1
|
Jiang R, Wang Z, Jia Y, Biao A, Zong Y, Yang C, Li M, Wang H, Zhao Y, Wang Y, Zeng S. Exogenous melatonin enhancing the accumulation of flavonoids and carotenoids in wolfberry fruit at cold storage. Food Res Int 2025; 209:116320. [PMID: 40253210 DOI: 10.1016/j.foodres.2025.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
The deterioration of fruit quality during refrigeration is a typical symptom of the storage and transportation of Lycium barbarum L. (wolfberry) fruit after harvest. This study aimed to explore the impact of melatonin (MT) treatment on the fruit quality of wolfberry stored at 4°C, using combined transcriptomics and metabolomics analyses. In this study, about 15% of the flavonoid metabolites differed significantly after MT treatment in yellow-fleshed wolfberry, especially for flavanols, flavanones, and flavonols. MT treatment enhanced esterified carotenoid content in red-fleshed wolfberry postharvest. Comparative transcriptomic analysis revealed that MT-induced upregulation of LbaF3'H, LbaHQT and LbaCHS1 might contribute to the increased flavonoids in yellow-flesh wolfberry, and that MT-induced upregulation of LbaPSY, LbaCRTISO and LbaCYCB are responsible for the increased carotenoids in red-flesh wolfberry. Coexpression network analysis showed that several transcription factors such as LbaGATA are involved in MT-mediated regulation of flavonoids and carotenoids. Dual luciferase assay evidenced that LbaGATA and LbaRKD5 depress the expression of LbaPSY. Overall, this study underscores MT's role in maintaining wolfberry postharvest quality during storage, providing a solid foundation of food application.
Collapse
Affiliation(s)
- Rong Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yixin Jia
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - A Biao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Minglin Li
- Jinghe County Goji Industrial Development Center, Jinghe County, the Xinjiang Uygur Autonomous Region, 833300, PR China
| | - Hongjiao Wang
- Jinghe County Goji Industrial Development Center, Jinghe County, the Xinjiang Uygur Autonomous Region, 833300, PR China
| | - Yuling Zhao
- Jinghe County Goji Industrial Development Center, Jinghe County, the Xinjiang Uygur Autonomous Region, 833300, PR China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Arabia A, Muñoz P, Munné-Bosch S. Fruit-specific effects of tryptophan and melatonin as active components to extend the functionality of red fruits during post-harvest processing. Food Chem 2025; 463:141487. [PMID: 39369602 DOI: 10.1016/j.foodchem.2024.141487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Preserving quality attributes in the distribution chain is a challenging task, particularly in fruits with a brief shelf life. The application of melatonin in cherries, raspberries, strawberries and blueberries stored at room temperature was evaluated, as well as the effects of its precursor (tryptophan) to determine their specificity and interchangeable feasibility for post-harvest applications. The results demonstrated that melatonin is effective in all tested fruits, reducing deterioration rate and its severity, preserving fruit firmness and reducing darkening and weight loss. Furthermore, tryptophan applications incremented melatonin contents in strawberries and blueberries and delayed decay in both fruits. Melatonin reduced postharvest losses in all studied fruits related to its antisenescent properties, while the beneficial impact of tryptophan in extending shelf life was fruit-specific and appeared to be partly mediated by melatonin. Melatonin and tryptophan must be considered as active components of new formulations for extending the shelf life of red fruits during post-harvest processing.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Mwelase S, Adeyemi JO, Fawole OA. Recent Advances in Postharvest Application of Exogenous Phytohormones for Quality Preservation of Fruits and Vegetables. PLANTS (BASEL, SWITZERLAND) 2024; 13:3255. [PMID: 39599464 PMCID: PMC11598769 DOI: 10.3390/plants13223255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The increasing global population has heightened the demand for food, leading to escalated food production and, consequently, the generation of significant food waste. Factors such as rapid ripening, susceptibility to physiological disorders, and vulnerability to microbial attacks have been implicated as contributing to the accelerated senescence associated with food waste generation. Fruits and vegetables, characterized by their high perishability, account for approximately half of all food waste produced, rendering them a major area of concern. Various postharvest technologies have thus been employed, including the application of phytohormone treatments, to safeguard and extend the storability of highly perishable food products. This review, therefore, explores the physicochemical properties and biological aspects of phytohormones that render them suitable for food preservation. Furthermore, this review examines the effects of externally applied phytohormones on the postharvest physiology and quality attributes of fresh produce. Finally, the review investigates the mechanisms by which exogenous phytohormones preserve food quality and discusses the associated limitations and safety considerations related to the use of these compounds in food applications.
Collapse
Affiliation(s)
- Sbulelo Mwelase
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Jerry O. Adeyemi
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A. Fawole
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
Liu Y, Zhang L, Hu T, Liu Q, Zhou S, Zhao Y, Jatt AN, Zhang C, Gong H. A New Strategy for Enhancing Postharvest Quality of Sweet Cherry: High-Voltage Electrostatic Field Improves the Physicochemical Properties and Fungal Community. Foods 2024; 13:3670. [PMID: 39594088 PMCID: PMC11593928 DOI: 10.3390/foods13223670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Sweet cherry has a short shelf life due to the occurrence of senescence and fungal infection after harvest. This study aimed to study the effects of high-voltage electrostatic field (HVEF) on the physicochemical properties and fungal composition of sweet cherry during cold storage. The experiments were conducted at 4 °C for 28 days and the quality indicators were determined every 7 days during the period of storage. The fungal composition on sweet cherry was determined using high-throughput sequencing. The results showed that HVEF could better maintain the total soluble solids and inhibit the respiration of cherries. The decay incidence in sweet cherries was decreased by HVEF during cold storage. High-throughput sequencing revealed that HVEF could alter the fungal community and increase the fungal diversity on sweet cherries. Compared with the control group, HVEF decreased the abundance of Alternaria and Cladosporium on sweet cherries, while Aureobasidium, as a nonpathogenic fungus, increased and became the dominant strain at the end of the storage period. In summary, HVEF can improve the physicochemical properties of sweet cherry by inhibiting respiration and can reduce decay incidence by inhibiting specific pathogenic fungi. HVEF is expected to become an efficient and promising technology for the preservation of fruit.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China
| | - Lulu Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Tan Hu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qiongyin Liu
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Shuya Zhou
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Yi Zhao
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
| | - Abdul-Nabi Jatt
- Institute of Microbiology, University of Sindh, Jamshoro 76080, Pakistan;
| | - Caili Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, China; (Y.L.); (L.Z.); (Q.L.); (S.Z.); (Y.Z.); (H.G.)
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai 264025, China
| |
Collapse
|
5
|
Yang M, Zheng E, Lin Z, Miao Z, Li Y, Hu S, Gao Y, Jiang Y, Pang L, Li X. Melatonin Rinsing Treatment Associated with Storage in a Controlled Atmosphere Improves the Antioxidant Capacity and Overall Quality of Lemons. Foods 2024; 13:3298. [PMID: 39456360 PMCID: PMC11506858 DOI: 10.3390/foods13203298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Antioxidant capacity is one of the most important biological activities in fruits and vegetables and is closely related to human health. In this study, 'Eureka' lemons were used as experimental materials and stored at 7-8 °C MT (melatonin, 200 μmol, soaked for 15 min) and CA (controlled atmosphere, 2-3% O2 + 15-16% CO2) individually or in combination for 30 d. The changes in lemon fruits' basic physicochemical properties, enzyme activities, and antioxidant capacities were studied. Comparing the combined treatment to the control, the outcomes demonstrated a significant reduction in weight loss, firmness, stomatal opening, and inhibition of polyphenol oxidase (PPO) and peroxidase (POD) activities. Additionally, the combined treatment maintained high levels of titratable acidity (TA), vitamin C (VC), total phenolic content (TPC), and antioxidant capacity and preserved the lemon aroma. Meanwhile, the correlation between fruit color, aroma compounds, and antioxidant capacity was revealed, providing valuable insights into the postharvest preservation of lemons. In conclusion, the combined treatment (MT + CA) was effective in maintaining the quality and antioxidant capacity of lemons.
