1
|
Han A, Baek Y, Lee HG. Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin. Foods 2025; 14:385. [PMID: 39941977 PMCID: PMC11816578 DOI: 10.3390/foods14030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The emulsification of natural pigment is a widely utilized strategy to enhance its stability in the food industry. However, high turbidity in emulsions often causes color fading, limiting their application. Here, we developed a comprehensive Pickering emulsion (PE) system to improve the color intensity and stability of turmeric oleoresin (Tur) under various food processing conditions. Specifically, the effects of two encapsulation positions within the PE were compared: the inner oil phase (Tur-IPE) and the outer solid particle layer (Tur-OPE). Lysozyme and carboxymethyl cellulose nanoparticles (NPs) were used as natural solid particle surfactants, with their successful formation confirmed through physical property analysis and FTIR spectroscopy. The optimal oil fraction (φ) for suitable physical properties of PE was determined to be 0.2. Interestingly, Tur-OPE significantly exceeded Tur-conventional emulsions (Tur-CE) and Tur-IPE in terms of color vividness, exhibiting higher redness and lower lightness (p < 0.05). During thermal processing at 70 and 90 °C, all emulsions demonstrated significantly enhanced heat resistance, retaining 1.3 to 1.6 times more Tur, respectively, compared to unencapsulated Tur (free Tur) (p < 0.05). Furthermore, Tur's pH instability was significantly overcome by encapsulation in all emulsion systems (p < 0.05). During 4 weeks of storage period, Tur-OPE demonstrated the highest retention rates, with the half-life of Tur increasing in the following order: free Tur < Tur-CE < Tur-IPE < Tur-OPE. Thus, we highlighted the important role of encapsulation position in PEs in improving and maintaining the color stability and vividness of natural pigments under various food processing conditions.
Collapse
Affiliation(s)
| | | | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (A.H.); (Y.B.)
| |
Collapse
|
2
|
Basile G, De Luca L, Sorrentino G, Calabrese M, Esposito M, Pizzolongo F, Romano R. Green technologies for extracting plant waste functional ingredients and new food formulation: A review. J Food Sci 2024; 89:8156-8174. [PMID: 39495566 DOI: 10.1111/1750-3841.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Nowadays, there is a growing interest in food waste recovery by both consumers and companies. Food waste of plant origin is a source of bioactive compounds, such as phenolic acids, anthocyanins, flavonoids, phytosterols, carotenoids, and tocopherols, with well-known antioxidant, anti-glycemic, and antimicrobial properties. The use of green and sustainable technologies to recover bioactive compounds from food waste is a possible solution to valorize waste following the principles of green chemistry. Furthermore, today's consumers are more attracted, informed, and aware of the benefits associated with the consumption of functional foods, and with this in mind, the use of extracts rich in beneficial compounds obtained by green technologies from food waste can be a valid alternative to prepare functional foods. In this review, the recovery of polyphenols and fibers with green technologies from food waste for the formulation of functional foods was presented.
Collapse
Affiliation(s)
- Giulia Basile
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Giovanni Sorrentino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Martina Calabrese
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Mariarca Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone I, Portici (NA), Italy
| |
Collapse
|
3
|
Silva PBVD, Brenelli LB, Mariutti LRB. Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis. Food Res Int 2023; 169:112838. [PMID: 37254412 DOI: 10.1016/j.foodres.2023.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Food loss and waste are severe social, economic, and environmental issues. An example is the incorrect handling of waste or by-products used to obtain bioactive compounds, such as carotenoids. This review aimed to present a comprehensive overview of research on lycopene, phytoene, and phytofluene obtained from waste and by-products. In this study, an integrative literature approach was coupled with bibliometric analysis to provide a broad perspective of the topic. PRISMA guidelines were used to search studies in the Web of Science database systematically. Articles were included if (1) employed waste or by-products to obtain lycopene, phytoene, and phytofluene or (2) performed applications of the carotenoids previously extracted from waste sources. Two hundred and four articles were included in the study, and the prevalent theme was research on the recovery of lycopene from tomato processing. However, the scarcity of studies on colorless carotenoids (phytoene and phytofluene) was evidenced, although these are generally associated with lycopene. Different technologies were used to extract lycopene from plant matrices, with a clear current trend toward choosing environmentally friendly alternatives. Microbial production of carotenoids from various wastes is a highly competitive alternative to conventional processes. The results described here can guide future forays into the subject, especially regarding research on phytoene and phytofluene, potential and untapped sources of carotenoids from waste and by-products, and in choosing more efficient, safe, and environmentally sustainable extraction protocols.
