1
|
Liu Z, Qin GH, Wei SW, Yan LF, Ning ZY, Wang H, Cao Z, Hu KD, Yao GF, Zhang H. PuERF008-PuFAD2 module regulates aroma formation via the fatty acid pathway in response to calcium signaling in 'Nanguo' pear. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108913. [PMID: 38986239 DOI: 10.1016/j.plaphy.2024.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Calcium acts as a secondary messenger in plants and is essential for plant growth and development. However, studies on the pathway of aroma synthesis in 'Nanguo' pear (Pyrus ussriensis Maxim.) are scarce. In this study, a bioinformatics analysis of transcriptomic data from calcium-treated 'Nanguo' pear was performed, which identified two fatty acid desaturases, PuFAD2 and PuFAD3, and eight AP2/ERF transcription factors, all exhibiting the same expression patterns. Transient expression experiments showed overexpression of PuFAD2 and PuFAD3 significantly increased the levels of aromatic substrates linoleic acid, hexanal, linolenic acid, and (E)-2-hexenal, but RNAi (RNA interference) had the opposite expression. Promoter sequences analysis revealed that PuFAD2 and PuFAD3 have ERE (estrogen response element) motifs on their promoters. The strongest activation of PuFAD2 by PuERF008 was verified using a dual-luciferase reporting system. Additionally, yeast one-hybrid and electrophoretic mobility shift assays revealed PuERF008 could active PuFAD2. Transient overexpression and RNAi analyses of PuERF008 showed a strong correlation with the expression of PuFAD2. This study provides insights into the process of aroma biosynthesis in 'Nanguo' pear and offers a theoretical basis for elucidating the role of calcium signaling in aroma synthesis.
Collapse
Affiliation(s)
- Zhi Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Gai-Hua Qin
- Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crop (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Horticultural Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China.
| | - Shu-Wei Wei
- Shandong Institute of Pomology, Tai'an, 271000, PR China.
| | - Long-Fei Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Zhi-Yuan Ning
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, PR China.
| | - Zhen Cao
- Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crop (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Horticultural Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China.
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
2
|
Li X, Wang J, Su M, Zhang M, Hu Y, Du J, Zhou H, Yang X, Zhang X, Jia H, Gao Z, Ye Z. Multiple-statistical genome-wide association analysis and genomic prediction of fruit aroma and agronomic traits in peaches. HORTICULTURE RESEARCH 2023; 10:uhad117. [PMID: 37577398 PMCID: PMC10419450 DOI: 10.1093/hr/uhad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/21/2023] [Indexed: 08/15/2023]
Abstract
'Chinese Cling' is an important founder in peach breeding history due to the pleasant flavor. Genome-wide association studies (GWAS) combined with genomic selection are promising tools in fruit tree breeding, as there is a considerable time lapse between crossing and release of a cultivar. In this study, 242 peaches from Shanghai germplasm were genotyped with 145 456 single-nucleotide polymorphisms (SNPs). The six agronomic traits of fruit flesh color, fruit shape, fruit hairiness, flower type, pollen sterility, and soluble solids content, along with 14 key volatile odor compounds (VOCs), were recorded for multiple-statistical GWAS. Except the reported candidate genes, six novel genes were identified as associated with these traits. Thirty-nine significant SNPs were associated with eight VOCs. The putative candidate genes were confirmed for VOCs by RNA-seq, including three genes in the biosynthesis pathway found to be associated with linalool, soluble solids content, and cis-3-hexenyl acetate. Multiple-trait genomic prediction enhanced the predictive ability for γ-decalactone to 0.7415 compared with the single-trait model value of 0.1017. One PTS1-SSR marker was designed to predict the linalool content, and the favorable genotype 187/187 was confirmed, mainly existing in the 'Shanghai Shuimi' landrace. Overall, our findings will be helpful in determining peach accessions with the ideal phenotype and show the potential of multiple-trait genomic prediction to improve accuracy for highly correlated genetic traits. The diagnostic marker will be valuable for the breeder to bridge the gap between quantitative trait loci and marker-assisted selection for developing strong-aroma cultivars.