Collapse
Affiliation(s)
- Mengjiao Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Enlan Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Ziqin Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Ze Miao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yuhang Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Shiting Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yanan Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Lingling Pang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| |
Collapse
|
6
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Khan M, Hussain A, Yun BW, Mun BG. Melatonin: The Multifaceted Molecule in Plant Growth and Defense. Int J Mol Sci 2024; 25:6799. [PMID: 38928504 PMCID: PMC11203645 DOI: 10.3390/ijms25126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Zhao C, Wang Z, Liao Z, Liu X, Li Y, Zhou C, Sun C, Wang Y, Cao J, Sun C. Integrated Metabolomic-Transcriptomic Analyses of Flavonoid Accumulation in Citrus Fruit under Exogenous Melatonin Treatment. Int J Mol Sci 2024; 25:6632. [PMID: 38928338 PMCID: PMC11204001 DOI: 10.3390/ijms25126632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The flavonoids in citrus fruits are crucial physiological regulators and natural bioactive products of high pharmaceutical value. Melatonin is a pleiotropic hormone that can regulate plant morphogenesis and stress resistance and alter the accumulation of flavonoids in these processes. However, the direct effect of melatonin on citrus flavonoids remains unclear. In this study, nontargeted metabolomics and transcriptomics were utilized to reveal how exogenous melatonin affects flavonoid biosynthesis in "Bingtangcheng" citrus fruits. The melatonin treatment at 0.1 mmol L-1 significantly increased the contents of seven polymethoxylated flavones (PMFs) and up-regulated a series of flavonoid pathway genes, including 4CL (4-coumaroyl CoA ligase), FNS (flavone synthase), and FHs (flavonoid hydroxylases). Meanwhile, CHS (chalcone synthase) was down-regulated, causing a decrease in the content of most flavonoid glycosides. Pearson correlation analysis obtained 21 transcription factors co-expressed with differentially accumulated flavonoids, among which the AP2/EREBP members were the most numerous. Additionally, circadian rhythm and photosynthesis pathways were enriched in the DEG (differentially expressed gene) analysis, suggesting that melatonin might also mediate changes in the flavonoid biosynthesis pathway by affecting the fruit's circadian rhythm. These results provide valuable information for further exploration of the molecular mechanisms through which melatonin regulates citrus fruit metabolism.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhendong Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhenkun Liao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Xiaojuan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yujia Li
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Chenwen Zhou
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Cui Sun
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Yue Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
9
|
Marak KA, Mir H, Siddiqui MW, Singh P, Homa F, Alamri S. Exogenous melatonin delays oxidative browning in litchi during cold storage by regulating biochemical attributes and gene expression. FRONTIERS IN PLANT SCIENCE 2024; 15:1402607. [PMID: 38903429 PMCID: PMC11187992 DOI: 10.3389/fpls.2024.1402607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Oxidative damage leading to loss of nutritional quality and pericarp discoloration of harvested litchi fruits drastically limits consumer acceptance and marketability. In the present investigation, the impact of postharvest melatonin application at different concentrations, i.e., 0.1 mM, 0.25 mM, and 0.5 mM, on fruit quality and shelf life of litchi fruits under cold storage conditions was studied. The results revealed the positive effect of melatonin application at all concentrations on fruit quality and shelf life. However, treatment with 0.5 mM concentration of melatonin resulted in minimum weight loss, decay loss, pericarp discoloration, and also retained higher levels of TSS, acidity, total sugar, ascorbic acid, anthocyanin, antioxidant, and phenolics content during cold storage. Melatonin administration also restricted the enzymatic activity of the polyphenol oxidase (PPO) and peroxidase (POD) enzymes in the fruit pericarp and maintained freshness of the fruits up to 30 days in cold storage. At the molecular level, a similar reduction in the expression of browning-associated genes, LcPPO, LcPOD, and Laccase, was detected in preserved litchi fruits treated with melatonin. Anthocyanin biosynthetic genes, LcUFGT and LcDFR, on the other hand showed enhanced expression in melatonin treated fruits compared to untreated fruits. Melatonin, owing to its antioxidant properties, when applied to harvested litchi fruits retained taste, nutritional quality and red color pericarp up till 30 days in cold storage.
Collapse
Affiliation(s)
- Kilchira A. Marak
- Department of Horticulture (Fruit and Fruit Technology), Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Hidayatullah Mir
- Department of Horticulture (Fruit Science), Regional Horticulture Research Sub-Station, Bhaderwah, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Jammu, Jammu and Kashmir, India
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Preeti Singh
- Department of Horticulture (Fruit and Fruit Technology), Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Fozia Homa
- Department of Statistics, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Badiche-El Hilali F, Medeiros-Fonseca B, Silva J, Silvestre-Ferreira AC, Pires MJ, Gil da Costa RM, Peixoto F, Oliveira PA, Valero D. The Effect of Lemon Juice ( Citrus limon L.) Treated with Melatonin on the Health Status and Treatment of K14HPV16 Mice. Antioxidants (Basel) 2024; 13:588. [PMID: 38790693 PMCID: PMC11117883 DOI: 10.3390/antiox13050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Lemon is a fruit rich in antioxidant properties and has several health benefits, namely the reduction of skin edema and anticarcinogenic properties, which are due to its high content of bioactive compounds. Melatonin can improve and preserve the properties of lemon for longer and also has health benefits. The aim of this study was to evaluate the effects of oral administration of lemon juice after melatonin treatment on murinometric parameters of wild-type (WT) mice and transgenic mice carrying human papillomavirus (HPV). Two trials were performed for oral administration of the lemon extract compound: in drinking water and in diet. First of all, lemons were treated by immersion with melatonin at 10 mM. Then, lemons were squeezed, and the juice obtained was freeze-dried and stored to be subsequently added to drinking water or diet, according to the assay. Thus, mice were divided into eight groups in the drink assay (each with n = 5): group 1 (G1, WT, control), group 2 (G2, WT, 1 mL lemon), group 3 (G3, WT, 1.5 mL lemon), group 4 (G4, WT, 2 mL lemon), group 5 (G5, HPV16, control), group 6 (G6, HPV16, 1 mL lemon) group 7 (G6, HPV16, 1.5 mL lemon) and group 8 (G6, HPV16, 2 mL lemon). The diet assay was divided into four groups: group 1 (G1, WT, control), group 2 (G2, WT, 4 mL lemon), group 3 (G3, HPV16, control) and group 4 (G4, HPV16, 4 mL lemon). In the drink assay, the highest concentration of melatonin (308 ng/100 mL) was for groups 4 and 8, while in the food assay, there was only one concentration of melatonin (9.96 ng/g) for groups 2 and 4. Both trials lasted 30 days. During this time, body weight, food and water were recorded. Afterward, they were sacrificed, and samples were collected for different analyses. At the concentrations used, the lemon juice with melatonin had no adverse effects on the animals' health and showed a positive outcome in modifying weight gain and enhancing antioxidant activity in mice. Moreover, a reduction in the incidence of histological lesions was observed in treated animals. Further research is needed to better understand the effects of lemon extract on health and treatment outcomes in this animal model.