Collapse
Affiliation(s)
- Pedro Brivaldo Viana da Silva
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | | | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Afraz MT, Xu X, Adil M, Manzoor MF, Zeng XA, Han Z, Aadil RM. Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods 2023; 12:2417. [PMID: 37372628 DOI: 10.3390/foods12122417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The valorization of industrial fruit and vegetable waste has gained significant attention due to the environmental concerns and economic opportunities associated with its effective utilization. This review article comprehensively discusses the application of subcritical and supercritical fluid technologies in the valorization process, highlighting the potential benefits of these advanced extraction techniques for the recovery of bioactive compounds and unconventional oils from waste materials. Novel pressurized fluid extraction techniques offer significant advantages over conventional methods, enabling effective and sustainable processes that contribute to greener production in the global manufacturing sector. Recovered bio-extract compounds can be used to uplift the nutritional profile of other food products and determine their application in the food, pharmaceutical, and nutraceutical industries. Valorization processes also play an important role in coping with the increasing demand for bioactive compounds and natural substitutes. Moreover, the integration of spent material in biorefinery and biorefining processes is also explored in terms of energy generation, such as biofuels or electricity, thus showcasing the potential for a circular economy approach in the management of waste streams. An economic evaluation is presented, detailing the cost analysis and potential barriers in the implementation of these valorization strategies. The article emphasizes the importance of fostering collaboration between academia, industry, and policymakers to enable the widespread adoption of these promising technologies. This, in turn, will contribute to a more sustainable and circular economy, maximizing the potential of fruit and vegetable waste as a source of valuable products.
Collapse
Affiliation(s)
- Muhammad Talha Afraz
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Xindong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Muhammad Adil
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- School of Food Science and Engineering, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
5
|
Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers. Processes (Basel) 2022. [DOI: 10.3390/pr10122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The food, cosmetic and pharmaceutical industries have strong demands for lycopene, the carotenoid with the highest antioxidant activity. Usually, this carotenoid is extracted from tomatoes using various extraction methods. This work aims to improve the quantity and quality of extracts from tomato slices by enhancing the recovery of the carotenoids from the solid matrix to the solvent using 20 w/w% seeds as modifiers and supercritical CO2 extraction with optimal parameters as the method. Tomato (TSM), camelina (CSM) and hemp (HSM) seeds were used as modifiers due to their quality (polyunsaturated fatty acids content of 53–72%). A solubility of ~10 mg carotenoids/100 g of oil was obtained for CSM and HSM, while, for TSM, the solubility was 28% higher (due to different compositions of long carbon chains). An increase in the extraction yield from 66.00 to 108.65 g extract/kg dried sample was obtained in the following order: TSM < HSM < CSM. Two products, an oil rich in carotenoids (203.59 mg/100 g extract) and ω3-linolenic acid and a solid oleoresin rich in lycopene (1172.32 mg/100 g extract), were obtained using SFE under optimal conditions (450 bar, 70 °C, 13 kg/h and CSM modifier), as assessed by response surface methodology. A recommendation is proposed for the use of these products in the food industry based on their quality.