Collapse
Affiliation(s)
- Xiongwei Li
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University, Ministry of Education), Chengdu, Sichuan 610041, China
| | - Mingshen Su
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Minghao Zhang
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yang Hu
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihong Du
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huijuan Zhou
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaofeng Yang
- Peach Group of Shanghai Runzhuang Agricultural Science and Technology Institute, Shanghai 201415, China
| | - Xianan Zhang
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huijuan Jia
- Department of Horticulture, Key Laboratory for Horticultural Plant Growth, Development and Quality Improvement of State Agriculture Ministry, Zhejiang Unihversity, Hangzhou 310058, China
| | - Zhongshan Gao
- Department of Horticulture, Key Laboratory for Horticultural Plant Growth, Development and Quality Improvement of State Agriculture Ministry, Zhejiang Unihversity, Hangzhou 310058, China
| | - Zhengwen Ye
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
3
|
Liu Y, Wen H, Yang X, Wu C, Ming J, Zhang H, Chen J, Wang J, Xu J. Metabolome and transcriptome profiling revealed the enhanced synthesis of volatile esters in Korla pear. BMC PLANT BIOLOGY 2023; 23:264. [PMID: 37202722 DOI: 10.1186/s12870-023-04264-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Flavor contributes to the sensory quality of fruits, including taste and aroma aspects. The quality of foods is related to their flavor-associated compounds. Pear fruits have a fruity sense of smell, and esters are the main contributor of the aroma. Korla pear are well known due to its unique aroma, but the mechanism and genes related to volatile synthesis have not been fully investigated. RESULTS Flavor-associated compounds, including 18 primary metabolites and 144 volatiles, were characterized in maturity fruits of ten pear cultivars from five species, respectively. Based on the varied metabolites profiles, the cultivars could be grouped into species, respectively, by using orthogonal partial least squares discrimination analysis (OPLS-DA). Simultaneously, 14 volatiles were selected as biomarkers to discriminate Korla pear (Pyrus sinkiangensis) from others. Correlation network analysis further revealed the biosynthetic pathways of the compounds in pear cultivars. Furthermore, the volatile profile in Korla pear throughout fruit development was investigated. Aldehydes were the most abundant volatiles, while numerous esters consistently accumulated especially at the maturity stages. Combined with transcriptomic and metabolic analysis, Ps5LOXL, PsADHL, and PsAATL were screened out as the key genes in ester synthesis. CONCLUSION Pear species can be distinguished by their metabolic profiles. The most diversified volatiles as well as esters was found in Korla pear, in which the enhancement of lipoxygenase pathway may lead to the high level of volatile esters at maturity stages. The study will benefit the fully usage of pear germplasm resources to serve fruit flavor breeding goals.
Collapse
Affiliation(s)
- Yuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoping Yang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Cuiyun Wu
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Horticulture and Forestry, Tarim University, Alar, 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Alar, 843300, China
| | - Jiaqi Ming
- Ganzhou Agricultural Technology Extension Center, Ganzhou, 341000, China
| | - Hongyan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangbo Wang
- The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, College of Horticulture and Forestry, Tarim University, Alar, 843300, China.
- Xinjiang Production and Construction Corps Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Alar, 843300, China.
