1
|
Zhang M, Qiu M, Li Z, Xu R, Wang Y, Wang W, Snow CD, Kipper MJ, Belfiore LA, Tang J. Luminescent bio-sensors via co-assembly of hen egg white lysozyme with Eu 3+/Tb 3+-complexes. J Mater Chem B 2025; 13:3198-3208. [PMID: 39917862 DOI: 10.1039/d4tb01766h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Protein crystals have advantageous properties as framework materials, such as porosity and organized, high-density functional groups with the potential for guest specificity. Thus, protein crystal materials open up vast opportunities for fluorescent species doping and drug sensing. In this work, we explore this frontier by combining two lanthanide complexes with hen egg white lysozyme (HEWL) and directly obtaining co deposited structures in one step using an anti-solvent method different from the previous two-step method. Cross-linking of the protein was achieved using glutaraldehyde, ensuring the stability of the assembly in diverse solvent environments. The use of glutaraldehyde achieved protein cross-linking, ensuring the stability of the components in various solvent environments, including no leakage of fluorescent substances in ultrapure water and anhydrous ethanol. Differential fluorescence quenching effects of amino acids on the two doped luminescent complexes were observed. Introduction of amino acids, varying in concentration and type, resulted in distinct fluorescence enhancement or quenching effects on the protein assembly loaded with the complexes, and the detection results are reflected through different fitting equations and parameters. By exploring the application of this hybrid material for amino acid detection, this work lays the groundwork for broader applications.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Miao Qiu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zengkun Li
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Rui Xu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
2
|
Gui N, Zhang X, Yang C, Ran R, Yang C, Zeng X, Li G. A high-strength collagen-based antimicrobial film grafted with ε-polylysine fabrication by riboflavin-mediated ultraviolet irradiation for pork preservation. Food Chem 2024; 461:140889. [PMID: 39173254 DOI: 10.1016/j.foodchem.2024.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
In this study, a UV-cured collagen-based film (C-P-H film) with high mechanical strength and antimicrobial properties was developed by riboflavin-mediated ultraviolet irradiation of collagen solution containing histidine-modified ε-polylysine. Fourier transform infrared analysis indicated that covalent cross-linking was formed between the collagen molecule and the histidine-grafted ε-polylysine. Compared with the pure collagen film, the C-P-H film containing 5 wt% histidine-modified ε-polylysine showed higher tensile strength (145.98 MPa), higher thermal denaturation temperature (76.5 °C), lower water vapor permeability (5.54 × 10-11 g m-1 s-1 Pa) and excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus. In addition, the wrapping of the C-P-H film effectively inhibited bacterial growth of pork during storage time, successfully prolonging the shelf-life of pork by approximately 4 days compared to that of plastic wrap. These results suggested that collagen-based film grafted with histidine-modified ε-polylysine via riboflavin-mediated ultraviolet irradiation process had a great potential for pork preservation.
Collapse
Affiliation(s)
- Nina Gui
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Chun Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Ruimin Ran
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Changkai Yang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xingling Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Yu J, Ge W, Wang K, Hao W, Yang S, Xu Y, Feng T, Han P, Sun X. Crosslinking ability of hydrolyzed distarch phosphate and its stabilizing effect on rehydrated sea cucumber. Food Chem 2024; 456:139866. [PMID: 38852446 DOI: 10.1016/j.foodchem.2024.139866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Effective crosslinking among food constituents has the potential to enhance their overall quality. Distarch phosphate (DSP), a common food additive employed as a thickening agent, bears a pre-crosslinked oligosaccharide (PCO) moiety within its molecular structure. Once this moiety is released, its double reducing end has the potential to undergo crosslinking with amino-rich macromolecules through Maillard reaction. In this study, hydrolyzed distarch phosphate (HDSP) was synthesized, and spectroscopic analysis verified the presence of PCO within HDSP. Preliminary validation experiment showed that HDSP could crosslink chitosan to form a hydrogel and significant browning was also observed during the process. Furthermore, rehydrated sea cucumber (RSC) crosslinked with HDSP exhibited a more intact appearance, higher mechanical strength, better color profile, and increased water-holding capacity. This series of results have confirmed that HDSP is capable to crosslink amino-rich macromolecules and form more stable three-dimensional network.