Collapse
Affiliation(s)
- Fátima Badiche-El Hilali
- Department AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Spain
| | - Beatriz Medeiros-Fonseca
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Jéssica Silva
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Ana C. Silvestre-Ferreira
- Center for Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Maria João Pires
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Rui M. Gil da Costa
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
- Health Sciences Center, State University of the Tocantins Region of Maranhão (UEMASUL), Imperatriz 6591-480, Brazil
| | - Francisco Peixoto
- Chemistry Center-Vila Real (CQ-VR), Biological and Environment Department, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Daniel Valero
- Department AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Spain
| |
Collapse
|
11
|
Zhang M, Yang X, Yin C, Lin X, Liu K, Zhang K, Su Y, Zou X, Liao L, Wang X, He S, He R, Sun G, He J, Xiong B, Wang Z. Effect of exogenous melatonin on antioxidant properties and fruit softening of 'Fengtang' plum fruit ( Prunus salicina Lindl.) during storage at room temperature. FRONTIERS IN PLANT SCIENCE 2024; 15:1348744. [PMID: 38510435 PMCID: PMC10950901 DOI: 10.3389/fpls.2024.1348744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
'Fengtang' plums soften quickly and lose flavor after harvest. This study comprehensively evaluated the effect of exogenous melatonin on the fruit quality of 'Fengtang' plums. According to our findings, exogenous melatonin prevented plum fruit from losing water, delayed the decline in firmness, and preserved a high TSS/TA level. Additionally, exogenous melatonin also enhanced the activity of antioxidant enzymes and increased the non-enzymatic antioxidants, thereby further increasing the antioxidant capacity of plum fruit. Notably, exogenous melatonin delayed the degradation of covalent soluble pectin (CSP), cellulose, and hemicellulose, as well as the rise in water-soluble pectin (WSP) concentration and the activity of cell wall degrading enzymes. Further investigation using atomic force microscopy (AFM) revealed that the chain-like structure of ionic-soluble pectin (ISP) and the self-assembly network structures of CSP were depolymerized, and melatonin treatment retarded the depolymerization of pectin structures. Our results showed that exogenous melatonin preserved the postharvest quality of plum fruits by controlling fruit softness and antioxidant capacity during storage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. TRENDS IN PLANT SCIENCE 2024; 29:232-248. [PMID: 38123438 DOI: 10.1016/j.tplants.2023.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The important role of melatonin in plant growth and metabolism together with recent advances in the potential use of nanomaterials have opened up interesting applications in agriculture. Various nanovehicles have been explored as melatonin carriers in animals, and it is now important to explore their application in plants. Recent findings have substantiated the use of silicon and chitosan nanoparticles (NPs) in targeting melatonin to plant tissues. Although melatonin is an amphipathic molecule, nanocarriers can accelerate its uptake and transport to various plant organs, thereby relieving stress and improving plant shelf-life in the post-harvest stages. We review the scope and biosafety concerns of various nanomaterials to devise novel methods for melatonin application in crops and post-harvest products.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, West Bengal 742213, India
| | - Suchismita Roy
- Department for Cell and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
13
|
Al-Qurashi AD, Awad MA, Elsayed MI, Ali MA. Postharvest melatonin and chitosan treatments retain quality of 'Williams' bananas during ripening. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:84-96. [PMID: 38192706 PMCID: PMC10771425 DOI: 10.1007/s13197-023-05819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/25/2023] [Accepted: 08/12/2023] [Indexed: 01/10/2024]
Abstract
The effect of postharvest dipping treatments with 0.5 mM melatonin (MT) and 1% chitosan (CT) either alone or in combination on quality of pre-climacteric 'Williams' bananas during ripening at ambient conditions were investigated. MT or CT treatments delayed ripening by retaining greener peel, higher firmness, titratable acidity (TA), but lower total soluble solids (TSS) and TSS/TA, weight loss, browning and electrolyte leakage than the control. Total phenol (TPC) and flavonoid contents (TFC) in both peel and pulp increased up to 6 days and then decreased and was higher in treated fruit than the control. Vitamin C content decreased up to 3 days, then increased and was higher in treated fruit than control. MT and CT combination exhibited the highest TPC, TFC and vitamin C contents compared to other treatments. Radical scavenging capacity (RSC) of peel and pulp increased up to 6 days, then decreased and was higher in treated fruit than the control. The treated fruit exhibited lower polyphenoloxidase (PPO) and hydrolytic enzymes but higher peroxidase (POD) activities in both peel and pulp than the control. Postharvest treatments with 0.5 mM MT and 1% CT alone or in combination could be used to retain quality of 'Williams' bananas during ripening.
Collapse
Affiliation(s)
- Adel D. Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mohamed A. Awad
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mohamed I. Elsayed
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Md. Arfan Ali
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| |
Collapse
|
14
|
Badiche-El Hilali F, Valverde JM, García-Pastor ME, Serrano M, Castillo S, Valero D. Melatonin Postharvest Treatment in Leafy 'Fino' Lemon Maintains Quality and Bioactive Compounds. Foods 2023; 12:2979. [PMID: 37569248 PMCID: PMC10418853 DOI: 10.3390/foods12152979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Spain is a great producer of organic lemon; however, it is necessary to reduce the losses caused by post-harvest diseases. Melatonin (MEL) is a naturally occurring compound with physiological functions in fruit growth and ripening and is able to modulate postharvest ripening and senescence, most of it being concentrated in climacteric fruit. Thus, the aim of this study was to apply MEL to organic lemon fruit with stems and leaves (LEAF) and to organic lemon without those components (LEAFLESS) after harvesting and storage during 21 days at 2 °C to understand the effects of this treatment on the fruit quality. For this purpose, two experiments were carried out. First, MEL was applied at 0.01 mM, 0.1 mM and 1.0 mM by immersion for 15 min on lemon fruits, and the quality parameters and bioactive compounds of the fruit were analysed. Subsequently, a second experiment was carried out where the best concentration (1 mM) was selected and another time (15 and 30 min) was added, with the same quality parameters being analysed. As a result, we observed that all MEL treatments showed positive effects on weight loss reduction, softening (higher fruit firmness), total acidity and lower colour changes. Total phenols increased in MEL-treated lemons, both in peel and juice. For the three concentrations tested, the best efficiency was obtained with MEL at 1.0 mM, while LEAF lemons were the most effective. In conclusion, lemons containing stems and leaves (LEAF) improved preservability by using MEL at 1.0 mM with better organoleptic quality and enhanced phenolic compounds.
Collapse
Affiliation(s)
- Fátima Badiche-El Hilali
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - Juan Miguel Valverde
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - María E. García-Pastor
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - María Serrano
- Department of Applied Biology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain;
| | - Salvador Castillo
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - Daniel Valero
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| |
Collapse
|
15
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
16
|
Cortés-Montaña D, Bernalte-García MJ, Velardo-Micharet B, Serrano M, Serradilla MJ. Impact of Pre-Storage Melatonin Application on the Standard, Sensory, and Bioactive Quality of Early Sweet Cherry. Foods 2023; 12:1723. [PMID: 37107518 PMCID: PMC10137980 DOI: 10.3390/foods12081723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is involved in multiple functions in plants. However, its role in some metabolic pathways and exogenous application's effect on fruits is still unclear. Furthermore, the effects of pre-storage melatonin treatment on sensory traits and consumer acceptance of cherries have yet to be studied. For this reason, the early sweet cherry cultivar 'Samba' harvested at the commercial ripening stage was treated with different melatonin concentrations (0.1, 0.3, and 0.5 mmol L-1) and stored for 21 days under controlled cold temperature and humidity. The standard quality, respiration rate, postharvest aptitude, sensory quality, phenols, and antioxidant systems (non-enzymatic and enzymatic) were analysed at 14 and 21 days of storage. Postharvest treatment with melatonin 0.5 mmol L-1 improved firmness and reduced weight loss and non-commercial fruit percentage while increasing respiration rate, lipophilic antioxidant activity, and ascorbate peroxidase enzyme activity. Furthermore, the treated cherries showed better sensory qualities, such as uniformity of colour and skin colour, as well as being sourer and showing better consumer acceptance and liking after 14 days of storage. Therefore, we conclude that the 0.5 mmol L-1 concentration is effective on the standard, sensory, and bioactive quality of early sweet cherries and can be considered an eco-friendly tool for maintaining the postharvest quality of early cherries.