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Huang C, Sun P, Yu S, Fu G, Deng Q, Wang Z, Cheng S. Analysis of Volatile Aroma Components and Regulatory Genes in Different Kinds and Development Stages of Pepper Fruits Based on Non-Targeted Metabolome Combined with Transcriptome. Int J Mol Sci 2023; 24:ijms24097901. [PMID: 37175606 PMCID: PMC10178352 DOI: 10.3390/ijms24097901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Aroma is a crucial attribute affecting the quality of pepper and its processed products, which has significant commercial value. However, little is known about the composition of volatile aroma compounds (VACs) in pepper fruits and their potential molecular regulatory mechanisms. In this study, HS-SPME-GC-MS combined with transcriptome sequencing is used to analyze the composition and formation mechanism of VACs in different kinds and development stages of pepper fruits. The results showed that 149 VACs, such as esters, alcohols, aldehydes, and terpenoids, were identified from 4 varieties and 3 development stages, and there were significant quantitative differences among different samples. Volatile esters were the most important aroma components in pepper fruits. PCA analysis showed that pepper fruits of different developmental stages had significantly different marker aroma compounds, which may be an important provider of pepper's characteristic aroma. Transcriptome analysis showed that many differential genes (DEGs) were enriched in the metabolic pathways related to the synthesis of VACs, such as fatty acids, amino acids, MVA, and MEP in pepper fruits. In addition, we identified a large number of differential transcription factors (TFs) that may regulate the synthesis of VACs. Combined analysis of differential aroma metabolites and DEGs identified two co-expression network modules highly correlated with the relative content of VACs in pepper fruit. This study confirmed the basic information on the changes of VACs in the fruits of several Chinese spicy peppers at different stages of development, screened out the characteristic aroma components of different varieties, and revealed the molecular mechanism of aroma formation, providing a valuable reference for the quality breeding of pepper.
Collapse
Affiliation(s)
- Chuang Huang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Peixia Sun
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shuang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Genying Fu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Huang S, Ying Lim S, Lau H, Ni W, Fong Yau Li S. Effect of glycinebetaine on metabolite profiles of cold-stored strawberry revealed by 1H NMR-based metabolomics. Food Chem 2022; 393:133452. [PMID: 35751219 DOI: 10.1016/j.foodchem.2022.133452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Glycinebetaine (GB) has long been used as a preservative for refrigerated fruits, but the effect of GB on the global metabolites of cold-stored strawberries is still unclear. In this study, the effects of exogenous application of GB on quality-related metabolites of cold-stored strawberries were investigated by nuclear magnetic resonance (NMR)-based metabolomic analysis. The results showed that the application of GB (especially at the concentration of 10 mM) on cold-stored strawberries effectively stabilized the sugars (d-xylose and d-glucose) and amino acids (tyrosine, leucine, and tryptophan) content, and lowered the acid (acetic acid) content as well. Additionally, the GB content in strawberries also increased. This implies that the appropriate concentration of GB is a natural and safe treatment, which could maintain the quality of cold-stored strawberries by regulating levels of quality-related metabolites, and the ingestion of GB-preserved strawberries may serve as a source of methyl-donor supplementation in our daily diet.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Si Ying Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
6
|
Sun Y, Luo M, Ge W, Zhou X, Zhou Q, Wei B, Cheng S, Ji S. Phenylpropanoid metabolism in relation to peel browning development of cold-stored 'Nanguo' pears. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111363. [PMID: 35750293 DOI: 10.1016/j.plantsci.2022.111363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Cold-stored 'Nanguo' pears are susceptible to peel browning during subsequent shelf life. In this study, 'Nanguo' pears were cold-stored for different periods to elucidate the metabolism of phenylpropanoid accompanying browning. Changes in phenolics and flavonoids and the crucial enzyme activity and related gene expression involved in the phenylpropanoid pathway were monitored. It was found that the fruit that underwent long-term storage showed peel browning symptoms prior to softening, and the symptom got worse with increasing shelf life. Meanwhile, the accumulation of reactive oxygen species (ROS) and the decrease of ROS scavenging ability were noted. The content of phenolics and flavonoids and the activity and expression of shikimate dehydrogenase (SKDH), phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) involved in the phenylpropanoid pathway decreased with prolonged storage. Correlation analysis revealed that browning was positively correlated with ROS accumulation, and the content of phenolics and flavonoids directly affected ROS scavenging ability. In addition, the decrease in phenolics and flavonoids might be owing to the reduced activity of SKDH, PAL, and 4CL and the down-regulated expression of PuPAL and Pu4CL. Collectively, this study indicated that the metabolism of phenylpropanoid is associated with the browning response induced by low-temperature stress.