Collapse
|
6
|
Lycopene extract from tomato concentrate and its co-precipitation with PVP using hybrid supercritical processes. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Lu P, Wu H, Gu J, Nawaz MA, Ma X, Suleria HA. Impact of processing on bioaccessibility of phytochemicals in nuts. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Peiyao Lu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Wuxi Food Safety Inspection and Test Center, Wuxi, Jiangsu, Province China
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jingyu Gu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Malik A. Nawaz
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Werribee, Victoria, Australia
| | - Xueying Ma
- Wuxi Food Safety Inspection and Test Center, Wuxi, Jiangsu, Province China
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Parkville, VIC, Australia
| |
Collapse
|
8
|
A Systematic Review on Waste as Sustainable Feedstock for Bioactive Molecules—Extraction as Isolation Technology. Processes (Basel) 2022. [DOI: 10.3390/pr10081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In today’s linear economy, waste streams, environmental pollution, and social–economic differences are increasing with population growth. The need to develop towards a circular economy is obvious, especially since waste streams are composed of valuable compounds. Waste is a heterogeneous and complex matrix, the selective isolation of, for example, polyphenolic compounds, is challenging due to its energy efficiency and at least partially its selectivity. Extraction is handled as an emerging technology in biorefinery approaches. Conventional solid liquid extraction with organic solvents is hazardous and environmentally unfriendly. New extraction methods and green solvents open a wider scope of applications. This research focuses on the question of whether these methods and solvents are suitable to replace their organic counterparts and on the definition of parameters to optimize the processes. This review deals with the process development of agro-food industrial waste streams for biorefineries. It gives a short overview of the classification of waste streams and focuses on the extraction methods and important process parameters for the isolation of secondary metabolites.
Collapse
|
9
|
Popescu M, Iancu P, Plesu V, Todasca MC, Isopencu GO, Bildea CS. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Molecules 2022; 27:4191. [PMID: 35807434 PMCID: PMC9268186 DOI: 10.3390/molecules27134191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
Lycopene, β-carotene and ω-fatty acids are major compounds in tomatoes with known antioxidant activity, capable of preventing health disorders. The identification of potential natural sources of antioxidants, extraction efficiencies and antioxidant activity assessments are essential to promote such products to be used in the food, pharmaceutical or cosmetic industries. This work presents four added-value products recovered from tomatoes: pigmented solid oleoresin, pigmented oil and two raw extracts from supercritical and Soxhlet extraction. Different parameters including the matrices of tomatoes, extraction methods, green solvents and operating parameters were varied to obtain extracts with different qualities. Extract analysis was performed using UV-VIS, FT-IR, GC-MS, Folin-Ciocalteu and DPPH methods. The highest-quality extract was the solid oleoresin obtained from pomace using supercritical CO2 extraction at 450 bar, 70 °C and 11 kg/h: 1016.94 ± 23.95 mg lycopene/100 g extract, 154.87 ± 16.12 mg β-carotene/100 g extract, 35.25 ± 0.14 mg GAE/g extract and 67.02 ± 5.11% inhibition DPPH. The economic feasibility of the three extraction processes (1:10:100 kg dried pomace/batch as scalability criterion) was evaluated. The most profitable was the supercritical extraction process at the highest capacity, which produces pigmented solid oleoresin and oil with high content of lycopene valorized with a high market price, using natural food waste (pomace).
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Petrica Iancu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Valentin Plesu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Maria Cristina Todasca
- Department of Organic Chemistry Costin Nenitescu, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building P, Room 014-015, RO-011061 Bucharest, Romania;
| | - Gabriela Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Costin Sorin Bildea
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| |
Collapse
|
10
|
Añibarro-Ortega M, Pinela J, Alexopoulos A, Petropoulos SA, Ferreira ICFR, Barros L. The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:131-172. [PMID: 35659351 DOI: 10.1016/bs.afnr.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Solanaceae family is considered one of the most important families among plant species because, on one hand encompasses many staple food crops of the human diet while, on the other hand, it includes species rich in powerful secondary metabolites that could be valorized in medicine or drug formulation as well as nutraceuticals and food supplements. The main genera are Solanum, Capsicum, Physalis, and Lycium which comprise several important cultivated crops (e.g., tomato, pepper, eggplant, tomatillo, and goji berry), as well as genera notable for species with several pharmaceutical properties (e.g., Datura, Nicotiana, Atropa, Mandragora, etc.). This chapter discusses the nutritional value of the most important Solanaceae species commonly used for their edible fruit, as well as those used in the development of functional foods, food supplements, and nutraceuticals due to their bioactive constituents. The toxic and poisonous effects are also discussed aiming to highlight possible detrimental consequences due to irrational use. Finally, considering the high amount of waste and by-products generated through the value chain of the main crops, the sustainable management practices implemented so far are presented with the aim to increase the added-value of these crops.