Collapse
Affiliation(s)
- Jiaqi Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wenhao Ge
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Kaifeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangju Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Tingyu Feng
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Ocean University of China, Qingdao 266109, China
| | - Peng Han
- Dalian Municipal central hospital, Dalian 116021, China
| | - Xun Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
d'Errico A, Schröpfer M, Mondschein A, Safeer AA, Baldus M, Wösten HAB. Cross-linking impacts the physical properties of mycelium leather alternatives by targeting hydroxyl groups of polysaccharides and amino groups of proteins. Heliyon 2024; 10:e36263. [PMID: 39253274 PMCID: PMC11382184 DOI: 10.1016/j.heliyon.2024.e36263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/29/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Cross-linking, also called tanning, improves mechanical properties of leather and also increases its enzymatic and thermal stability. As a final product, leather has an ultimate tensile strength (σ) of 8-25 MPa and an elongation at break (ε) of >30 %. Mycelium-based materials are a sustainable alternative to leather. Here, the effect of cross-linkers was assessed on mechanical properties of Schizophyllum commune mycelium sheets. To this end, glutaraldehyde and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) were used as well as extracts of Ligustrum vulgare leaves, and bark of Acacia mearnsii and Caesalpinia spinosa. Untanned sheets had a σ of 7.8 MPa and an ε of 15.2 %, while the best overall combination of strength and elasticity was obtained with 0.1 % glutaraldehyde with a σ of 11.1 MPa and an ε of 14.6 %. Cross-linking also increased enzymatic stability and reduced mycelial water absorption but did not result in increased thermal stability. Fourier transform infrared spectroscopy (FTIR), 1D nuclear magnetic resonance spectroscopy (NMR), and amino acid analysis showed that glutaraldehyde bound both protein amino groups and polysaccharide hydroxyl groups by forming Schiff bases and acetals, respectively. Together, synthetic and vegetable cross-linkers can be used to obtain mycelium materials with leather-like tensile strength.
Collapse
Affiliation(s)
- Antonio d'Errico
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH, Meißner Ring 1-5, D-09599, Freiberg, Germany
| | - Anke Mondschein
- FILK Freiberg Institute gGmbH, Meißner Ring 1-5, D-09599, Freiberg, Germany
| | - Adil A Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
5
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
6
|
Bronner-Shtrauchler O, Nativ-Roth E, Sanchez DS, Zaiden M, Vidavsky N. Multimodal characterization of the collagen hydrogel structure and properties in response to physiologically relevant pH fluctuations. Acta Biomater 2024; 178:170-180. [PMID: 38417647 DOI: 10.1016/j.actbio.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
pH fluctuations within the extracellular matrix (ECM) and its principal constituent collagen, particularly in solid tumors and chronic wounds, may influence its structure and function. Whereas previous research examined the impact of pH on collagen fibrillogenesis, this study focuses on determining how pH fluctuations affect collagen hydrogels that mimic the physiological ECM. Utilizing a type I collagen hydrogel, we examined the influence of pH fluctuations on its structure, properties, and function while keeping the collagen hydrated. We show that collagen's secondary structure remains unaltered during pathologically relevant microenvironmental pH changes. By employing cryo scanning electron microscopy and artificial intelligence-assisted image analysis, we show that at physiological pH, collagen hydrogel presents densely packed, aligned, and elongated fibrils, which upon a decrease to pH 6.5, are transformed into shorter, sparser, and disoriented fibrils. The collagen possesses a higher storage modulus yet a lower permeability at pH 7 and 7.8 compared with pH 6.5 and 7.4. Exposing acidified collagen to a basic buffer reinstates its native structure and viscoelastic properties. Our study offers an innovative approach to analyze and characterize perturbations in hydrated collagen-based systems with potential implications for better understanding and combating disease progression. STATEMENT OF SIGNIFICANCE: As the main component of the extracellular matrix, collagen undergoes conformational changes associated with pH changes during disease. We analyze the impact of pH on pre-formed collagen fibers mimicking healthy tissues subjected to disease, and do not focus on the more studied fibrillogenesis process. Using cryogenic SEM, which allowed imaging close to the native state, we show that even minor fluctuations in the pH affect the collagen thickness, length, fiber alignment, and rheological properties. Following exposure to acidic pH, the collagen had short fibers, lacked orientation, and had low mechanical strength. This acidic collagen restored its original properties after returning to a neutral pH. These findings can help determine how pH changes can be modulated to restore healthy collagen properties.
Collapse
Affiliation(s)
| | - Einat Nativ-Roth
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Sevilla Sanchez
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Zaiden
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
7
|
Mendes TAD, Pascoal SCD, Estellita MCA, Lemos MVS, Santiago SL, Mendonça JS. Chemical analysis of n-propyl gallate used as pre-treatment for resin-dentin bond strength: In vitro study. Eur J Oral Sci 2024; 132:e12970. [PMID: 38173083 DOI: 10.1111/eos.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
This study aimed to evaluate the effect of n-propyl gallate as pre-treatment for resin-dentin bond strength. The dentin pre-treatments evaluated included propyl gallate of concentrations 0.1% (w/v), 1.0% (w/v), and 10.0% (w/v), as well as glutaraldehyde 5.0% (v/v), and distilled water as a control treatment. Dentin specimens were prepared for Fourier Transformed Infrared Spectroscopy (FT-IR) (n = 3/pre-treatment). Pre-treatments were actively applied to dentin blocks before performing the adhesive procedure to composite resin. Microtensile bond strength to dentin (μTBS) (n = 8/pre-treatment) was determined after 24 h and 6 months of storage. Data were submitted to a two-way ANOVA, followed by Tukey's post hoc test. As for FT-IR, propyl gallate 1%-treated specimens presented higher water, carbonate, collagen, and amide absorbance rates compared to other tested groups, while specimens pre-treated with glutaraldehyde and distilled water presented similar absorbance curves. Regarding μTBS, all concentrations of propyl gallate resulted in statistically significant higher bond strength values than distilled water at 24 h. After 6 months of storage, propyl gallate 0.1% was the only group that maintained μTBS over time. Propyl gallate 0.1% might be a suitable dentinal pre-treatment due to being able to present chemical bonds with demineralized dentin and providing resin-dentin bond stability after 6 months of storage.