Collapse
Affiliation(s)
- Yangyang Sun
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Manli Luo
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Wanying Ge
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Xin Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Baodong Wei
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Shunchang Cheng
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| |
Collapse
|
7
|
Jia Z, Wang Y, Wang L, Zheng Y, Jin P. Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine. Food Res Int 2022; 157:111204. [DOI: 10.1016/j.foodres.2022.111204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
|
8
|
Zhang L, Zhang LL, Kang LN. Promoter cloning of PuLOX2S gene from "Nanguo" pears and screening of transcription factors by Y1H technique. J Food Biochem 2022; 46:e14278. [PMID: 35748399 DOI: 10.1111/jfbc.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022]
Abstract
Our previous study on differential proteome and transcriptome of refrigerated "Nanguo" pears found that the PuLOX2S gene was very active in the LOX pathway of aroma synthesis, but the regulation of expression behavior of the gene and how to mediate the aroma synthesis were still unknown. Partial genome sequences of PuLOX2S were cloned, and its promoter was analyzed by Tail-PCR. The PuLOX2S promoter sequences of 610 bp were isolated and identified using Plant CARE, which were composed of cis-acting elements, such as ABRE, AE-box, ARE, CAAT-box, Box 4, TCCC-motif, CAT-box, CGTCA-motif, G-Box, TATA-box, TCA-element, TGA-element, and TGACG-motif. The Y1H technology was used to determine whether proteins interacted with PuLOX2S based on the pGADT7-Chinese white pear cDNA library. The Y1H results were shown that 52 proteins could interact with the PuLOX2S promoter, which was compared with sequences in the GenBank database. The three genes PuERF12, PuMYB44, and PuRF2a were the candidate transcription factors of PuLOX2S and PuCDPK10 played an important role in the gene expression in Nanguo pears. Therefore, the results of this study supply important information for revealing new function of PuLOX2S and the regulation mechanism of expression behavior of the gene. It provides new ideas for the regulation of aroma synthesis in Nanguo pears. PRACTICAL APPLICATIONS: The gene PuLOX2S was very active in the LOX pathway of aroma synthesis, but the regulation of expression behavior of the gene and how to mediate the aroma synthesis were still unknown. We have successfully cloned the partial sequence of the gene and the 610 bp promoter sequence upstream of PuLOX2S and analyzed the structure of cis-acting elements. There are 52 proteins that interact with the PuLOX2S promoter revealed by the Y1H technique. Three transcription factors among the proteins can regulate the level of PuLOX2S expression, which provides new ideas for the regulation of aroma synthesis in "Nanguo" pears. Moreover, the study results could supply scientific information for the quality improvement and genetic modification of Nanguo pears.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China.,School of Food Engineering, Jilin Agriculture and Technology University, Jilin, People's Republic of China
| | - Lu-Lu Zhang
- Forestry College, Beihua University, Jilin, People's Republic of China
| | - Li-Ning Kang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| |
Collapse
|
9
|
Habibi F, Valero D, Serrano M, Guillén F. Exogenous Application of Glycine Betaine Maintains Bioactive Compounds, Antioxidant Activity, and Physicochemical Attributes of Blood Orange Fruit During Prolonged Cold Storage. Front Nutr 2022; 9:873915. [PMID: 35811946 PMCID: PMC9269930 DOI: 10.3389/fnut.2022.873915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous application of glycine betaine (GB) was evaluated on bioactive compounds, antioxidant activity, and physicochemical attributes of blood orange fruit cv. Moro at 3°C for 90 days. Vacuum infiltration (30 kPa) of GB was applied at 15 and 30 mM for 8 min. Parameters were measured after 1, 30, 60, and 90 days of storage plus 2 days at 20°C to simulate the shelf-life period. GB treatments significantly reduced weight and firmness losses in "Moro" blood orange fruit during cold storage. GB treatment maintained a higher concentration of organic acids (citric, malic, succinic, and oxalic acids) and sugars (sucrose, glucose, and fructose), especially for the higher GB doses (30 mM). During storage, GB treatments enhanced total anthocyanin concentration, total phenolic content, and total antioxidant activity. With respect to enzyme activities, the application of exogenous GB showed increases in catalase (CAT), ascorbate peroxidase, superoxide dismutase, phenylalanine ammonia-lyase, while suppressing the polyphenol oxidase activity. Overall, the most effective treatment was 30 mM GB leading to maintaining bioactive compounds, antioxidant activity, and quality in "Moro" blood orange fruit during long-term storage. The positive results would permit the use of GB as a postharvest tool to maintain the quality attributes of blood orange fruit.
