezani
- Department of Chemistry
- Arak Branch
- Islamic Azad University
- Arak
- Iran
| | - Mahshid Manouchehri
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| |
Collapse
|