Collapse
Affiliation(s)
| | | | | | | | - Sérgio Lima Santiago
- Graduate Program in Dentistry, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | |
Collapse
|
8
|
Wei Z, Huang L, Feng X, Cui F, Wu R, Kong Q, Sun K, Gao J, Guo J. Development of functional, sustainable pullulan-sodium alginate-based films by incorporating essential oil microemulsion for chilled pork preservation. Int J Biol Macromol 2023; 253:127257. [PMID: 37802450 DOI: 10.1016/j.ijbiomac.2023.127257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Developing safe, eco-friendly, and functionally edible packaging materials has attracted global attention. Essential oils, can be incorporated into packaging materials as antioxidant and antibacterial agents. However, their high volatility and discontinuous film matrix issues may cause a rough film surface, limiting the application in food packaging. In this study, thyme essential oil microemulsion (TEO-M) was prepared and incorporated into a pullulan-sodium alginate (PS) film. The TEO-M incorporation endowed the PS film with antioxidant and UV protection properties. The antioxidant activities of the TEO-M-incorporated PS film were significantly better than those of the TEO-C (thyme essential oil coarse emulsion)-incorporated PS film. In comparison to TEO-C, the distribution of TEO-M in the film is more uniform. Lipid oxidation and the growth of microorganisms in chilled pork were inhibited by incorporating TEO-M at a concentration of 50 mg/mL in the PS film (PS-50M). After 10 days of storage at 4 °C, the total viable count (TVC) of chilled pork preserved in the PS-50M material was significantly reduced compared to the control group (P < 0.05). This study shows that incorporating TEO-M in the PS film provides a method for applying essential oils in food packaging, which may have great potential in the food industry.
Collapse
Affiliation(s)
- Ze Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lingli Huang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyu Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Feng Cui
- Bozhou Hi-tech Innovation Pharmaceutical Industry Technology Research Institute Co., Ltd., Bozhou 236839, China
| | - Ruijie Wu
- School of Precision Instrument and Opto-electronic Engineering, Tianjin University, China
| | - Qingjun Kong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Keyu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Salem A, Abdelhedi O, Sebii H, Ben Taheur F, Fakhfakh N, Jridi M, Zouari N, Debeaufort F. Techno-functional characterization of gelatin extracted from the smooth-hound shark skins: Impact of pretreatments and drying methods. Heliyon 2023; 9:e19620. [PMID: 37809726 PMCID: PMC10558885 DOI: 10.1016/j.heliyon.2023.e19620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Gelatin derived from marine by-products could be an interesting alternative to classic mammalian gelatin. The pretreatment and extraction conditions could influence the size of the resulting peptide chains and therefore their techno-functional properties. Thus, it is important to optimize the production process to get a gelatin for the appropriate applications. Skin pretreatment was done by microwaves or oven-drying and the extracted gelatin was dried by spray- or freeze-drying. Freeze-dried gelatin extracted from untreated skin (FGUS) had the highest gelatin yield (10.40%). Gelatin proximate composition showed that proteins were the major component (87.12-89.95%), while lipids showed the lowest contents (0.65-2.26%). Glycine showed the highest level (299-316/1000 residues) in the extracted gelatins. Proline and hydroxyproline residues of gelatins from untreated skin were significantly higher than those from pretreated skin-gelatin. FTIR spectra were characterized by peaks of the amide A (3430-3284 cm-1), B (3000-2931 cm-1), I (1636-1672 cm-1), II (1539-1586 cm-1) and III (1000-1107 cm-1). Spray-drying decreased the gelling properties of gelatins, since it reduced gelling and melting temperatures compared to freeze-drying. Skin pretreatment significantly reduced the gel strength of gelatin by about 50-100 g depending on the gelatin drying method. The FGUS showed better surface properties compared to other gelatins. The highest emulsion activity index (39.42 ± 1.02 m2/g) and foaming expansion (172.33 ± 2.35%) were measured at 3% FGUS. Therefore, the promising properties of freeze-dried gelatin derived from untreated skin, gave it the opportunity to be successfully used as a techno-functional ingredient in many formulations.