Collapse
Affiliation(s)
- Fariborz Habibi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| | - Daniel Valero
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| | - María Serrano
- Department of Applied Biology, University Miguel Hernández, Orihuela, Spain
| | - Fabián Guillén
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| |
Collapse
|
10
|
Luo M, Sun H, Ge W, Sun Y, Zhou X, Zhou Q, Ji S. Effect of Glycine Betaine Treatment on Aroma Production of ‘Nanguo’ Pears After Long-Term Cold Storage–Possible Involvement of Ethylene Synthesis and Signal Transduction Pathways. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Lv Y, Chen G, Ouyang H, Sang Y, Jiang Y, Cheng S. Effects of 1‐MCP treatment on volatile compounds and quality in Xiaobai apricot during storage at low temperature. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunhao Lv
- College of Food Science Shihezi University Shihezi People’s Republic of China
| | - Guogang Chen
- College of Food Science Shihezi University Shihezi People’s Republic of China
| | - Hui Ouyang
- College of Food Science Shihezi University Shihezi People’s Republic of China
| | - Yueying Sang
- College of Food Science Shihezi University Shihezi People’s Republic of China
| | - Ying Jiang
- College of Food Science Shihezi University Shihezi People’s Republic of China
| | - Shaobo Cheng
- College of Food Science Shihezi University Shihezi People’s Republic of China
| |
Collapse
|
12
|
Sun L, Xin G, Hou Z, Zhao X, Xu H, Bao X, Xia R, Li Y, Li L. Biosynthetic Mechanism of Key Volatile Biomarkers of Harvested Lentinula edodes Triggered by Spore Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9350-9361. [PMID: 34369774 DOI: 10.1021/acs.jafc.1c02410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, headspace solid-phase microextraction-gas chromatography-mass spectrometry, multivariate analyses, and transcriptomics were used to explore the biosynthesis of key volatiles and the formation of spores in Lentinula (L.) edodes. Among the 50 volatiles identified, 1-octen-3-ol, phenethyl alcohol, and several esters were considered key aromas because of their higher odor activity values. Eleven volatiles were screened as biomarkers by orthogonal partial least squares discriminant analysis, and hierarchical cluster analysis showed that these biomarkers could represent all volatiles to distinguish the spore release stage. The activities of lipoxygenase (LOX), hydroperoxide lyase, alcohol dehydrogenase, and alcohol acyltransferase were higher in L. edodes with spore release. Moreover, linolenic acid and phenylalanine metabolism were involved in aroma biosynthesis. One LOX-related gene and five aryl alcohol dehydrogenase-related genes could regulate the biosynthesis of 1-octen-3-ol, phenethyl alcohol, and phenylacetaldehyde. In addition, several key genes were involved in meiosis to regulate sporulation.