Collapse
Affiliation(s)
- Daniel Cortés-Montaña
- Department of Postharvest Science, Centre for Scientific and Technological Research of Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; (D.C.-M.); (M.J.S.)
| | - María Josefa Bernalte-García
- Department of Plant Biology, Ecology and Earth Sciences, University of Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Belén Velardo-Micharet
- Department of Postharvest Science, Centre for Scientific and Technological Research of Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; (D.C.-M.); (M.J.S.)
| | - María Serrano
- Department of Applied Biology, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Spain;
| | - Manuel Joaquín Serradilla
- Department of Postharvest Science, Centre for Scientific and Technological Research of Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; (D.C.-M.); (M.J.S.)
| |
Collapse
|
17
|
Jan R, Asif S, Asaf S, Du XX, Park JR, Nari K, Bhatta D, Lee IJ, Kim KM. Melatonin alleviates arsenic (As) toxicity in rice plants via modulating antioxidant defense system and secondary metabolites and reducing oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120868. [PMID: 36526054 DOI: 10.1016/j.envpol.2022.120868] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The Arsenic (As) load on the environment has increased immensely due to large-scale industrial and agricultural uses of As in several synthetic products, such as fertilizers, herbicides, and pesticides. Melatonin is a plant hormone that has a key role in abiotic stress inhibition, but the mechanism of resilience to As stress remains unexplored in rice plants. In this study, we determined how As affects rice plant and how melatonin facilitate As stress tolerance in rice. Here we investigated that, exogenous melatonin reduced As stress by inducing anthocyanin biosynthesis. Melatonin induced the expression of anthocyanin biosynthesis genes such as PAL, CHS, CHI, F3H, DFR, and ANS, which resulted in 1659% and 389% increases in cyanidin and delphinidin, respectively. Similarly, melatonin application significantly induced SA and ABA accumulation in response to As stress in rice plant. Application of melatonin also significantly reduced expression of PT-2 and PT-8 (transporter genes) and reduced uptake of As and its translocation to other compartments. Melatonin and As analysis revealed that melatonin application significantly reduced As contents in the melatonin-supplemented plants, suggesting that As uptake is largely dependent on either the melatonin basal level or anthocyanin in rice plants. In this study, we investigated new symptoms on leaves, which can severely damage leaves and impair photosynthesis. However, anthocyanin as a chelating agent, detoxifies As in vacuole and reduces oxidative stress induced by As.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea; Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Xiao-Xuan Du
- Biosafty Division, National Academy of Agriculture Science, Rural Development, Administration, Jeonju, 54874, South Korea
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, South Korea
| | - Kim Nari
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea; Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
18
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
19
|
Li N, Zhai K, Yin Q, Gu Q, Zhang X, Melencion MG, Chen Z. Crosstalk between melatonin and reactive oxygen species in fruits and vegetables post-harvest preservation: An update. Front Nutr 2023; 10:1143511. [PMID: 36937352 PMCID: PMC10020600 DOI: 10.3389/fnut.2023.1143511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, phenolic compounds, and dietary fibers. They reduce the incidence of cardiovascular diseases and the risk of certain chronic diseases, and improve the antioxidant and anti-inflammatory capacity. Moreover, melatonin was found in various fruits and vegetables species. Melatonin acts as a multifunctional compound to participate in various physiological processes. In recent years, many advances have been found that melatonin is also appraised as a key modulator on the fruits and vegetables post-harvest preservation. Fruits and vegetables post-harvest usually elicit reactive oxygen species (ROS) generation and accumulation. Excess ROS stimulate cell damage, protein structure destruction, and tissue aging, and thereby reducing their quality. Numerous studies find that exogenous application of melatonin modulates ROS homeostasis by regulating the antioxidant enzymes and non-enzymatic antioxidants systems. Further evidences reveal that melatonin often interacts with hormones and other signaling molecules, such as ROS, nitric oxide (NO), hydrogen sulfide (H2S), and etc. Among these 'new' molecules, crosstalks of melatonin and ROS, especially the H2O2 produced by RBOHs, are provided in fruits and vegetables post-harvest preservation in this review. It will provide reference for complicated integration of both melatonin and ROS as signal molecules in future study.
Collapse
Affiliation(s)
- Na Li
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou, China
| | - Qin Yin
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Merced G. Melencion
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| |
Collapse
|
20
|
Pan Y, Xu X, Li L, Sun Q, Wang Q, Huang H, Tong Z, Zhang J. Melatonin-mediated development and abiotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1100827. [PMID: 36778689 PMCID: PMC9909564 DOI: 10.3389/fpls.2023.1100827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 05/13/2023]
Abstract
Melatonin is a multifunctional molecule that has been widely discovered in most plants. An increasing number of studies have shown that melatonin plays essential roles in plant growth and stress tolerance. It has been extensively applied to alleviate the harmful effects of abiotic stresses. In view of its role in regulating aspects of plant growth and development, we ponder and summarize the scientific discoveries about seed germination, root development, flowering, fruit maturation, and senescence. Under abiotic and biotic stresses, melatonin brings together many pathways to increase access to treatments for the symptoms of plants and to counteract the negative effects. It has the capacity to tackle regulation of the redox, plant hormone networks, and endogenous melatonin. Furthermore, the expression levels of several genes and the contents of diverse secondary metabolites, such as polyphenols, terpenoids, and alkaloids, were significantly altered. In this review, we intend to examine the actions of melatonin in plants from a broader perspective, explore the range of its physiological functions, and analyze the relationship between melatonin and other metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiaoshan Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Lei Li
- Hunan Academy of Forestry, Changsha, Hunan, China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiguang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Zaikang Tong, ; Junhong Zhang,
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Zaikang Tong, ; Junhong Zhang,
| |
Collapse
|
21
|
Application of Exogenous Melatonin Improves Tomato Fruit Quality by Promoting the Accumulation of Primary and Secondary Metabolites. Foods 2022; 11:foods11244097. [PMID: 36553839 PMCID: PMC9778358 DOI: 10.3390/foods11244097] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Melatonin plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how melatonin regulates primary and secondary metabolites during fruit growth and development are poorly understood. In this study, the surfaces of tomato fruit were sprayed with different concentrations of melatonin (0, 50, and 100 µmol·L-1) on the 20th day after anthesis; we used high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) to determine the changes in primary and secondary metabolite contents during fruit development and measured the activity of sucrose metabolizing enzymes during fruit development. Our results showed that 100 µmol·L-1 melatonin significantly promoted the accumulation of soluble sugar in tomato fruit by increasing the activities of sucrose synthase (SS), sucrose phosphate synthase (SPS), and acid convertase (AI). The application of 100 µmol·L-1 melatonin also increased the contents of ten amino acids in tomato fruit as well as decreased the contents of organic acids. In addition, 100 µmol·L-1 melatonin application also increased the accumulation of some secondary metabolites, such as six phenolic acids, three flavonoids, and volatile substances (including alcohols, aldehydes, and ketones). In conclusion, melatonin application improves the internal nutritional and flavor quality of tomato fruit by regulating the accumulation of primary and secondary metabolites during tomato fruit ripening. In the future, we need to further understand the molecular mechanism of melatonin in tomato fruit to lay a solid foundation for quality improvement breeding.