Collapse
Affiliation(s)
- Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Haifa Sebii
- Food Valuation and Safety Analysis Laboratory, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Fadia Ben Taheur
- High Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Nahed Fakhfakh
- High Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Nacim Zouari
- High Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Frederic Debeaufort
- Univ. Bourgogne Franche-Comté/Agrosup Dijon, UMR PAM A02.102, Physical-Chemistry of Food and Wine Lab, 1 Esplanade Erasme, 21000, Dijon, France
- IUT Dijon-Auxerre, BioEngineering Department, University of Burgundy, 7 Blvd Docteur Petit Jean, 21078, Dijon Cedex, France
| |
Collapse
|
11
|
Galán-Navea L, Guerle-Cavero R, Balfagón-Costa A, Artalejo-Ortega B. Creation of Chemically Tri-Layered Collagen Crosslinked Membranes and Their Comparison with Ionically Tri-Layered Chitosan Crosslinked Membranes to Study Human Skin Properties. Int J Mol Sci 2023; 24:13443. [PMID: 37686251 PMCID: PMC10487804 DOI: 10.3390/ijms241713443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
In 2009, a new European regulation came into force that forbade the use of animals in the cosmetics industry. As a result, new alternatives were sought, taking into account the new ethical considerations. The main objective of this article is to continue a line of research that aims to build a physical model of skin from a biomaterial scaffold composed of collagen, chitosan or a combination to investigate whether they offer similar behavior to human skin. Collagen, the major component in the dermis, was crosslinked with glutaraldehyde (GTA) to develop three formulations for studying some properties of the skin through rheological tests like swelling index, elasticity or water loss. In addition, this article makes a comparison with the results obtained in the previous article where the membranes were made of chitosan and tripolyphosphate (TPP). The results obtained highlight that the tri-layered membranes scaffold better than the mono-layered ones to increase the elastic modulus (G') and the permeability. Furthermore, they offer a protective effect against water loss compared to mono-layered membranes. As regards chitosan membranes, these have a higher G' modulus than collagen membranes when the degree of deacetylation (DDA) is 85%. However, collagen membranes are more elastic when the DDA of chitosan is 76%, and their linear viscoelastic limit (LVL) doubles that of chitosan membranes, both for the degree of acetylation of 76 and 85%.
Collapse
Affiliation(s)
| | | | - Albert Balfagón-Costa
- Pharmaceutical Chemistry Research Group, Institut Químic de Sarrià, Universitat Ramón Llull, 08017 Barcelona, Spain; (L.G.-N.); (R.G.-C.); (B.A.-O.)
| | | |
Collapse
|
12
|
Cui P, Shao T, Liu W, Li M, Yu M, Zhao W, Song Y, Ding Y, Liu J. Advanced review on type II collagen and peptide: preparation, functional activities and food industry application. Crit Rev Food Sci Nutr 2023; 64:11302-11319. [PMID: 37459185 DOI: 10.1080/10408398.2023.2236699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Type II collagen is a homologous super-helical structure consisting of three identical α1(II) chains. It is a major component of animal cartilage, and is widely used in the food industry. Type II collagen can be extracted by acids, salts, enzymes, and via auxiliary methods and can be further hydrolyzed chemically and enzymatically to produce collagen peptides. Recent studies have shown that type II collagen and its polypeptides have good self-assembly properties and important biological activities, such as maintaining cartilage tissue integrity, inducing immune tolerance, stimulating chondrocyte growth and redifferentiation, and providing antioxidant benefits. This review focuses specifically on type II collagen and describes its structure, extraction, and purification, as well as the preparation of type II collagen peptides. In particular, the self-assembly properties and functional activities of type II collagen and collagen peptides are reviewed. In addition, recent research advances in the application of type II collagen and collagen peptides in functional foods, food additives, food coating materials, edible films, and carriers for the food industry are presented. This paper provides more detailed and comprehensive information on type II collagen and peptide for their application.
Collapse
Affiliation(s)
- Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tianlun Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Mengyu Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Mingxiao Yu
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Weixue Zhao
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yanzhuo Song
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
13
|
He L, Cao Y, Wang X, Wang Y, Han L, Yu Q, Zhang L. Synergistic modification of collagen structure using ionic liquid and ultrasound to promote the production of DPP-IV inhibitory peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4603-4613. [PMID: 36860123 DOI: 10.1002/jsfa.12536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Dual modification of collagen was performed using ionic liquid (IL) and ultrasound (US) to modulate the activity of collagen hydrolyzed peptides and reveal the production mechanism of cowhide-derived dipeptidyl peptidase (DPP-IV) inhibitory peptides. RESULTS The results revealed that dual modification (IL + US) significantly improved the hydrolytic degree of collagen (P < 0.05). Meanwhile, IL and US tended to promote the break of hydrogen bonds, but inhibit the crosslinking between collagens. The double modification reduced the thermal stability and accelerated the exposure of tyrosine and phenylalanine of collagen, and improved the proportion of small molecular (< 1 kDa) peptides in collagen hydrolysates. Interestingly, the hydrophobic amino acid residues and DPP-IV inhibitory activity of collagen peptides with small molecular weight (< 1 kDa) was increased further under the combination of IL and US. CONCLUSION Enhanced hypoglycemic activity of collagen peptides can be attained through the dual modification of IL and US. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yingying Cao
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xinyue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yanru Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Liu J, Xu Y, Huang Y, Sun X, Peng Y, Song W, Yuan J, Ren L. Collagen membrane loaded with doxycycline through hydroxypropyl chitosan microspheres for the early reconstruction of alkali-burned cornea. Int J Biol Macromol 2023:125188. [PMID: 37270120 DOI: 10.1016/j.ijbiomac.2023.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Corneal alkali burn is one of the most devastating ophthalmic emergencies correlated with remarkable morbidity resulting in severe visual impairment. Appropriate intervention in the acute phase determines the eventual outcome for later corneal restoration treatment. Since the epithelium plays an essential role in inhibiting inflammation and promoting tissue repair, sustained anti-matrix metalloproteinases (MMPs) and pro-epithelialization are the prior remedies during the first week. In this study, a drug-loaded collagen membrane (Dox-HCM/Col) that could be sutured to overlay the burned cornea was developed to accelerate the early reconstruction. Doxycycline (Dox), a specific inhibitor of MMPs, was encapsulated in collagen membrane (Col) through hydroxypropyl chitosan microspheres (HCM) to develop Dox-HCM/Col, affording a preferable pro-epithelialization microenvironment and an in-situ controlled release. Results showed that loading HCM into Col prolonged the release time to 7 days, and Dox-HCM/Col could significantly suppress the expression of MMP-9 and -13 in vitro and in vivo. Furthermore, the membrane accelerated the corneal complete re-epithelialization and promoted early reconstruction within the first week. Overall, Dox-HCM/Col was a promising biomaterial membrane for treating alkali-burned cornea in the early stage, and our attempt may provide a clinically feasible method for the ocular surface reconstruction.