Collapse
Affiliation(s)
- Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| | - Alexios Alexopoulos
- Laboratory of Agronomy, Department of Agriculture, University of the Peloponnese, Kalamata, Messinia, Greece
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| |
Collapse
|
11
|
Recovery of Carotenoids from Tomato Pomace Using a Hydrofluorocarbon Solvent in Sub-Critical Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The enrichment of oils with nutraceutical bioactive phytomolecules allows the achievement of functional oil-based products of great interest in the food, pharmaceutical, and cosmetic fields. Carotenoids, such as lycopene and β-carotene, are available at a high concentration in tomatoes and tomato waste products, as peels, seeds, and pulp; their recovery is recently attracting growing interest and economic importance in the food industry, and also in consideration of the huge amount of industrial waste produced. The aim of this work is to study the production of an oil functionalized with carotenoids from tomato peels. The extractions were carried out using an innovative process based on the use of commercial Norflurane as solvent in subcritical conditions. Extraction trials were performed on dried tomato peels, with the addition of tomato seeds or wheat germ flour as sources of oily co-solvents, capable of also preserving the biological characteristics of the carotenoids extracted. Although lycopene solubility in Norflurane is quite low, the solvent recirculation and regeneration were allowed to reach a concentration in the oily extracts of approximately 0.3 mg/goil after 2 h of the process. The enrichment in β-carotene was more pronounced, and concentrations of 0.733 mg/goil and 0.952 mg/goil were observed in wheat germ and tomato seed oils, respectively. The results obtained in this study were compared with those obtained by traditional and supercritical CO2 extraction methods.
Collapse
|
12
|
Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, Ayala Valencia G, Rodrigues Monteiro A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int 2022; 153:110929. [DOI: 10.1016/j.foodres.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
|
13
|
Cellulose Isolation from Tomato Pomace Pretreated by High-Pressure Homogenization. Foods 2022; 11:foods11030266. [PMID: 35159418 PMCID: PMC8833915 DOI: 10.3390/foods11030266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
This work proposes a biorefinery approach for the utilization of agri-food residues, such as tomato pomace (TP), through combining chemical hydrolysis with high-pressure homogenization (HPH), aiming to achieve the isolation of cellulose with tailored morphological properties from underused lignocellulose feedstocks, along with the valorization of the value-added compounds contained in the biomass. Cellulose was isolated from TP using sequential chemical hydrolysis in combination with mechanical pretreatment through HPH. The chemical and structural features of cellulose isolated from TP pretreated by HPH were compared with cellulose isolated from untreated TP through light scattering for particle size distribution, optical and scanning electron microscopy, and Fourier-transform infrared spectroscopy (FT-IR) analysis. HPH pretreatment (80 MPa, 10 passes) not only promoted a slight increase in the yield of cellulose extraction (+9%) but contributed to directly obtaining defibrillated cellulose particles, characterized by smaller irregular domains containing elongated needle-like fibers. Moreover, the selected mild chemical process produced side streams rich in bioactive molecules, evaluated in terms of total phenols and reducing activity. The liquors recovered from acid hydrolysis of TP exhibited a higher biological activity than those obtained through a conventional extraction (80% v/v acetone, 25 °C, 24 h at 180 rpm).
Collapse
|
14
|
Abstract
Tomato processing leads to the production of considerable amounts of residues, mainly in the form of tomato skins, seeds and vascular tissues, which still contain bioactive molecules of interest for food, pharmaceutical and nutraceutical industries. These include carotenoids, such as lycopene and β-carotene, tocopherols and sitosterols, among others. Supercritical fluid extraction is well positioned for the valorization of tomato residues prior to disposal, because it remains an environmentally safe extraction process, especially when using carbon dioxide as the solvent. In this article, we provide an extensive literature overview of the research on the supercritical fluid extraction of tomato residues. We start by identifying the most relevant extractables present in tomatoes (e.g., lycopene) and their main bioactivities. Then, the main aspects affecting the extraction performance are covered, starting with the differences between tomato matrixes (e.g., seeds, skins and pulp) and possible pretreatments to enhance extraction (e.g., milling, drying and enzymatic digestion). Finally, the effects of extraction conditions, such as pressure, temperature, cosolvent, flow rate and time, are discussed.