Collapse
|
22
|
Lin X, Huang S, Huber DJ, Zhang Q, Wan X, Peng J, Luo D, Dong X, Zhu S. Melatonin Treatment Affects Wax Composition and Maintains Storage Quality in 'Kongxin' Plum ( Prunus salicina L. cv) during Postharvest. Foods 2022; 11:foods11243972. [PMID: 36553714 PMCID: PMC9778571 DOI: 10.3390/foods11243972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cuticular wax is an essential barrier against biological and abiotic stress and is also an important factor affecting fruit storage quality. This paper investigated the effect of melatonin treatment on cuticular wax and the storage quality of plum fruit at low temperature storage of 4 ± 1 °C. 'Kongxin' plum was treated with 150 μmol·L-1 melatonin, dried overnight at room temperature 25 ± 1 °C, and then stored at 4 ± 1 °C for 40 d. The microstructure of the fruit epidermis was examined after 0, 20, and 40 d of storage, and the wax composition and fruit storage quality were measured at 10 d intervals. The results demonstrated that melatonin promoted the disintegration and thickening of rod-shaped waxy crystals of 'Kongxin' plum fruit and inhibited the combination of disintegrated wax and inner wax. Melatonin maintained fruit firmness and decreased the correlation between fruit firmness and other storage quality parameters. The correlation between firmness and wax composition was enhanced. Melatonin promoted long-chain alkanes that were positively correlated with firmness and water retention and strengthened the correlation between the length of the alkane chain and storage quality parameters but reduced the difference between alkane isomers and storage quality parameters.
Collapse
Affiliation(s)
- Xin Lin
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Shian Huang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
- Guiyang Agricultural Reclamation Investment Development Group Co., Ltd., Guizhou 550001, China
| | - Donald J. Huber
- Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0690, USA
| | - Qin Zhang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Xuan Wan
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Junsen Peng
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Dengcan Luo
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Xiaoqing Dong
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
- Correspondence: (X.D.); (S.Z.)
| | - Shouliang Zhu
- Guizhou Workstation for Fruit and Vegetables, Guizhou 550025, China
- Correspondence: (X.D.); (S.Z.)
| |
Collapse
|
23
|
Feng BS, Kang DC, Sun J, Leng P, Liu LX, Wang L, Ma C, Liu YG. Research on melatonin in fruits and vegetables and the mechanism of exogenous melatonin on postharvest preservation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Sati H, Khandelwal A, Pareek S. Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| | - Aparna Khandelwal
- Department of Biochemistry Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| |
Collapse
|
25
|
Wang Y, Zhang J, Ma Q, Zhang X, Luo X, Deng Q. Exogenous melatonin treatment on post-harvest jujube fruits maintains physicochemical qualities during extended cold storage. PeerJ 2022; 10:e14155. [PMID: 36262410 PMCID: PMC9575678 DOI: 10.7717/peerj.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023] Open
Abstract
This study was conducted to investigate the visual appearance and physicochemical changes of postharvest jujube fruits (Ziziphus jujuba Mill. cv. Shucuizao) stored under 0 °C for 15 days. The fruits were dipped in 0 (control), 50, 100, 200 and 400 µM melatonin solutions after harvest. The results showed that treatment with a suitable melatonin concentration improved the rate of crisp fine fruits, delayed weight loss and firmness decline, and suppressed changes in total soluble solids (TSS) and titratable acidity (TA) contents of jujube fruits compared with the control. In addition, jujube fruits soaked with melatonin showed improved antioxidant capacity through increased ascorbic acid (AsA) content, enhanced superoxide dismutase (SOD) activity, and decreased malonaldehyde (MDA) content. As a result, 50 µM melatonin showed the greatest improvement of visual appearance and quality maintenance, and could be used as an effective treatment to preserve postharvest jujube fruit.
Collapse
Affiliation(s)
- Yang Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jirui Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiaoli Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xaio’ai Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Njie A, Zhang W, Dong X, Lu C, Pan X, Liu Q. Effect of Melatonin on Fruit Quality via Decay Inhibition and Enhancement of Antioxidative Enzyme Activities and Genes Expression of Two Mango Cultivars during Cold Storage. Foods 2022; 11:3209. [PMCID: PMC9601749 DOI: 10.3390/foods11203209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The postharvest deterioration of mango fruits is a critical issue limiting mango storage and preservation due to its climacteric nature. This study evaluated the storage behavior of two mango cultivars and their response to exogenous melatonin (MT, 1000 μmol L−1) treatment in attenuating fruit decay and enhancing fruits’ physiological and metabolic processes and gene relative expression subjected to cold storage. MT treatment in both mango cultivars significantly delayed weight loss, firmness, respiration rate, and decay incidence. However, MT did not influence the TSS, TA, and TSS:TA ratio regardless of the cultivar. Moreover, MT inhibited the decrease in total phenol and flavonoid content and AsA content while delaying the increase in the MDA content of mango during storage in both cultivars. In addition, MT dramatically inhibited the enzyme activity of PPO. In contrast, an increase in the activities of antioxidant enzymes (SOD and APX) and PAL and their genes’ relative expression was noticed in MT-treated fruits versus control in both cultivars. However, MT treatment was cultivar dependent in most parameters under study. These results demonstrated that MT treatment could be an essential postharvest treatment in minimizing decay, maintaining fruit quality, and extending mango fruits’ postharvest shelf life by enhancing the physiological and metabolic processes during cold storage.
Collapse
Affiliation(s)
- Alagie Njie
- College of Agriculture, Guizhou University, Guiyang 550025, China
- School of Agriculture and Environmental Sciences, University of The Gambia, Kanifing P.O. Box 3530, The Gambia
| | - Wen’e Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiaoqing Dong
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Chengyu Lu
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xuejun Pan
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (X.P.); (Q.L.); Tel.: +86-138-8509-4631 (X.P.); +86-135-9598-4098 (Q.L.)
| | - Qingguo Liu
- Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Fenglindong Road, Xingyi, Guiyang 562400, China
- Correspondence: (X.P.); (Q.L.); Tel.: +86-138-8509-4631 (X.P.); +86-135-9598-4098 (Q.L.)
| |
Collapse
|
27
|
Effects of Ascorbic Acid and Melatonin Treatments on Antioxidant System in Fresh-Cut Avocado Fruits During Cold Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Magri A, Petriccione M. Melatonin treatment reduces qualitative decay and improves antioxidant system in highbush blueberry fruit during cold storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4229-4237. [PMID: 35023584 DOI: 10.1002/jsfa.11774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Blueberry is considered as a 'functional food' because it contains bioactive compounds such as flavonoids, phenolic acids, tannins and anthocyanins. The blueberry is one of the most consumed berries in the world and is highly appreciated by consumers because of its unique taste and sensory properties. Fresh blueberries decay rapidly because of mould and water loss. To preserve the qualitative and nutraceutical traits of fresh highbush blueberries during storage, the efficacy of 1 mm melatonin treatment was investigated at 5 °C for 3 weeks. RESULTS The results demonstrated that melatonin treatment reduced weight loss and delayed postharvest ripening. Compared to the control, melatonin treatment induced an overproduction of polyphenols, flavonoids, anthocyanins and ascorbic acid, consequently increasing antioxidant activity. The enzymatic antioxidant system was also affected by the treatment. An increase in the activity of catalase, superoxide dismutase and ascorbate peroxidase was observed in treated fruit compared to that in control fruit. Enzymatic browning, controlled by assaying the content of malondialdehyde and hydrogen peroxide, polyphenol oxidase, guaiacol peroxidase and lipoxygenase activities, appeared to slow down under melatonin treatment. CONCLUSION Melatonin coating is a valid tool for delaying the perishability and qualitative decay of highbush blueberry fruit during cold storage. Furthermore, this treatment increases the production of secondary metabolites such as polyphenols, flavonoids, anthocyanins and ascorbic acid, improving the nutraceutical traits of this fruit during storage. Melatonin treatment can be considered as an environmentally sustainable, non-harmful-to-human-health alternative for the postharvest preservation of highbush blueberry fruit. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anna Magri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Milena Petriccione
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| |
Collapse
|
29
|
Chen H, Lin H, Jiang X, Lin M, Fan Z. Amelioration of chilling injury and enhancement of quality maintenance in cold-stored guava fruit by melatonin treatment. Food Chem X 2022; 14:100297. [PMID: 35372825 PMCID: PMC8971855 DOI: 10.1016/j.fochx.2022.100297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022] Open
Abstract
The influence of melatonin treatment on the quality and chilling injury of guavas during storage at 4 ± 1 °C were evaluated. Compared with control group, fruit of guava cv. Xiguahong exposed to various concentrations (50, 100, 150, and 200 μmol/L) of melatonin showed a significantly lower fruit respiration rate, weight loss, cell membrane permeability, and chilling injury index, but a higher commercially acceptable fruit rate, higher peel L*, h° value, and chlorophyll content. Melatonin treatment also delayed the decreases of fruit firmness, sucrose, total soluble sugar, vitamin C, titratable acidity, and total soluble solids. These data indicate that melatonin treatment could increase chilling tolerance and retain quality of cold-stored guavas. Among various concentrations of melatonin treatment, 100 μmol/L melatonin-treated guavas showed the preferable quality properties and lowest chilling injury index. Thus, melatonin may be a novel method of postharvest handling to enhance cold resistance and extend storage-life of cold-stored guava fruit.