Collapse
Affiliation(s)
- Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yingni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yongrui Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Xiaomin Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangzhou Proud Seeing Biotechnology Co., Ltd, Guangzhou 510623, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
15
|
Mudhafar M, Zainol I, Alsailawi H, Zorah M, Karhib MM, Mahmood mahdi N. Preparation and characterization of FsHA/FsCol beads: Cell attachment and cytotoxicity studies. Heliyon 2023; 9:e15838. [PMID: 37206015 PMCID: PMC10189507 DOI: 10.1016/j.heliyon.2023.e15838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
The present study was conducted to prepare the fish scales' hydroxyapatite/collagen beads (FsHA/FsCol) and characterize their biological, physical, and chemical properties. A new method was used to prepare FsHA/FsCol composite beads by infiltrating the beads of FsHA in the solution of FsCol as a green method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) analysis, Fourier-transform infrared (FTIR) spectroscopy analysis and energy dispersive X-ray analysis (EDX), used to evaluate the physical-chemical properties of the synthesized samples. Meanwhile, the cytotoxic and attachment studies of the FsHA/FsCol beads were used to investigate the biological features against the MG-63 human cell line. The results specified the efficiency of the new method, functional groups of FsCol were indicated to be present inside the beads of FsHA according to the XRD analysis which shows the functional peaks of FsCol. The SEM image were conformed successfully use starch as a porous agent to increasing the porous of the FsHA beads after adding 20 wt% of it. Alamar Blue assay has been used to evaluate the cytotoxicity of FsHA/FsCol beads the results were shown 87% average cell viability of the MG-63 human cell line on the beads and attached very well to the surface of the composites, indicating no toxicity being exerted by all the composites at high concentrations.
Collapse
Affiliation(s)
- Mustafa Mudhafar
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ahl Al Bayt, 56001, Karbala, Iraq
- Corresponding author.
| | - Ismail Zainol
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Proton City, 35900, Tanjung Malim, Perak, Malaysia
| | - H.A. Alsailawi
- Department of Biochemistry, Faculty of Medicine, University of Kerbala, 56001, Karbala, Iraq
| | - Mohammed Zorah
- Department of C. T. E, Imam Al-Kadhum College, Dhi Qa, Iraq
| | - Mustafa M. Karhib
- Department of Medical Laboratory Techniques, Al Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | | |
Collapse
|
16
|
Liu F, Yu Z, Wang B, Chiou BS. Changes in Structures and Properties of Collagen Fibers during Collagen Casing Film Manufacturing. Foods 2023; 12:foods12091847. [PMID: 37174385 PMCID: PMC10178574 DOI: 10.3390/foods12091847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Collagen casing is an edible film, which is widely used in the industrial production of sausages. However, the detailed changes in the collagen fibers, from the raw material to the final collagen film, have rarely been reported. In this research, the changes in the collagen fibers during the manufacturing process, including the fiber arrangement, the triple-helix structure and the thermal stability, were investigated using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The relationship between the structure stability and the arrangement of the collagen fibers was also discussed. According to the SEM, XRD, TGA, DSC and FTIR results, the collagen fibers were depolymerized during the acid swelling and became uniformly aligned after the homogenization process. Degassing had no obvious effect on the triple-helix structure. Alkaline neutralization with ammonia destroyed the triple-helix structure, which could be partly reversed through the washing and soaking processes. During the final drying step, the depolymerized triple helix of the collagen fibers recombined to form new structures that showed decreased thermal stability. This study expands our knowledge about the behavior of collagen fibers during the industrial process of producing collagen biobased casings.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhe Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beibei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
17
|
Zheng T, Tang P, Li G. Development of composite film based on collagen and phenolic acid-grafted chitosan for food packaging. Int J Biol Macromol 2023; 241:124494. [PMID: 37080407 DOI: 10.1016/j.ijbiomac.2023.124494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Collagen, a fibrous protein with triple-helical structure, is a good film-forming substrate for food packaging films because collagen films show advantages of biodegradability, high mechanical strength and good water resistance. However, collagen films lack functional activities, which may limit their applications in the field of active packaging. In this work, phenolic acid-grafted-chitosan was blended with collagen to improve the antioxidant and antimicrobial activities of collagen films. Gallic acid (GA), ferulic acid (FA) and caffeic acid (CA) were respectively grafted onto chitosan, and the physical properties and functional activities of the collagen/phenolic acids-g-chitosan (CGC, CFC and CCC) films were compared. The prepared films presented varying degrees of yellow color, and exhibited significantly improved UV light blocking capacity, antioxidant and antimicrobial properties due to the function of phenolic acid. Moreover, compared with collagen/chitosan (CC) film, CGC, CFC and CCC films showed higher mechanical strength (69.08-73.79 MPa), higher thermal denaturation temperature (69.4-71.2 °C), and lower water vapor permeability values (2.64-2.98 × 10-12 g m-1 s-1 Pa-1). The properties of collagen/ phenolic acids-g-chitosan films were greatly affected by the type of phenolic acid grafted. CGC film had the best antioxidant property as well as the best mechanical property, thermostability, UV light and water vapor blocking capacity.