Collapse
Affiliation(s)
- Libin Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuemei Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiujing Bao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
13
|
Zhang W, Jiang H, Cao J, Jiang W. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Luo M, Zhou X, Hao Y, Sun H, Zhou Q, Sun Y, Ji SJ. Methyl jasmonate pretreatment improves aroma quality of cold-stored 'Nanguo' pears by promoting ester biosynthesis. Food Chem 2020; 338:127846. [PMID: 32836001 DOI: 10.1016/j.foodchem.2020.127846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
Cold storage is widely used for delaying ripening and senescence; however, fruit aroma diminishes noticeably after long-term cold storage. The esters synthesized by the lipoxygenase (LOX) pathway are responsible for 'Nanguo' pear aroma. As methyl jasmonate (MeJA) is known to act on various fruit qualities, we investigated whether it acts via the LOX pathway in cold-stored 'Nanguo' pears. MeJA treatment increased the content of volatile esters and unsaturated fatty acids and the activities of alcohol acyltransferase, alcohol dehydrogenase, and LOX. It also up-regulated the expression of key genes (PuAAT, PuADH3, PuADH5, PuADH9, PuLOX1, and PuLOX3) in the LOX pathway and that of transcription factors (PuMYB21-like, PuMYB108-like, PuWRKY61, PuWRKY72, and PuWRKY31), whose genes were differentially expressed in preliminary transcriptome analysis. Therefore, considering its effects on LOX pathway-related genes and transcription factors, MeJA may be useful in preventing cold-storage-induced decline in ester biosynthesis, aroma, and consequently the quality of cold-stored 'Nanguo' pears.
Collapse
Affiliation(s)
- Manli Luo
- Department of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xin Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yi Hao
- Liao Ning Institute of Pomology, Yingkou 115009, PR China
| | - Huajun Sun
- Department of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yangyang Sun
- Department of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
15
|
Liu J, Li Q, Chen J, Jiang Y. Revealing Further Insights on Chilling Injury of Postharvest Bananas by Untargeted Lipidomics. Foods 2020; 9:E894. [PMID: 32650359 PMCID: PMC7404481 DOI: 10.3390/foods9070894] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Chilling injury is especially prominent in postharvest bananas stored at low temperature below 13 °C. To elucidate better the relationship between cell membrane lipids and chilling injury, an untargeted lipidomics approach using ultra-performance liquid chromatography-mass spectrometry was conducted. Banana fruit were stored at 6 °C for 0 (control) and 4 days and then sampled for lipid analysis. After 4 days of storage, banana peel exhibited a marked chilling injury symptom. Furthermore, 45 lipid compounds, including glycerophospholipids, saccharolipids, and glycerolipids, were identified with significant changes in peel tissues of bananas stored for 4 days compared with the control fruit. In addition, higher ratio of digalactosyldiacylglycerol (DGDG) to monogalactosyldiacylglycerol (MGDG) and higher levels of phosphatidic acid (PA) and saturated fatty acids but lower levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and unsaturated fatty acids were observed in banana fruit with chilling injury in contrast to the control fruit. Meanwhile, higher activities of phospholipase D (PLD) and lipoxygenase (LOX) were associated with significantly upregulated gene expressions of MaPLD1 and MaLOX2 and higher malondialdehyde (MDA) content in chilling injury-related bananas. In conclusion, our study indicated that membrane lipid degradation resulted from reduced PC and PE, but accumulated PA, while membrane lipid peroxidation resulted from the elevated saturation of fatty acids, resulting in membrane damage which subsequently accelerated the chilling injury occurrence of banana fruit during storage at low temperature.
Collapse
Affiliation(s)
- Juan Liu
- Guangdong Engineering Lab of High Value Utilization of Biomass, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou 510316, China; (J.L.); (Q.L.)
| | - Qingxin Li
- Guangdong Engineering Lab of High Value Utilization of Biomass, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou 510316, China; (J.L.); (Q.L.)
| | - Junjia Chen
- Guangdong Engineering Lab of High Value Utilization of Biomass, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou 510316, China; (J.L.); (Q.L.)
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
16
|
Zhou X, Tan Z, Zhou Q, Shi F, Yao M, Wei B, Cheng S, Ji S. Effect of Intermittent Warming on Aroma-Related Esters of ‘Nanguo’ Pears Through Regulation of Unsaturated Fatty Acid Synthesis After Cold Storage. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02469-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|