Collapse
Affiliation(s)
- Hongbin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211-5160, United States
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
30
|
Zhang C, Gong H, Liu Y. Effects of postharvest coating using chitosan combined with natamycin on physicochemical and microbial properties of sweet cherry during cold storage. Int J Biol Macromol 2022; 214:1-9. [PMID: 35705124 DOI: 10.1016/j.ijbiomac.2022.06.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022]
Abstract
Sweet cherry is prone to senesce and decay due to high postharvest respiration rate and fungal infection. The effects of natamycin-chitosan coating on physicochemical and microbial properties of sweet cherries stored at 4 °C were investigated. Scanning electron microscopy results revealed that natamycin was more uniformly distributed on sweet cherry pericarps with the help of chitosan coating. Respiration rate of sweet cherries was suppressed by chitosan coating during the storage and as a result, total soluble solids (13.53 %-13.80 %) and titratable acidity (0.91 %-0.93 %) were remained higher values and weight loss (2.54 %-2.85 %) was decreased in chitosan and natamycin-chitosan groups. Although both natamycin and chitosan were effective in inhibiting yeast and mold, sweet cherries treated with the combination of natamycin and chitosan showed significantly lower yeast and mold count (3.31 log CFU/g) and decay rate (1.67 %) compared with control. Natamycin combined chitosan inhibited the pathogenic fungi of sweet cherries, such as Alternaria, Cladosporium and Penicillium. These results indicated that postharvest natamycin-chitosan coating has great advantages in maintaining fruit quality, inhibiting fungi, and reducing decay rate of sweet cherry.
Collapse
Affiliation(s)
- Caili Zhang
- School of Food Engineering, Ludong University, Yantai 264025, Shandong Province, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, Shandong Province, China
| | - Yanlong Liu
- School of Food Engineering, Ludong University, Yantai 264025, Shandong Province, China.
| |
Collapse
|
31
|
Madebo MP, Zheng Y, Jin P. Melatonin-mediated postharvest quality and antioxidant properties of fresh fruits: A comprehensive meta-analysis. Compr Rev Food Sci Food Saf 2022; 21:3205-3226. [PMID: 35621156 DOI: 10.1111/1541-4337.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
At postharvest, fruits have a short shelf life. Recently, there has been much literature on the effects of melatonin on the postharvest quality of horticultural crops. However, reports of various findings comprise mixed claims and product-specific conclusions. Therefore, a meta-analysis systematically dissects the comprehensive effect on several fruits. In this meta-analysis, standard mean difference (SMD) was adopted using a random-effect model. The study used 36 articles and isolated 24 indicator parameters of postharvest quality and antioxidant properties based on the inclusion criteria. As exhibited in the forest plot, melatonin reduced chilling injury, weight loss, respiration rate, and ethylene content (SMD -0.90, 95% CI [-1.14, -0.65]; I2 = 81%; p < .00001). Similarly, the application of melatonin significantly suppressed electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide, superoxide anion, lipoxygenase, and polyphenol oxidase (SMD -0.89, 95% CI [-1.09, -0.69]; I2 = 70%; p < .00001). In addition, exogenous melatonin application induced endogenous melatonin content, phenolic content, and flavonoid and anthocyanin contents (SMD 1.15, 95% CI [0.91, 1.39]; I2 = 71%; p = .01). Moreover, melatonin treatment enhanced antioxidant activities (catalase, superoxide dismutase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyse) (SMD 1.37, 95% CI [1.03, 1.71]; I2 = 86%; p < .00001). Thus, in the whole study, the overall effect was significantly high in treated fruit (p < .0001), and the overall heterogeneity was above (I2 ) > 70%. In addition, the funnel plot showed symmetry in the most selected studies. To sum up, the result gives a further understanding of melatonin's capabilities in reducing postharvest losses and maintaining the quality of fresh fruits.
Collapse
Affiliation(s)
- Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China.,College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
32
|
Erbaş D, Koyuncu MA. The Effect of Pre- and Postharvest Calcium Gluconate Treatments on Physicochemical Characteristics and Bioactive Compounds of Sweet Cherry during Cold Storage. FOOD SCI TECHNOL INT 2022; 29:299-309. [PMID: 35102759 DOI: 10.1177/10820132221077515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of pre- and postharvest calcium gluconate (Ca-Glu) treatments on some physicochemical characteristics and bioactive compounds of sweet cherry cv. Sweetheart during cold storage were investigated. For preharvest treatments, the Ca-Glu (1%) solution was applied to the cherry trees two times at 21 and 35 days after full bloom stage. Control trees were sprayed with distilled water at the same days. Sweet cherries, sprayed with and without Ca-Glu, were dipped into cold water (4°C) containing calcium gluconate (1%) for 30 s and only in cold water (4°C) as control, after harvest Following each treatment, cherries were placed in plastic boxes and stored at 1 ± 0.5 °C and 90 ± 5% relative humidity for 3 weeks. The weight losses of cherries increased over time but calcium (Ca) treatments, especially pre-and postharvest combination, limited these increases compared to control groups. The best result for suppressing the respiration rate of cherries was also obtained from combined treatment. Moreover, combined treatment delayed the losses of titratable acidity, fruit firmness, decay rate and sensory quality in sweet cherries during storage comparison with the pre or postharvest application of Ca-Glu alone. The effect of Ca-Clu treatments on stem chlorophyll content and antioxidant activity was not significant. Preharvest and combined treatments retarded the loss of ascorbic acid content of cherries compared to postharvest and control treatments. The total phenolic and anthocyanin content increased regularly throughout storage, regardless of treatment; however, Ca treatments delayed the accumulation of these compounds. As a result, the combined Ca-Glu treatment could be a promising method for maintaining some physicochemical characteristics and bioactive compounds in sweet cherries during cold storage.