Collapse
Affiliation(s)
- Tingting Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Pingping Tang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
18
|
Pei Y, Yang W, Tang K, Kaplan DL. Collagen processing with mesoscale aggregates as templates and building blocks. Biotechnol Adv 2023; 63:108099. [PMID: 36649798 DOI: 10.1016/j.biotechadv.2023.108099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen presents a well-organized hierarchical multilevel structure. Microfibers, fibers, and fiber bundles are the aggregates of natural collagen; which achieve an ideal balance of mechanical strength and toughness at the mesoscopic scale for biological tissue. These mesostructured aggregates of collagen isolated from biological tissues retain these inherent organizational features to enable their use as building blocks for constructing new collagen materials with ideal mechanical performance, thermal and dimensional stability. This strategy is distinct from the more common bottom-up or molecular-level design and assembly approach to generating collagen materials. The present review introduces the hierarchical structure of biological collagen with a focus on mesostructural features. Isolation strategies for these collagen aggregates (CAs) are summarized. Recent progress in the use of these mesostructural components for the construction of new collagen materials with emerging applications is reviewed, including in catalysis, environmental applications, biomedicine, food packaging, electrical energy storage, and flexible sensors. Finally, challenges and prospects are assessed for controllable production of CAs as well as material designs.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wen Yang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - David L Kaplan
- Biomedical Engineering, Tufts University, MA 02155, United States
| |
Collapse
|
19
|
Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Tang P, Zheng T, Yang C, Li G. Enhanced physicochemical and functional properties of collagen films cross-linked with laccase oxidized phenolic acids for active edible food packaging. Food Chem 2022; 393:133353. [DOI: 10.1016/j.foodchem.2022.133353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
|
21
|
Mahmood K, Kamilah H, Karim AA, Ariffin F. Enhancing the functional properties of fish gelatin mats by dual encapsulation of essential oils in β-cyclodextrins/fish gelatin matrix via coaxial electrospinning. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Wang L, Lyu H, Zhang X, Xiao Y, Li A, Ma Z, Guo C, Pei Y. Revealing the aggregation behaviors of mesostructured collagen by the evaluation of reconstituted collagen performance. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Tian X, Zhao K, Teng A, Li Y, Wang W. A rethinking of collagen as tough biomaterials in meat packaging: assembly from native to synthetic. Crit Rev Food Sci Nutr 2022; 64:957-977. [PMID: 35997287 DOI: 10.1080/10408398.2022.2111401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the high moisture-associated typical rheology and the changeable and harsh processing conditions in the production process, packaging materials for meat products have higher requirements including a sufficient mechanical strength and proper ductility. Collagen, a highly conserved structural protein consisting of a triple helix of Gly-X-Y repeats, has been proved to be suitable packaging material for meat products. The treated animal digestive tract (i.e. the casing) is the perfect natural packaging material for wrapping meat into sausage. Its thin walls, strong toughness and impact resistance make it the oldest and best edible meat packaging. Collagen casing is another wisdom of meat packaging, which is made by collagen fibers from hide skin, presenting a rapid growth in casing market. To strengthen mechanical strength and barrier behaviors of collagen-based packaging materials, different physical, chemical, and biological cross-linking methods are springing up exuberantly, as well as a variety of reinforcement approaches including nanotechnology. In addition, the rapid development of biomimetic technology also provides a good research idea and means for the promotion of collagen's assembly and relevant mechanical properties. This review can offer some reference on fundamental theory and practical application of collagenous materials in meat products.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - KaiXuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Anguo Teng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
24
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Qu W, Xiong T, Wang B, Li Y, Zhang X. The modification of pomegranate polyphenol with ultrasound improves mechanical, antioxidant, and antibacterial properties of tuna skin collagen-chitosan film. ULTRASONICS SONOCHEMISTRY 2022; 85:105992. [PMID: 35385812 PMCID: PMC8980343 DOI: 10.1016/j.ultsonch.2022.105992] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 05/21/2023]
Abstract
To produce an edible film with high mechanical and physicochemical properties, Tuna skin collagen-chitosan (TSC-CTS) composite films were prepared by incorporating ultrasound (UT) and pomegranate polyphenols including gallic acid (GA), tannic acid (TA), and ellagic acid (EA), respectively. The tensile strength and the DPPH scavenging activity of the GA-UT-TSC-CTS film (ultrasound frequency of 28 ± 0.5 kHz, power of 100 W/L, sweep frequency cycle of 100 ms, duty ratio of 77% and time of 10 min; GA concentration of 1.0 g/L and reaction time of 10 min) were increased by 47.03% and 24.16 folds, respectively compared to the control (TSC-CTS film). Meanwhile, light transmittance and water vapor permeability of the GA-UT-TSC-CTS film were decreased by 29.26% and 15.70%, respectively. These positive modification results were attributed to the altered structure during the film formation process, which were verified by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), X-ray diffraction (XRD), and thermogravimetry results. Moreover, the GA-UT-TSC-CTS film possessed moderate thermal stability and color indexes and improved antibacterial activity. The antibacterial effect of the film against Bacillus subtilis was the highest, followed by Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. Overall, the combination modification of gallic acid and ultrasound was an efficient modification method to improve the mechanical, antioxidant, and antibacterial properties of edible TSC-CTS films.