Collapse
|
15
|
Guerra AS, Hoyos CG, Molina-Ramírez C, Velásquez-Cock J, Vélez L, Gañán P, Eceiza A, Goff HD, Zuluaga R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Role of virgin coconut oil (VCO) as co-extractant for obtaining xanthones from mangosteen (Garcinia mangostana) pericarp with supercritical carbon dioxide extraction. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Dhakane-Lad J, Kar A. Supercritical CO 2 extraction of lycopene from pink grapefruit (Citrus paradise Macfad) and its degradation studies during storage. Food Chem 2021; 361:130113. [PMID: 34062453 DOI: 10.1016/j.foodchem.2021.130113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/22/2023]
Abstract
Lycopene was extracted from pink grapefruit using SC-CO2 and rice bran oil as co-solvent. Response surface methodology was employed to evaluate the individual and interactive effects of three process parameters varied at five levels i.e. pressure (250, 300, 375, 450 & 500 bar), temperature (55, 60, 70, 80 & 85 °C), and extraction time (60, 90, 135, 180 & 210 min). Single optimum point for multiple response variables was achieved at 325 bar, 64 °C, and 143 min with overall desirability of 0.92 at which 70.52 ± 3.65% (lycopene extraction efficiency) and 11154 ± 148 ppm (γ-oryzanol) were predicted. Extraction temperatures of more than 80 °C and time beyond 180 min led to the isomerization of lycopene. Lycopene storage at 3 °C, 10 °C, & 25 °C showed average k and half-life values as 0.018, 0.030, & 0.075 and 40, 23, & 9 days, respectively for first-order degradation kinetics; depicting faster degradation at higher storage temperatures.
Collapse
Affiliation(s)
- Jyoti Dhakane-Lad
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Abhijit Kar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
18
|
Kithama M, Hassan YI, Guo K, Kiarie E, Diarra MS. The Enzymatic Digestion of Pomaces From Some Fruits for Value-Added Feed Applications in Animal Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.611259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With the noticed steady increase of global demand for animal proteins coupled with the current farming practices falling short in fulfilling the requested quantities, more attention is being paid for means and methods intended to maximize every available agricultural-resource in a highly sustainable fashion to address the above growing gap between production and consumers' demand. Within this regard, considerable efforts are being invested either in identifying new animal feed ingredients or maximizing the utilization of already established ones. The public preference and awareness of the importance of using waste products generated by fruit-dependent industries (juice, jams, spirits, etc.) has improved substantially in recent years where a genuine interest of using the above waste(s) in meaningful applications is solidifying and optimization-efforts are being pursued diligently. While many of the earlier reported usages of fruit pomaces as feedstuffs suggested the possibility of using minimally processed raw materials alone, the availability of exogenous digestive and bio-conversion enzymes is promising to take such applications to new un-matched levels. This review will discuss some efforts and practices using exogenous enzymes to enhance fruit pomaces quality as feed components as well as their nutrients' accessibility for poultry and swine production purposes. The review will also highlight efforts deployed to adopt numerous naturally derived and environmentally friendly catalytic agents for sustainable future feed applications and animal farming-practices.
Collapse
|
19
|
Liu K, Zhang C. Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review. Food Chem 2020; 334:127615. [PMID: 32711261 DOI: 10.1016/j.foodchem.2020.127615] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
In this review article, the state of the art of gas sensors based on quartz crystal microbalance (QCM) for fruit freshness detection is overviewed from the aspects of development history, working principle, selection and modification of sensitive materials, and volatile organic compounds detection of fruits. According to the characteristics of respiratory intensity at the stage of fruit ripening, fruits can be divided into respiration climacteric fruits and non-climacteric fruits. In recent years, research has mainly focused on respiration climacteric fruits, such as bananas and mangoes, etc., while related studies on non-climacteric fruits have been rarely reported, except for citrus fruits. The preparation methods and structure design of sensitive materials based on physical/chemical adsorption mechanisms are further discussed according to the odor components that affect the freshness of fruits, namely alkenes, esters, aldehydes and alcohols.
Collapse
Affiliation(s)
- Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|