Collapse
Affiliation(s)
- Derya Erbaş
- Department of Horticulture, Faculty of Agriculture, 565593Isparta University of Applied Sciences, Isparta, Turkey
| | - Mehmet Ali Koyuncu
- Department of Horticulture, Faculty of Agriculture, 565593Isparta University of Applied Sciences, Isparta, Turkey
| |
Collapse
|
33
|
Di H, Li Z, Wang Y, Zhang Y, Bian J, Xu J, Zheng Y, Gong R, Li H, Zhang F, Sun B. Melatonin Treatment Delays Senescence and Maintains the Postharvest Quality of Baby Mustard ( Brassica juncea var. gemmifera). FRONTIERS IN PLANT SCIENCE 2022; 12:817861. [PMID: 35154215 PMCID: PMC8832036 DOI: 10.3389/fpls.2021.817861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/27/2021] [Indexed: 05/05/2023]
Abstract
The effect of melatonin treatment on the visual quality and content of health-promoting compounds in baby mustard (Brassica juncea var. gemmifera) at 20°C was investigated in this study. Application of 100 μmol L-1 melatonin was the most effective in prolonging the shelf life of baby mustard among all of the concentrations tested (1, 50, 100, and 200 μmol L-1). The 100 μmol L-1 melatonin treatment also delayed the increase in weight loss and the decrease in sensory parameter scores; retarded the decline of chlorophyll content; slowed the decline in antioxidant capacity by maintaining the content of carotenoids and ascorbic acid, as well as increasing the levels of total phenolics; and increased the content of individual and total glucosinolates in the lateral buds of baby mustard. These findings indicate that melatonin treatment is effective for maintaining the sensory and nutritional qualities of postharvest baby mustard.
Collapse
Affiliation(s)
- Hongmei Di
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yating Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jinlin Bian
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Huanxiu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Carrión-Antolí A, Martínez-Romero D, Guillén F, Zapata PJ, Serrano M, Valero D. Melatonin Pre-harvest Treatments Leads to Maintenance of Sweet Cherry Quality During Storage by Increasing Antioxidant Systems. FRONTIERS IN PLANT SCIENCE 2022; 13:863467. [PMID: 35481145 PMCID: PMC9036360 DOI: 10.3389/fpls.2022.863467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 05/13/2023]
Abstract
Melatonin has been reported to have an important role in fruit ripening, although the effect of pre-harvest melatonin treatment on sweet cherry quality properties during storage is still unknown. In the present experiments, the effects of melatonin (0.1, 0.3, and 0.5 Mm) by foliar spray treatments of 'Prime Giant' and 'Sweet Heart' sweet cherry trees on fruit quality traits and antioxidants systems during storage was evaluated. Results showed that these treatments reduced weight losses during storage, as well as losses in firmness and titratable acidity. In addition, changes in fruit colour and total soluble solid content were also delayed in fruit from melatonin treated trees with respect to controls. Moreover, in general, total phenolic and anthocyanin concentrations were higher in fruit from treated trees than in those from control ones, either at harvest or during the whole storage period. Finally, the activity of the antioxidant enzymes catalase, ascorbate peroxidase and peroxidase was also enhanced as a consequence of melatonin treatment. Overall results show that pre-harvest melatonin treatment delayed the post-harvest ripening process of sweet cherry fruit, leading to maintenance of their quality properties in optimum levels for consumption 2 weeks more with respect to fruit from control trees. Antioxidant systems, both enzymatic and non-enzymatic ones, were also enhanced by melatonin treatments, which would account for the delay on fruit post-harvest ripening process and fruit quality maintenance during storage.
Collapse
Affiliation(s)
| | | | - Fabián Guillén
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| | - Pedro J. Zapata
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| | - María Serrano
- Department of Applied Biology, University Miguel Hernández, Orihuela, Spain
- *Correspondence: María Serrano,
| | - Daniel Valero
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| |
Collapse
|
35
|
Abstract
Abiotic stress adversely affects plant growth and metabolism and as such reduces plant productivity. Recognized as a major contributor in the production of reactive oxygen species (ROS), it hinders the growth of plants through induction of oxidative stress. Biostimulants such as melatonin have a multifunctional role, acting as a defense strategy in minimizing the effects of oxidative stress. Melatonin plays important role in plant processes ranging from seed germination to senescence, besides performing the function of a biostimulant in improving the plant’s productivity. In addition to its important role in the signaling cascade, melatonin acts as an antioxidant that helps in scavenging ROS, generated as part of different stresses among plants. The current study was undertaken to elaborate the synthesis and regulation of melatonin in plants, besides emphasizing its function under various abiotic stress namely, salt, temperature, herbicides, heavy metals, and drought. Additionally, a special consideration was put on the crosstalk of melatonin with phytohormones to overcome plant abiotic stress.
Collapse
|
36
|
Melatonin: A blooming biomolecule for postharvest management of perishable fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Boonsiriwit A, Lee M, Kim M, Itkor P, Lee YS. Exogenous Melatonin Reduces Lignification and Retains Quality of Green Asparagus ( Asparagus officinalis L.). Foods 2021; 10:foods10092111. [PMID: 34574221 PMCID: PMC8472629 DOI: 10.3390/foods10092111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Asparagus (Asparagus officinalis L.) is highly perishable because of its high respiration rate, which continues after harvesting and leads to weight loss, increased hardness, color change, and limited shelf life. Melatonin is an indoleamine that plays an important role in abiotic stress. This study was designed to investigate the effects of melatonin on the quality attributes of green asparagus during cold storage. Green asparagus was soaked in a melatonin solution (50, 100, and 200 μM) for 30 min and then stored at 4 °C under 90% relative humidity for 25 days. The results indicated that melatonin treatment delayed the post-harvest senescence of asparagus and maintained high chlorophyll and vitamin C levels. Melatonin treatment hindered phenylalanine ammonia-lyase and peroxidase activities and reduced lignin content, thereby delaying the increase in firmness. Moreover, melatonin treatment enhanced catalase and superoxide dismutase activities, leading to reduced hydrogen peroxide content. These results indicate that melatonin treatment can be used to maintain the post-harvest quality and prolong the shelf life of green asparagus.
Collapse
Affiliation(s)
- Athip Boonsiriwit
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
- Rattanakosin International College of Creative Entrepreneurship (RICE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand
| | - Myungho Lee
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
| | - Minhwi Kim
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
| | - Pontree Itkor
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (M.L.); (M.K.); (P.I.)
- Correspondence: ; Tel.: +82-33-760-2395
| |
Collapse
|
38
|
Romero I, Vazquez-Hernandez M, Tornel M, Escribano MI, Merodio C, Sanchez-Ballesta MT. The Effect of Ethanol Treatment on the Quality of a New Table Grape Cultivar It 681-30 Stored at Low Temperature and after a 7-Day Shelf-Life Period at 20 °C: A Molecular Approach. Int J Mol Sci 2021; 22:ijms22158138. [PMID: 34360903 PMCID: PMC8347068 DOI: 10.3390/ijms22158138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681–30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681–30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681–30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.
Collapse
Affiliation(s)
- Irene Romero
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Maria Vazquez-Hernandez
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Manuel Tornel
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Mayor, s/n, La Alberca, E-30150 Murcia, Spain;
| | - M. Isabel Escribano
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - Carmen Merodio
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
| | - M. Teresa Sanchez-Ballesta
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain; (I.R.); (M.V.-H.); (M.I.E.); (C.M.)