Collapse
Affiliation(s)
- Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China.
| | - Ting Xiong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Yuhan Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Xinxin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
26
|
Zhang T, Yu Z, Ma Y, Chiou BS, Liu F, Zhong F. Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Fathi F, N Ebrahimi S, Matos LC, P P Oliveira MB, Alves RC. Emerging drying techniques for food safety and quality: A review. Compr Rev Food Sci Food Saf 2022; 21:1125-1160. [PMID: 35080792 DOI: 10.1111/1541-4337.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
The new trends in drying technology seek a promising alternative to synthetic preservatives to improve the shelf-life and storage stability of food products. On the other hand, the drying process can result in deformation and degradation of phytoconstituents due to their thermal sensitivity. The main purpose of this review is to give a general overview of common drying techniques with special attention to food industrial applications, focusing on recent advances to maintain the features of the active phytoconstituents and nutrients, and improve their release and storage stability. Furthermore, a drying technique that extends the shelf-life of food products by reducing trapped water, will negatively affect the spoilage of microorganisms and enzymes that are responsible for undesired chemical composition changes, but can protect beneficial microorganisms like probiotics. This paper also explores recent efficient improvements in drying technologies that produce high-quality and low-cost final products compared to conventional methods. However, despite the recent advances in drying technologies, hybrid drying (a combination of different drying techniques) and spray drying (drying with the help of encapsulation methods) are still promising techniques in food industries. In conclusion, spray drying encapsulation can improve the morphology and texture of dry materials, preserve natural components for a long time, and increase storage times (shelf-life). Optimizing a drying technique and using a suitable drying agent should also be a promising solution to preserve probiotic bacteria and antimicrobial compounds.
Collapse
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.,REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | | | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Qu W, Guo T, Zhang X, Jin Y, Wang B, Wahia H, Ma H. Preparation of tuna skin collagen-chitosan composite film improved by sweep frequency pulsed ultrasound technology. ULTRASONICS SONOCHEMISTRY 2022; 82:105880. [PMID: 34952341 PMCID: PMC8799619 DOI: 10.1016/j.ultsonch.2021.105880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 05/15/2023]
Abstract
To produce a natural food packaging film from tuna skin collagen (TSC) and chitosan (CTS) and improve its mechanical and physicochemical properties, the sweep frequency pulsed ultrasound (SFPU) was introduced as a new technology and compared with the conventional method. The optimum preparation conditions of the SFPU-TSC-CTS film were sweep frequency of 28 ± 0.5 kHz, power density of 100 W/L, sweep frequency cycle of 100 ms, pulse duty ratio of 77%, and ultrasonic time of 10 min. Significant increases in the tensile strength (27.14%) and elongation at break (16.54%) and a significant decrease in the water vapor permeability (12.15%) were observed by sonication. Thus, a moderate SFPU treatment can significantly improve the moisture resistance and mechanical properties of the film. These enhancements were achieved by a more ordered and compact structure, a good crystallinity and a higher thermostability of SFPU-TSC-CTS film, which were verified by the Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal stability indexes. Moreover, SFPU-TSC-CTS film also presented good antioxidant and antibacterial activities. Therefore, SFPU was an effective auxiliary technology for improving the quality of food packaging film and can be deeply explored.
Collapse
Affiliation(s)
- Wenjuan Qu
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; School of Food and Biological Engineering, Jiangsu University, 301Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Tiantian Guo
- School of Food and Biological Engineering, Jiangsu University, 301Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xinxin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuting Jin
- School of Food and Biological Engineering, Jiangsu University, 301Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 301Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, 301Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; School of Food and Biological Engineering, Jiangsu University, 301Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
29
|
Starch engineered with Moringa oleifera seeds protein crosslinked Fe 3O 4: A synthesis and flocculation studies. Int J Biol Macromol 2021; 193:2006-2020. [PMID: 34752794 DOI: 10.1016/j.ijbiomac.2021.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to utilize cationic protein extracted from the Moringa oleifera seed in the fabrication of cationic starch crosslinked with magnetic nanoparticles (MagCS). Important synthesis parameters include starch to cationic protein volume ratio, magnetic nanoparticles mass fraction, reaction and crosslinking time, reaction and crosslinking temperature and crosslinker concentration. At optimum synthesis conditions, MagCS yield a 38.55% amide content, 2.46 degree of substitution, 1.1 mmol/g charge density and 78.6% crosslinking, which are much higher compared to other starch derivatives. A series of characterization analyses such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, elemental analysis and vibrating sample magnetometer concluded that MagCS was embedded with amide group, has high crystallinity structure, is thermally stable and shows a promising magnetic characteristic. Based on the synthesis parameters and characterization studies, the synthesis mechanism of MagCS was also postulated. The flocculation performance of MagCS was successfully assessed for the treatment of palm oil mill effluent. At optimum dosage, initial pH and settling time of 1.0 g/L, 9.0 and 15 min, the MagCS flocculant was able to remove 90.48, 83.95 and 58.19% of turbidity, color and chemical oxygen demand, respectively. This study provides an alternative eco-friendly materials in the wastewater treatment application.