- Correspondence:
| |
Collapse
|
39
|
Michailidis M, Tanou G, Sarrou E, Karagiannis E, Ganopoulos I, Martens S, Molassiotis A. Pre- and Post-harvest Melatonin Application Boosted Phenolic Compounds Accumulation and Altered Respiratory Characters in Sweet Cherry Fruit. Front Nutr 2021; 8:695061. [PMID: 34179064 PMCID: PMC8219925 DOI: 10.3389/fnut.2021.695061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the impact of exogenous melatonin (0. 5 mM) application through pre-harvest foliar spray and postharvest immersion, alone or in combination, on ripening parameters of sweet cherry (cv. Ferrovia) fruit and their relationship with bioactive compounds and gene expression at harvest as well after cold storage (0°C) for 12 days and subsequent room temperature (20°C) exposure for 8 h. Although several ripening traits were not influenced by melatonin, the combining pre- and post-harvest treatments delayed fruit softening at post-cold period. Preharvest spray with melatonin depressed fruit respiration at time of harvest while all applied treatments induced respiratory activity following cold, indicating that this anti-ripening action of melatonin is reversed by cold. Several genes related to the tricarboxylic acid cycle, such as PaFUM, PaOGDH, PaIDH, and PaPDHA1 were upregulated in fruit exposed to melatonin, particularly following combined pre- and post-harvest application. The accumulation of phenolic compounds, such as neochlorogenic acid, chlorogenic acid, epicatechin, procyanidin B1, procyanidin B2+B4, cyanidin-3-O-galactoside, and cyanidin-3-O-rutinoside along with the expression of several genes involved in phenols biosynthesis, such as PaSK, PaPAL, Pa4CL, PaC4H, and PaFNR were at higher levels in melatonin-treated cherries at harvest and after cold exposure, the highest effects being observed in fruits subjected to both pre- and post-harvest treatments. This study provides a comprehensive understanding of melatonin-responsive ripening framework at different melatonin application conditions and sweet cherry stages, thereby helps to understand the action of this molecule in fruit physiology.
Collapse
Affiliation(s)
- Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, Hellenic Agricultural Organisation (HAO-DEMETER), Thessaloniki, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation (HAO-DEMETER), Thessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation (HAO-DEMETER), Thessaloniki, Greece
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Trento, Italy
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
40
|
Shekari A, Hassani RN, Aghdam MS, Rezaee M, Jannatizadeh A. The effects of melatonin treatment on cap browning and biochemical attributes of Agaricus bisporus during low temperature storage. Food Chem 2021; 348:129074. [DOI: 10.1016/j.foodchem.2021.129074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/03/2023]
|
41
|
Lorente-Mento JM, Guillén F, Castillo S, Martínez-Romero D, Valverde JM, Valero D, Serrano M. Melatonin Treatment to Pomegranate Trees Enhances Fruit Bioactive Compounds and Quality Traits at Harvest and during Postharvest Storage. Antioxidants (Basel) 2021; 10:antiox10060820. [PMID: 34063806 PMCID: PMC8224012 DOI: 10.3390/antiox10060820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
The effect of melatonin pomegranate tree treatments on fruit quality and bioactive compounds with antioxidant activity at harvest and during storage at 10 °C for 60 days was assayed in two consecutive years, 2019 and 2020. In the first year, trees were treated with 0.1, 0.3 and 0.5 mM of melatonin along the developmental fruit growth cycle, and results showed that bioactive compounds (total phenolics and total and individual anthocyanins) and antioxidant activity at harvest were higher in fruits from melatonin-treated trees than in controls. Other fruit quality parameters, such as firmness, total soluble solids and aril red colour, were also increased as a consequence of melatonin treatment. In fruit from control tress, firmness and acidity levels decreased during storage, while increases occurred on total soluble solids, leading to fruit quality reductions. These changes were delayed, and even maintenance of total acidity was observed, in fruit from melatonin-treated trees with respect to controls, resulting in a fruit shelf-life increase. Moreover, concentration of phenolics and anthocyanins and antioxidant activity were maintained at higher levels in treated than in control fruits during the whole storage period. In general, all the mentioned effects were found at the highest level with the 0.1 mM melatonin dose, and then it was selected for repeating the experiment in the second year and results of the first year were confirmed. Thus, 0.1 mM melatonin treatment could be a useful tool to enhance aril content on bioactive compounds with antioxidant activity and health beneficial effects and to improve quality traits of pomegranate fruit, at harvest and during postharvest storage.
Collapse
Affiliation(s)
- José M. Lorente-Mento
- Department of Applied Biology, EPSO, University Miguel Hernández. Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain;
| | - Fabián Guillén
- Department of Food Technology, EPSO, University Miguel Hernández. Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.G.); (S.C.); (D.M.-R.); (J.M.V.); (D.V.)
| | - Salvador Castillo
- Department of Food Technology, EPSO, University Miguel Hernández. Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.G.); (S.C.); (D.M.-R.); (J.M.V.); (D.V.)
| | - Domingo Martínez-Romero
- Department of Food Technology, EPSO, University Miguel Hernández. Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.G.); (S.C.); (D.M.-R.); (J.M.V.); (D.V.)
| | - Juan M. Valverde
- Department of Food Technology, EPSO, University Miguel Hernández. Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.G.); (S.C.); (D.M.-R.); (J.M.V.); (D.V.)
| | - Daniel Valero
- Department of Food Technology, EPSO, University Miguel Hernández. Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.G.); (S.C.); (D.M.-R.); (J.M.V.); (D.V.)
| | - María Serrano
- Department of Applied Biology, EPSO, University Miguel Hernández. Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain;
- Correspondence: ; Tel.: +34-96-674-9616
| |
Collapse
|
42
|
Ze Y, Gao H, Li T, Yang B, Jiang Y. Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Li X, Ahammed GJ, Zhang XN, Zhang L, Yan P, Zhang LP, Fu JY, Han WY. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123922. [PMID: 33264973 DOI: 10.1016/j.jhazmat.2020.123922] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 05/18/2023]
Abstract
Arsenic is a toxic metalloid for both animals and plants. The signaling molecule melatonin can enhance abiotic stress tolerance, but the effects of As and melatonin on tea plants and the mechanisms of resilience remain unclear. Here we report that excess As causes severe oxidative stress in tea leaves as revealed by significantly reduced maximal photochemical efficiency of photosystem-II, and increased reactive oxygen species accumulation and lipid peroxidation. However, exogenous melatonin application alleviated the As phytotoxicity and increased the anthocyanin content upto 69.4 % by selectively upregulating the expression of its biosynthetic genes such as CsCHS and CsANS. Comparison of As tolerance between two tea genotypes differing in basal levels of anthocyanin revealed that a tea cultivar with increased anthocyanin content, Zijuan (ZJ), showed enhanced tolerance to As stress compared with Longjing 43 (LJ43) that contained relatively low levels of anthocyanin. Interestingly, exogenous anthocyanin also enhanced As tolerance in LJ43, but exogenous melatonin did not improve As tolerance in ZJ genotype. Analysis of As content in tea leaves revealed that melatonin significantly reduced As content in LJ43 but not in ZJ, suggesting that melatonin-enhanced tolerance to As stress is largely dependent on the basal levels of anthocyanin in tea plants.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Xue-Ning Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Li-Ping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Jian-Yu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Wen-Yan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
44
|
Liu X, Cui X, Ji D, Zhang Z, Li B, Xu Y, Chen T, Tian S. Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chem 2020; 342:128309. [PMID: 33051099 DOI: 10.1016/j.foodchem.2020.128309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023]
Abstract
Redox imbalance and fungal infection are major causes for quality deterioration and postharvest decay of fruit. Therefore, it is crucial to activate intrinsic antioxidative capacity and disease responses for fruit quality maintenance. Although plant-derived flavonoids have been reported for health-promoting benefits, their roles in the maintenance of fruit quality remains largely unexplored. Here, we exogenously applied luteolin, a flavonoid substance, and further examined its efficacy in maintaining fruit quality and inhibiting fungal diseases in sweet cherry. The results showed that 100 or 200 mg/L luteolin maintained better organoleptic quality and decreased disease incidence during storage. Biochemical assays revealed that luteolin activated the phenylpropanoid metabolic pathway and improved antioxidative capacity, thereby elevating total anthocyanin and flavonoid contents. Notably, luteolin inhibited mycelial growth of fungal pathogens and reduced patulin yield by Penicillium expansum. Collectively, these results suggest that luteolin is a promising alternative for maintaining better fruit quality and ameliorating disease resistance.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Cui
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|