Collapse
|
30
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
31
|
Peng L, Dai H, Wang H, Zhu H, Ma L, Yu Y, Fu Y, Feng X, Du J, Zhang Y. Effect of different dehydration methods on the properties of gelatin films. Food Chem 2021; 374:131814. [PMID: 34915373 DOI: 10.1016/j.foodchem.2021.131814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/24/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
The properties of gelatin film fabricated by ethanol precipitation effect dehydration, Hofmeister effect dehydration and hot air drying dehydration were investigated. The results revealed that the mechanical properties were significantly improved by ethanol precipitation and Hofmeister effect. The tensile strength and elongation at break of the film prepared by ethanol precipitation were increased by 83.28% (20% gelatin concentration) and 122.42% (5% gelatin concentration) respectively compared with that of hot air-dried gelatin film. The water contact angle was increased and water solubility was reduced by ethanol precipitation, which could attribute to the formation of compact structure, more triple helix content, and non-covalent interactions. However, the water contact angle of Hofmeister effect fabricated films was decreased compared with that of hot air drying owing to the adhesion of ammonium sulfate. Moreover, ethanol precipitation effect improved the color difference and opacity due to the ethanol decolorization effect.
Collapse
Affiliation(s)
- Lin Peng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hankun Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jie Du
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
32
|
Xu J, Liu F, Yu Z, Chen M, Zhong F. Influence of softwood cellulose fiber and chitosan on the film-forming properties of collagen fiber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
34
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
35
|
Li Y, Jin G, Liu L, Kuang H, Xiao J, Xu C. A portable fluorescent microsphere-based lateral flow immunosensor for the simultaneous detection of colistin and bacitracin in milk. Analyst 2021; 145:7884-7892. [PMID: 33016277 DOI: 10.1039/d0an01463j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polypeptide antibiotics colistin (COL) and bacitracin (Baci) are extensively used as veterinary drugs and feedstock additives in the livestock industry, which inevitably causes residues in animal-origin food, which can accelerate human tolerance to antibiotics. In this study, a portable lateral flow immunoassay (LFIA) for the simultaneous determination of COL and Baci residues in milk was developed. The replacement of gold nanoparticles used in the traditional LFIA with fluorescent microspheres (FMs) to label monoclonal antibodies (mAbs) allowed qualitative and quantitative analyses within a few minutes. Based on the principle of competitive binding to FM-labelled mAbs between analytes in samples and fixed antigens on the membrane, the assay provided qualitative cut-off values of 100 and 50 ng mL-1 for Baci and COL in milk samples. Furthermore, a strip reader-based semi-quantitative detection system could detect lower limits of 7.85 and 1.89 ng mL-1 for Baci and COL, respectively. In conclusion, the proposed multiplex LFIA immunosensor provides an auxiliary analytical tool for the rapid and simultaneous screening of COL and Baci in large cohorts of samples.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
36
|
Preparation and characterization of gelatin films by transglutaminase cross-linking combined with ethanol precipitation or Hofmeister effect. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Collagen Scaffolds Containing Hydroxyapatite-CaO Fiber Fragments for Bone Tissue Engineering. Polymers (Basel) 2020; 12:polym12051174. [PMID: 32443795 PMCID: PMC7284761 DOI: 10.3390/polym12051174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023] Open
Abstract
Collagen (COL) and hydroxyapatite (HAp) are the major components of bone, therefore, COL-HAp composites have been widely used as bone substitutes to promote bone regeneration. We have reported that HAp-CaO fibers (HANFs), which were fabricated by a sol-gel route followed by an electrospinning technique, possessed good drug-loading efficiency and limited the burst release of tetracycline. In the present study, we used HANF fragments to evaluate the effects of COL-HANF scaffolds on MG63 osteoblast-like cell behaviors. COL-HANF composite scaffolds in which the average diameter of HANFs was approximately 461 ± 186 nm were fabricated by a freeze-drying process. The alkaline phosphatase activity and the protein expression levels of OCN and BSP showed that compared with COL alone, the COL-HANF scaffold promoted the differentiation of MG63 osteoblast-like cells. In addition, the bone regeneration ability of the COL-HANF scaffold was examined by using a rabbit condylar defect model in vivo. The COL-HANF scaffold was biodegradable and promoted bone regeneration eight weeks after the operation. Hence, we concluded that the COL-HANF scaffold has potential as a bone graft for bone tissue engineering.
Collapse
|